
Trust your gut: vagal nerve stimulation in
humans improves reinforcement learning

Immo Weber,1 Hauke Niehaus,2,3 Kristina Krause,1,4,5 Lena Molitor,1 Martin Peper,2,4

Laura Schmidt,1 Lukas Hakel,1 Lars Timmermann,1,4 Katja Menzler,1,4,5 Susanne Knake1,4,5

and Carina R. Oehrn1,4,5

Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear.

Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of

vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal

nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-

choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on

overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision

process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham

stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivity and shift of accuracy-speed trade-offs to-

wards maximizing rewards. Moreover, vagal nerve stimulation was associated with increased non-decision times suggesting

enhanced sensory or attentional processes. No differences of starting bias were detected for both conditions. Accuracies in the ex-

tinction phase were higher in later trials of the vagal nerve stimulation condition, suggesting a perseverative effect compared to

sham. Together, our results provide first evidence of causal vagal influence on human reinforcement learning and might have clinic-

al implications for the usage of vagal stimulation in learning deficiency.
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Introduction
For decades, the vagus nerve has been described as the

core of the gut-brain axis, mediating motivational and

emotional states by relaying e.g. food-related information.1

In humans, invasive and non-invasive, i.e. transcutaneous,

vagal nerve stimulation (VNS) is a common treatment for

medication-resistant epilepsy and can thus be used to study

causal relationships between the autonomic and the central

nervous system.2 While there is a large body of evidence

for positive effects of vagal nerve stimulation on anxiety

and depression,1 empirical evidence suggesting a relation-

ship between vagal nerve activity and cognitive functions

is sparse. Many studies assessed effects of VNS on global

measures of cognition in severely affected epilepsy patients

and thus blended different cognitive functions.2 Other

studies with Alzheimer’s and major depression patients

found slight or no effects of VNS on overall cognitive

function.3,4 The few studies that investigated VNS effects

on distinct cognitive processes in epilepsy patients and

healthy participants did not reveal effects on working

memory,5 implicit learning6 and conflict processing.7

However, Clark et al.8 found positive effects on long-term

memory formation when applying VNS during the consoli-

dation phase of a word recognition paradigm in five epi-

lepsy patients. A large body of evidence from animal and

human studies indicates that reward processing is associ-

ated with enhanced dopamine release in the brain.9

Furthermore, rewarding stimulus properties leads to

enhanced memory formation through interactions between

dopaminergic and mnemonic brain regions.10

A recent study in rats demonstrated that optical stimu-

lation of gut-innervating vagal sensory ganglions was

associated with increased dopamine release from the sub-

stantia nigra and led to enhanced learning of flavour and

place preferences and sustained self-stimulation behav-

iour.11 This is in line with rodent studies demonstrating

enhanced cortical dopamine levels after chronic VNS12

and a cessation of food-related dopamine release in the

midbrain after lesions of the hepatic branch of the vagus

nerve.13 These results from animal studies suggest that

vagal neurons constitute an essential component of the

reward neuronal pathway. A recent study in humans

indicates that healthy participants work harder for

rewards during VNS compared to sham stimulation.14

The effect of vagal nerve stimulation on reinforcement

learning in humans is still unknown. Reinforcement learn-

ing involves decision processes, which can be dissected

into cognitive sub-processes using drift-diffusion models

(DDM15). DDM decision processes based on two per-

formance parameters, i.e. accuracy and reaction time, and

constitutes one of the most widely used methods for the

investigation of value-based choices.15 DDM disentangles

decision-making into four sub-processes: (i) non-decision

operations reflecting perceptual and motor computations,

(ii) internal starting bias towards response options (e.g.

elicited by salience) and (iii) two core parts of the deci-

sion process: (i) the drift rate: i.e. how fast the partici-

pant extracts relevant stimulus information based on

previous experience and (ii) boundary separation: how

much information is needed in order to make a decision.

