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Alzheimer’s disease (AD) is a progressive neurodegenerative condition that results
in impaired performance in multiple cognitive domains. Preclinical changes in eye
movements and language can occur with the disease, and progress alongside
worsening cognition. In this article, we present the results from a machine learning
analysis of a novel multimodal dataset for AD classification. The cohort includes data
from two novel tasks not previously assessed in classification models for AD (pupil
fixation and description of a pleasant past experience), as well as two established tasks
(picture description and paragraph reading). Our dataset includes language and eye
movement data from 79 memory clinic patients with diagnoses of mild-moderate AD,
mild cognitive impairment (MCI), or subjective memory complaints (SMC), and 83 older
adult controls. The analysis of the individual novel tasks showed similar classification
accuracy when compared to established tasks, demonstrating their discriminative ability
for memory clinic patients. Fusing the multimodal data across tasks yielded the highest
overall AUC of 0.83 ± 0.01, indicating that the data from novel tasks are complementary
to established tasks.

Keywords: Alzheimer’s disease, mild cognitive impairment, speech, language, eye-tracking, machine learning,
multimodal

INTRODUCTION

Dementia affects approximately 47 million individuals globally and is considered to be one of
the costliest diseases in developed countries (El-Hayek et al., 2019). Alzheimer’s disease (AD) is
the most common cause of dementia, contributing to 60–80% of cases (Kumar and Tsao, 2019).
Despite its cost and prevalence, there are still no disease-modifying treatments for AD.

Successful disease-modifying therapies for AD are most likely to be effective in individuals
without advanced neurodegenerative changes (Sperling et al., 2014; Reiman et al., 2016). These
individuals, as well as individuals with pre-clinical or very early stage disease, are of particular
interest for disease-modifying drug trials for dementia, as preventing decline appears to be more
promising than reversing it (Trempe and Lewis, 2018). Current evidence suggests that pre-clinical
pathological hallmarks of AD are present years before overt clinical symptoms occur (Vickers et al.,
2016) and that both dementia and cognitive impairment can often go undetected (Lang et al., 2017).
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To detect AD or early stage disease, targeted screening and
reassessment are critical (Rasmussen and Langerman, 2019).

Current screening strategies for clinical trials targeting
pre-clinical AD are inefficient and expensive. Up to 80%
of potential participants fail the screening process, leading
to trials spending upwards of $100,000 USD per enrolled
participant (Kolata, 2018). A substantial portion of these costs
is from expensive and invasive screening strategies including
lumbar puncture, advanced imaging, genetic testing, or extensive
neuropsychological testing (Watson et al., 2014). To accelerate
preventative clinical trials and to address underdiagnosis in the
community, there is a strong need for an efficient, accurate,
cost-effective, and scalable screening tool for AD and its earlier
stages which can include a proportion of individuals with Mild
Cognitive Impairment (MCI), or SubjectiveMemory Complaints
(SMC).

With the goal of developing a high-throughput and
non-invasive screening tool, we present a machine learning
analysis of a new multimodal eye-tracking and language dataset
integrating two novel tasks: pupil calibration and memory
description. In our pupil calibration task, participants are asked
to fixate on a target for 10 s. This may allow us to better
capture potential square-wave jerks (involuntary eye-movements
that interrupt fixation) which are linked to AD (Nakamagoe
et al., 2019) or other neurodegenerative processes. Our memory
description task asks participants to describe a pleasant past
experience. This enables participants to speak in a more
open-ended way andmay allow us to capture additional language
patterns that may not be evident during picture description
or reading tasks. Our dataset also includes language and
eye-tracking data from participants completing the two tasks
well-described in the literature, picture description and reading,
alongside the novel tasks. Based on the dataset of these four tasks,
we perform machine learning experiments to classify individuals
into an AD/MCI/SMC group or control group, using expert
clinician diagnoses as ground-truth labels. For our classification
analysis, we perform experiments using individual tasks, as well
as combining tasks.

RELATED WORK

In this section, we review similar work in the context of our
research. We first describe previous work involving AD/MCI
classification using two separate modalities: language and eye-
tracking. Next, we introduce work on multimodal approaches
that use synchronized language and eye-tracking data. Last,
we discuss limitations of the previous work and reiterate our
contributions in this current article.