Here, we investigate a causal relationship between

vagal tone and reinforcement learning in eight long-stand-

ing seizure-free, VNS-naive epilepsy patients. In a within-

subject design, we applied VNS and sham stimulation

while patients performed a reward-based forced-choice

learning paradigm.16 We applied a computerized task,

which allowed us to observe effects of VNS on a trial-by-

trial basis and to model behavioural sub-components of

the decision process using DDM.15 Corresponding to the
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animal studies,11,12 we hypothesized that VNS will im-

prove reinforcement learning and lead to a perseverance

of learned behaviour.

Methods

Patients

Seventeen patients with temporal lobe epilepsy were

recruited from the Department of Neurology at the

University Hospital Marburg, Germany. We excluded

patients with psychiatric comorbidities by means of the

Beck Depression Inventory17 and the Quality of Life in

Epilepsy questionnaire.18 As this experiment was part of

a larger study investigating VNS effects on neuroimmuno-

logical, salimetric and neuropsychological measures, nine

patients dropped out on one testing day due to the exten-

sive testing pipeline. Eight patients completed the para-

digm on both days (six females, five with left hemisphere

epilepsy, mean age 6 SD: 43.88 6 10.93 years). Patients

had been seizure-free for at least one year (mean 6 SD

7.25 6 4.50 years) and completed a neuropsychological

test battery including measures of executive functioning,

memory, recall and implicit memory. Furthermore, we

obtained the neuroticism/extraversion/openness personality

inventory by Costa und McCrae, assessing the big five

personality traits19 and the positive and negative affect

schedule20 (Supplementary Table 1). All patients signed

written informed consent. The study was approved by

the ethics committee of the University of Marburg and

was conducted according to the Declaration of Helsinki.

Paradigm

During stimulation, patients performed a probabilistic

forced-choice learning task, in which they could earn

money for correct choices16 (Fig. 1A). In a subsequent

extinction phase, reward was omitted. Patients were

seated in an acoustically shielded chamber and performed

the task using a standard keyboard in front of a com-

puter monitor. Patients received written and oral instruc-

tions and performed several practise trials. Different

stimuli were used for stimulation conditions and instruc-

tions. The experimenter ensured that each patient under-

stood the task before starting with the paradigm.

Figure 1 Experimental design and electrode placement. (A) The task comprised two consecutive parts: the learning and the extinction

phase. During the learning phase, patients were repeatedly presented with three fixed pairs of stimuli (240 trials, 80 trials per set). The stimuli

consisted of six letters from the artificial Klingon alphabet (https://www.dafont.com, last accessed: 18 Mar 2021), which were organized in three

sets. Set A consisted of one stimulus with a reward probability of 80% and one with 20%, Set B with 70% and 30% and Set C with 60% and 40%,

respectively. Patients were instructed to indicate as fast as possible by button press, which of both stimuli was associated with a higher reward.

Pairs during the learning phase were fixed, but the side of presentation randomized for each trial. Associations between stimuli and reward

probabilities were randomized for each patient. For each testing day, a different set of stimuli was used. After completion of the learning phase, an

extinction phase followed, in which no feedback was given. During this phase, in each trial, a pseudo-random combination of the six previously

presented letters was presented (120 trials). In total, the duration of the paradigm was �15 min. (B) Illustration of location of the stimulation

electrode during the transcutaneous vagus nerve stimulation and the sham condition. In the sham condition, the probe was applied to the centre

of the left lobule (top). In the active VNS condition, the probe was applied to the left cymba conchae in order to stimulate the auricular branch of

the vagus nerve (bottom, image from6).
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Transcutaneous vagus nerve
stimulation

In a double-blind design, VNS-naive patients received

transcutaneous vagus nerve and sham stimulation on the

left ear on two separate days—separated by at least two

weeks—in pseudo-randomized order (Cerbomed, Nemos,

Cerbomed GmbH, Erlangen). We applied VNS and sham

stimulation at the same frequency (25 Hz), but at differ-

ent locations (Fig. 1B). In the sham condition, the probe

was applied to the centre of the left lobule. In the active

VNS condition, the probe was applied to the left cymba

conchae to stimulate the auricular branch of the vagus

nerve according to the guidelines of the manufacturer.