Language Analysis
Clinical studies have shown that changes in both speech and
language are linked to AD pathology and that these changes
progress with disease severity (Sajjadi et al., 2012; Rodríguez-
Aranda et al., 2016). Ahmed et al. (2013) examined Cookie
Theft picture description task speech from 15 individuals with
autopsy-proven MCI or mild AD from the Oxford Project to
Investigate Memory and Aging (OPTIMA), and 15 age- and

education-matched healthy controls. By manually annotating
speech, they found that semantic and lexical content, in addition
to syntactic complexity, declined with disease progression
(Ahmed et al., 2013). This process of manual transcription
and annotation is time-consuming, and inspired subsequent
investigations into an automatic classification of AD/MCI vs.
controls using natural language processing (NLP).

Most research for AD/MCI classification using NLP has
used data collected from the Cookie Theft picture description
task—examples include the DementiaBank (Becker et al., 1994)
and ADReSS datasets (Luz et al., 2020). DementiaBank is the
largest publicly available dataset, containing picture description
transcripts of 169 individuals with probable or possible AD,
19 with MCI, and 99 healthy controls (aged 45–90), collected
between 1983 and 1988. In this task, participants are shown the
Cookie Theft picture from the Boston Aphasia test (Figure 1) and
are asked to describe everything they see (Goodglass and Edith,
1972). This task is commonly used for assessing spontaneous
speech in AD and other clinical contexts (Cummings, 2019).

Traditional ML approaches have been used to classify
AD/MCI vs. healthy controls through speech analysis (Orimaye
et al., 2014; Fraser et al., 2016; Al-Hameed et al., 2017; Field et al.,
2017; Masrani et al., 2017; Toth et al., 2018; Konig et al., 2018;
Gosztolya et al., 2019). Orimaye et al. (2014) applied a variety
of machine learning methods incorporating both lexical and
syntactic features, to classify individuals in the DementiaBank
dataset. This group compared different classifiers such as support
vector machines (SVMs), naïve Bayes, decision trees, neural
networks, and Bayesian networks. They found that SVMs showed
the best performance, with the highest F-score of 74% (Orimaye
et al., 2014). In a more recent study, Al-Hameed et al. (2017) used
the DementiaBank dataset to extract acoustic features and built
a regression model to predict cognitive assessment scores (Mini
Mental State Exam scores, MMSE). Their model was able to
predictMMSE scores with amean absolute error of 3.1 using only
acoustic features (Al-Hameed et al., 2017). Fraser et al. (2016)
evaluated models incorporating a large variety of both linguistic
and acoustic features from DementiaBank data. Using feature
selection, they found that optimal classification performance
was achieved when between 35 and 50 features were used. In a
feature set of >50, performance dropped drastically. Overall, they
achieved an accuracy of 81.96% in classifying individuals with
AD from those without (Fraser et al., 2016). Building on this, our
group improved accuracy to 84.4% (Field et al., 2017; Masrani,
2018) by adding features based on the clinical observation that
hemispatial neglect occurs with AD (Drago et al., 2008).

More recently, deep learning approaches have further
improved classification performance. Our group used a
hierarchical attention Recurrent Neural Network (RNN) model
incorporating both raw text and patient’s age, leading to 86.9%
accuracy using DementiaBank data (Kong et al., 2019). Karlekar
et al. (2018) achieved 91% accuracy using a Convoluted Neural
Network (CNN)-RNN model trained on part-of-speech-tagged
utterances. Using CNN on both DementiaBank and ADReSS
data, Sarawgi et al. (2020) presented an ensemble of threemodels:
disfluencies, acoustic, and intervention. Balagopalan et al.
(2020) and Pappagari et al. (2020) showed that fine-tuned
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FIGURE 1 | The picture description task (the Boston aphasia exam Cookie Theft picture). Areas of interest (AoIs) are shown as blue polygons.

bidirectional encoder representations from transformers (BERT)
outperformed models with hand-engineered features.

Eye-Movement Analysis
AD alters ocular function. Neuronal death combined with
neurofibrillary tangles and amyloid plaques in people with
AD leads to cortico-cortical disconnections (Molitor et al.,
2015) and infiltration of the locus ceruleus and associated
projections (Granholm et al., 2017). These disconnection has
been shown to primarily affect temporoparietal association
areas, making individuals with AD more likely to develop
visual, attentional, and eye movement disturbances (Garbutt
et al., 2008) as well as pupillary dysfunction (Granholm
et al., 2017). Examples of eye-movement disturbances
in people with AD include abnormal saccadic behavior,
saccadic intrusions, and slowed pupillary responses
(Molitor et al., 2015).

These eye movement disturbances can be detected through
a variety of tasks. For example, in reading tasks, AD patients
have been shown to take longer to read text, have more
fixations, re-read words more frequently, and are less likely to
skip small and uninformative words (MacAskill and Anderson,
2016). Another study found that in a fixation task, saccadic
gaze intrusions (such as square wave jerks) were associated with

worsened cognitive test performance in people with AD (Bylsma
et al., 1995).