Stimulation amplitude was set below the average of indi-

vidual sensitivity and pain threshold of each patient

(mean 6 SD stimulation amplitude: VNS 1.29 6 0.61 mA;

sham: 1.25 6 0.49 mA). An independent clinician attached

the stimulation device and concealed it with a headband

covering the entire ear. Thus, experimenter and patients

were blind to the stimulation condition.

On both testing days, patients were continuously

stimulated for 3 h before as well as during the behav-

ioural experiment. Patients were told that the aim of the

study was to compare the effects of two different stimula-

tion sites for VNS without priming patients to expected

effects at each probe position. None of the patients

reported subjective differences between stimulation condi-

tions, in particular in regard to gastrointestinal or cardiac

sensations.

Statistics

The identical analyses were performed for the study and

extinction phase. We performed all calculations with

Matlab 2016b (The Mathworks inc), the diffusion model

analysis toolbox toolbox,21 the Fieldtrip toolbox22 and

self-written code. We set the alpha level to 0.05.

Effects on accuracy

To analyse the time-resolved update of accuracies, we cal-

culated the cumulative accuracies per trial according to:

cACC trialð Þ ¼
Ptrial

i¼1 correct trials

trial
: (1)

We evaluated differences between the VNS and sham

condition by means of non-parametric cluster-based permu-

tation tests.23 This procedure ranks effect sizes in relation

to a permutation distribution. The reason why we used

cluster-based permutation testing is 2-fold: (i) In contrast

to parametric statistical tests, permutation tests do not de-

pend on any prior assumptions concerning the shape of

the underlying distributions. This is especially important

for data sets with low to medium sample sizes, where

Gaussian distributions cannot be tested reliably. As such,

we used permutation testing in order to test most conser-

vatively. (ii) This procedure, originally developed for

imaging studies, effectively controls for Type I errors dur-

ing multiple testing.23 The surrogate distribution was cre-

ated by randomizing condition labels (10 000

permutations).

Drift-diffusion modelling

We modelled components of the decision process using

DDM for continuous non-overlapping blocks of 30 trials

using the diffusion model analysis toolbox toolbox21

(Fig. 2). DDM are among the most established sequential-

sampling models to analyse binary forced-choice based

behavioural responses. The model is based on the assump-

tion that this decision process is preceded by a continuous

cumulation of noisy evidence extracted from sensory

information. This cumulation finally leads to either one of

the two decision boundaries representing the possible be-

havioural options (see sample paths in Fig. 2). The model

integrates behavioural accuracies and distributions of reac-

tion times into four key parameters, representing specific

cognitive processes. The drift rate quantifies the rate at

which information, e.g. reward value, may be extracted

from sensory information. High drift rates lead to faster

decisions. The boundary separation describes the amount

of evidence necessary to reach a decision and thus

represents an accuracy-speed trade-off. An a priori favored

decision is quantified by the starting bias, while the non-

decision time integrates processes unrelated to the decision,

Figure 2 Schematic representation of the drift and

diffusion model. One possibility to model the decision process in a

two-alternative forced-choice paradigm is using the well-established

drift and diffusion model. The DDM assumes that subjects slowly

accumulate and integrate evidence at every time-step for one of two

choices until a decision boundary is reached (dotted lines). The

evidence, which constitutes sensory input and its integration with

prior knowledge is assumed to be noisy and thus modelled as a

stochastic process. The red and blue lines represent the accumulated

evidence associated with the two opposing choices for the decision.

Using the reaction time of individual subjects, the decision process

may be dismantled into four parameters: non-decision time, starting

bias, drift rate and boundary separation.
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such as attention or movement execution.15 While the

DDM was originally developed to analyse simple percep-

tual decisions,24 it later became well established in studies

concerned with value-based decision processes.25,26 First,

we fitted a model, in which parameters were allowed to

change freely between stimulation conditions. Second, we

compared the evidence to a model with fixed parameters

for both conditions using a Chi-square test, to test if any

difference between stimulation conditions could be

detected. If the models differed significantly, we performed

a second-level analysis, to disentangle for which parame-

ters the stimulation effect occurs. For this, we fixed all but

one parameter and repeated the previous testing for all

four parameters. To account for within and between sub-

ject variability we modelled the drift and diffusion process

as a random effects model, with variability of drift rate,

non-decision time and starting point as additional free

parameters. All statistical comparisons were Bonferroni

corrected by a factor blocks � parameters, resulting in an

adapted alpha level of 0.002 for the learning phase and

0.003 for the extinction phase.

Prediction of stimulation effect on
accuracy

To assess the impact of patient characteristics and dis-

ease-related factors on the stimulation effect, we esti-

mated the mutual information quotient (MIQ) between

the mean accuracy differences between the stimulation

conditions in the significant time window and potential

predictors (i.e. age, sex, neuroticism/extraversion/openness

personality inventory scores, positive and negative affect

schedule scores and disease-related information).27 The

MIQ is particularly suited for the estimation of shared

information between two variables in small samples

while accounting for redundant information between all

predictors. We used a binning estimator and adapted bin

sizes according to the Freedman–Diaconis rule.28 We

determined significant MIQ estimates by means of a sur-

rogate-based permutation test, where labels of response

and predictor variables were randomly swapped (10 000

permutations). P-values were subsequently corrected for

multiple comparisons using Bonferroni correction.

Data availability

All data and code used for analysis are available upon

reasonable request.

Results

Learning phase

Effect of stimulation on performance

Cluster statistics revealed that accuracies were significant-

ly larger in the VNS condition than in the sham

condition, which was time-specific (trial 123–240,

P¼ 0.04, Fig. 3A and B, Supplementary Fig. 1).

Subsequent tests against chance level demonstrated that

patients effectively learned in the VNS (trials 26–240: P

< 0.01), but not in the sham condition (no cluster found).

There was no effect of stimulation order (Day 1 versus

Day 2) on accuracies (largest cluster: P ¼ 0.20). We did

not find stimulation effects on reaction times (largest clus-

ter: P ¼ 0.33, for individual reaction times see

Supplementary Table 1).

Drift and diffusion model

Each of the eight most liberal DDM for each trial block

was significantly different from models with fixed param-

eters for both simulation conditions (all P< 0.001, for fit

values see Supplementary Table 4). A second-level ana-

lysis revealed a relatively higher non-decision time (all

P< 0.001, Blocks 1 and 3–7, Fig. 3C), boundary separ-

ation (all P< 0.001, Blocks 3–7, Fig. 3D) and drift rate

(all P< 0.001, Blocks 2–5, Fig. 3E) in the VNS condition.

There were no effects of stimulation on starting bias (all

P> 0.003, Fig. 3F).

Prediction of stimulation effect

The analysis of MIQ revealed that the neuroticism/extra-

version/openness personality inventory sub score extraver-

sion significantly shared predictive information with the

stimulation effect (MIQ¼ 3.90, P< 0.001, Fig. 4). None

of the other parameters predicted the stimulation effected

(all P> 0.11).

Extinction phase

Effect of stimulation on performance

Cluster statistics showed that accuracies were higher for

VNS in comparison to the sham condition. This effect

was specific for later trials of the extinction phase (Trials

66–120: P ¼ 0.02, Fig. 5A and B, Supplementary Fig. 2),

indicating a perseverative effect of stimulation on learn-

ing. There was no effect of stimulation order on accuracy

(no cluster found) or reaction times (no cluster found).

Drift and diffusion model

Blocks 1, 3 and 4 of the most liberal DDM yielded signifi-

cant differences between stimulation conditions (Block 1:

P ¼ 0.01, Block 2: P ¼ 0.25, Block 3: P < 0.001, Block 4:

P < 0.01, fit values: See Supplementary Table 5).

Analogous to the learning phase, we found stimulation

effects on non-decision time (P¼ 0.001, Block 4, Fig. 5C),

boundary separation (P¼ 0.003, Block 1, Fig. 5D) and

drift rate (P< 0.001, Block 4, Fig. 5E). There was no

effect on starting bias (all P> 0.012, Fig. 5F).

Effects of stimulation on mood and other bodily

sensations

Wilcoxon signed-rank tests revealed no differences of

positive, negative or total positive and negative affect
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schedule scores between both stimulation conditions

[VNS versus sham: positive/VNS 16.25 6 2.12 (mean 6

standard error), positive/sham 17.38 6 1.56, P¼ 0.16;

negative/VNS: 17.25 6 1.32, negative/sham: 17.75 6 1.33,

P¼ 0.71; total/VNS: 33.50 6 3.41, total/sham:

35.13 6 2.66, P¼ 0.38, Wilcoxon signed-rank test,

Bonferroni corrected].

Discussion
In this study, we show for the first time that VNS in

humans positively influences reinforcement learning.

During the learning phase, VNS was associated with a

higher overall accuracy of decisions (Fig. 3A and B) than

during sham stimulation. The effect was time specific, i.e.

it appeared after several trials of learning (123 trials).

After omission of reward, VNS led to a perseverance of

learned behaviour. This effect occurred in the second half

of the extinction phase, when accuracy had dropped dur-

ing sham stimulation, but not VNS.

These results are in accordance with a previous study

in rats demonstrating that optical stimulation of vagal

sensory neurons was associated with enhanced reinforce-

ment learning and perseverance of behaviour, analogous

to the decelerated extinction in our study.11 Along with

Figure 3 Effect of stimulation on reinforcement learning (learning phase). (A and B) Cluster-based permutation statistic revealed

higher accuracy during the VNS compared to the sham condition (trials: 123–240, cluster statistic¼ 254.66, P¼ 0.04, N¼ 8 subjects, cluster-

based permutation test, a¼ 0.05). (A) Average cumulative accuracies per stimulation condition. Coloured areas indicate standard errors. The

dotted line indicates chance level at 50%. (B) Cumulative accuracies per subject and stimulation condition. (C–F) We found time (i.e. trial)—

specific effects of stimulation on DDM parameters during the learning phase (model fitted over N¼ 480 trials, Chi-square test, a¼ 0.002,

Bonferroni corrected): (C) non-decision time (Block 1: P< 0.001, Block 2: P¼ 0.017, Block 3: P< 0.001, Block 4: P< 0.001, Block 5:

P< 0.001, Block 6: P< 0.001, Block 7: P< 0.001, Block 8: P¼ 0.024), (D) boundary separation (Block 1: P¼ 0.379, Block 2: P¼ 0.027, Block 3:

P< 0.001, Block 4: P< 0.001, Block 5: P< 0.001, Block 6: P< 0.001, Block 7: P< 0.001, Block 8: P¼ 0.492), (E) drift rate (Block 1: P¼ 0.075,

Block 2: P< 0.001, Block 3: P< 0.001, Block 4: P< 0.001, Block 5: P< 0.001, Block 6: P¼ 0.603, Block 7: P¼ 0.101, Block 8: P¼ 0.031) and (F)

starting bias (Block 1: P¼ 0.087, Block 2: P¼ 0.044, Block 3: P¼ 0.067, Block 4: P¼ 0.755, Block 5: P ¼ 0.304, Block 6: P ¼ 0.003, Block 7: P

¼ 0.846, Block 8: P ¼ 0.959). In all subplots, shaded grey areas indicate significant differences between stimulation conditions.
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other results in rats,12 this rodent study indicates that

vagal stimulation is associated with enhanced dopamine

release in the brain. It is well established that dopamine

release encodes prediction errors—the discrepancy be-

tween expected and observed reward—and is the core

neurotransmitter involved in reinforcement learning.9

Thus, one could speculate that enhanced dopamine re-

lease by vagal stimulation constitutes the underlying neur-

al mechanism of the effects of VNS on reinforcement

learning observed in this study. However, here, we do

not explicitly demonstrate the role of dopamine and it is

very likely that VNS additionally activates other transmit-

ter systems. Several studies demonstrated that VNS

increases serotonin in the animal12 and norepinephrine

levels in the human brain,29 both of which are associated

with reward expectation.30,31

Furthermore, we investigated the effects of VNS on

sub-components of reward-based decision-making. We

found effects of VNS on boundary separation and drift

rates (Fig. 3D and E). In reward-based paradigms, drift

rate can be interpreted as a proxy of reward sensitivity.15

In addition, VNS raised the internal decision threshold,

favouring accuracy over speed in comparison to sham

stimulation (boundary separation, Fig. 3D). Based on the

assumption that vagal stimulation promotes dopaminergic

activity,11 our results are in line with previous studies

demonstrating a positive correlation of dopaminergic

activity and reward sensitivity in animal32 and human

studies.33

We found that VNS during learning did not only en-

hance processes linked to decision-making but also

increased behavioural components tied to sensory and at-

tention processes (non-decision time, Fig. 3C). This result

may be linked to previous reports of increased post-error

slowing during vagal stimulation in humans (i.e. slowing

of the subsequent response34). Other VNS studies

reported an increase of attentional processes, which may

bind cognitive resources during decision-making.35 This

explanation is further supported by effectiveness of dopa-

mine-releasing drugs for patients with attention-deficit

disorder.36 Stimulation did not affect internal preference

for either response (starting bias, Fig. 3F), which demon-

strates the specificity of the stimulation effects on the lat-

ter three aspects of decision-making.

Mutual information analysis revealed that no patient

characteristics or disease-related factors impacted the

stimulation effect on reinforcement learning. We found a

selective relationship between extraversion of patients and

the extent of the stimulation effects. A supplementary

analysis indicates that patients with relatively lower extra-

version profited most from stimulation, i.e. the stimula-

tion effect in patients deviated during sham, but not VNS

stimulation (Supplementary Fig. 3). These results are in

accordance with previous studies showing that individual

differences in extraversion predict reward sensitivity in

humans.37 However, this finding should be interpreted

with caution due to the small sample size and should be

corroborated in future studies. As different affective

states during stimulation may also potentially influence

behavioural results, we also included positive and nega-

tive affect schedule scores recorded during both stimula-

tion conditions as predictors for our mutual information

analysis. However, neither positive, negative nor total

scores per condition had a significant contribution to

predicting the influence of stimulation on learning

accuracy. In addition, there were no self-reports on

gastrointestinal, cardiac or other sensations during either

of both stimulation conditions. Overall, this indicates

that the stimulation effect is not indirectly mediated

by mood.

One limitation of our study is the small simple size.

However, we show consistent results across patients. We

analysed the data conservatively by using non-parametric

statistics and corrected rigorously Type I errors were ap-

plicable. A second drawback of our study is the study

population. Due to ethical reasons, we refrained from

applying VNS to healthy participants. However, to

approximate effects in the healthy population and make

inferences more generalizable, we exclusively included

long-standing (i.e. minimum of 1 year) seizure-free

patients without neuropsychological deficits.

In summary, we demonstrate for the first time that

vagal nerve stimulation in humans enhances reinforce-

ment learning and decelerates extinction of learned

Figure 4 Predictor importance of patient variables on

stimulation effect (MIQ analysis). The individual extraversion

scores of patients share most predictive information with the

stimulation effect on accuracy: ***P< 0.01 (MIQ¼ 3.90, P< 0.001,

N¼ 8 subjects, cluster-based permutation test, Bonferroni

corrected). Mutual information was calculated using a binning

estimator and bin sizes optimized using the Freedman–Diaconis

rule.
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behaviour. Behavioural modelling indicates that vagal

tone increases reward sensitivity and shifts accuracy-speed

trade-offs towards maximizing rewards.

Supplementary material
Supplementary material is available at Brain

Communications online.

Acknowledgements
The authors would like to thank the patients for participat-

ing in this study.

Funding
Authors declare no project-related funding.

Competing interests
I.W., H.N., K.K., L.M., M.P, L.S., L.H., K.M., S.K. and

C.R.O. declare no competing interests. L.T. reports grants,

personal fees and non-financial support from SAPIENS

Steering Brain Stimulation, Medtronic, Boston Scientific and

St. Jude Medical and has received payments from Bayer

Healthcare, UCB Schwarz Pharma and Archimedes Pharma

and also honoraria as a speaker on symposia sponsored by

Teva Pharma, Lundbeck Pharma, Bracco, Gianni PR, Medas

Figure 5 Effect of stimulation on accuracy in extinction phase. (A and B) Cluster-based permutation statistic shows differences

between stimulation conditions on accuracy (trials 66–120, cluster statistic¼ 138.50, P¼ 0.02, N¼ 8 subjects, cluster-based permutation test,

a¼ 0.05). (A) Average cumulative accuracies per stimulation condition. Coloured areas indicate standard errors. The dotted line indicates

chance level at 50%. (B) Cumulative accuracies per subject and stimulation condition. We found time (i.e. trial)—specific effects of stimulation

on DDM parameters during the extinction phase (model fitted over N¼ 480 trials, Chi-square test, a¼ 0.003, Bonferroni corrected): (C)

non-decision time (Block 1: P ¼ 0.081, Block 2: P ¼ 0.238, Block 3: P ¼ 0.007, Block 4: P ¼ 0.001), (D) boundary separation (Block 1: P

¼ 0.003, Block 2: P ¼ 0.226, Block 3: P ¼ 0.289, Block 4: P ¼ 0.057), (E) drift rate (Block 1: P ¼ 0.041, Block 2: P ¼ 0.022, Block 3: P < 0.001,

Block 4: P ¼ 0.010) and (F) starting bias (Block 1: P ¼ 0.012, Block 2: P ¼ 0.616, Block 3: P ¼ 0.021, Block 4: P ¼ 0.689). In all subplots, grey-

shaded areas indicate significant differences between conditions. To account for within and between subject variability, we modelled the drift

and diffusion process as a random effects model, with variability of drift rate, non-decision time and starting point as free parameters.
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5. Sun L, Peräkylä J, Holm K, et al. Vagus nerve stimulation

improves working memory performance. J Clin Exp

Neuropsychol. 2017;39(10):954–964.

6. Jongkees BJ, Immink MA, Finisguerra A, Colzato LS.

Transcutaneous vagus nerve stimulation (tVNS) enhances response

selection during sequential action. Front Psychol. 2018;9:1159.

7. Fischer R, Ventura-Bort C, Hamm A, Weymar M. Transcutaneous

vagus nerve stimulation (tVNS) enhances conflict-triggered adjust-

ment of cognitive control. Cogn Affect Behav Neurosci. 2018;

18(4):680–693.

8. Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA.

Enhanced recognition memory following vagus nerve stimulation

in human subjects. Nat Neurosci. 1999;2(1):94–98.
9. Schultz W. Dopamine reward prediction-error signalling: A two-

component response. Nat Rev Neurosci. 2016;17(3):183–195.
10. Dalley JW, Everitt BJ. Dopamine receptors in the learning, mem-

ory and drug reward circuitry. Semin Cell Dev Biol. 2009;20(4):

403–410.

11. Han W, Tellez LA, Perkins MH, et al. A neural circuit for gut-

induced reward. Cell. 2018;175(3):665–678.e23.
12. Manta S, El Mansari M, Debonnel G, Blier P. Electrophysiological

and neurochemical effects of long-term vagus nerve stimulation on

the rat monoaminergic systems. Int J Neuropsychopharmacol.

2013;16(2):459–470.
13. Fernandes AB, Alves da Silva J, Almeida J, et al. Postingestive

modulation of food seeking depends on vagus-mediated dopamine

neuron activity. Neuron. 2020;106(5):778–788.e6.
14. Neuser MP, Teckentrup V, Kühnel A, Hallschmid M, Walter M,

Kroemer NB. Vagus nerve stimulation boosts the drive to work

for rewards. Nat Commun. 2020;11(1):3555.
15. Pedersen ML, Frank MJ, Biele G. The drift diffusion model as the

choice rule in reinforcement learning. Psychon Bull Rev. 2017;

24(4):1234–1251.

16. Frank MJ, Seeberger LC, O’reilly RC. By carrot or by stick:

Cognitive reinforcement learning in parkinsonism. Science. 2004;

306(5703):1940–1943.

17. Hautzinger M, Keller F, Kühner C. Beck Depressions-Inventar—

manual: BDI II. Revision, 2. Aufl.; 2009.
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