Based on these results, eye movements have been investigated
as another modality for automatic classification for AD/MCI,
showing potential in a number of investigations. Pavisic et al.
(2017) analyzed eye-movement data from 36 individuals with
young onset AD, and 21 age-matched healthy controls. The
participants completed three tasks in total: a fixation stability
task (fixate on a point for 10 s without blinking), a pro-saccade
task (looking at a target as soon as it appears), and smooth
pursuit (following a moving target). The authors achieved the
highest accuracy of 95% using hidden Markov models. Biondi
et al. (2017) collected eye movement data from 69 participants
with probable AD and 71 age-matched controls while they
completed a sentence-reading task. This group reported the
highest accuracy of 87.78% using an autoencoder approach that
incorporates information derived from fixations, saccades, and
sentence length from individuals.

Multimodal Analysis
Recent multimodal work has demonstrated that language
and eye movements act synergistically, further increasing AD
classification accuracy. Fraser et al. (2019) had 26 participants
with MCI and 29 healthy volunteers complete a paragraph-
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reading task and included additional speech-only data from the
picture description task. Their best classification accuracy was
83% using a cascaded multimodal and multi-task classification
approach incorporating comprehension question-related
features, custom lexical and acoustic features, as well as
eye-tracking features related to saccades and fixations. In our
previous investigation, we analyzed multimodal data from
68 participants with SMC/MCI/AD and 73 controls completing
the Cookie Theft picture description task. The best performance
for language-only and eye-movement-only models was AUC of
0.73 and 0.77, respectively. A late fusion approach combining
multimodal language and eye movement data significantly
increased overall performance to 0.80 (Barral et al., 2020).

Addressing the Gap in Literature
Our work is in line with previous work investigating language
and eye tracking in combination for AD/MCI classification.
However, ours is distinct from previous work in the following
ways. First, while previous work has shown the discriminative
ability of more constrained tasks (picture description and
reading), these tasks may not be sufficient to capture the highly
heterogeneous clinical manifestations of AD. Therefore, we
designed and explored two additional tasks (pupil calibration and
memory description) to capture key features linked to AD that
may otherwise bemissed with the established tasks. Second, while
previous work focused mostly on extracting new features and
optimizing single-task performance, we explored different tasks
to determine if they can be used to increase overall performance.
Third, compared to previous work that mostly focused on the
DementiaBank corpus, which was gathered in themid-1980s, our
contemporary cohort incorporates current clinical practice for
AD and MCI diagnosis, with a sample representative of current
memory clinic populations and controls. Finally, while previous
studies on contemporary datasets are limited by their small sizes
(n ranging from 55–86), our cohort is larger (n = 162).

MATERIALS AND METHODS

In this section, we describe our cohort and provide a detailed
description of the four tasks and how we collected data from the
cohort for each task. We also explain data preprocessing, features
and algorithms for classification, and our machine learning
experiment settings.

Data Collection
Cohort
Participants were recruited from a specialty memory clinic
(‘‘patients’’) from a catchment area of 4 million (British
Columbia, Canada), or from the community (‘‘controls’’), with
efforts made to target recruitment to age- and sex-match
patient participants. All participants were fluent in English, able
to provide informed consent, could carry on a spontaneous
conversation, and were aged 50 years or older. Clinic patients
had a diagnosis of either SMC, MCI, or AD (mild or moderate
stage). Patients were excluded if they had an active psychiatric
disease, or any other neurological conditions apart from AD.
Any participants with visual abnormalities or concerns that could

impact eye tracking were noted. Diagnoses were made by expert
clinicians using cognitive tests, neuroimaging, and laboratory
data as per standard of care. The studies involving human
participants were reviewed and approved by the University
of British Columbia Clinical Research Ethics Board (Study
ID# H17–02803). Participants provided their written informed
consent.

Study data were collected and managed using REDCap
electronic data capture tools hosted at the University of
British Columbia (Harris et al., 2009, 2019). REDCap (Research
Electronic Data Capture) is a secure, web-based software
platform designed to support data capture for research studies,
providing: (1) an intuitive interface for validated data capture;
(2) audit trails for tracking data manipulation and export
procedures; (3) automated export procedures for seamless data
downloads to common statistical packages; and (4) procedures
for data integration and interoperability with external sources. In
our investigation, we used REDCap to capture all data outside
of the language and eye-movement assessment, such as survey
results and demographic information.

Recruitment is ongoing. The current cohort analyzed has
79 memory clinic patients (48 with mild to moderate AD,
22 withMCI, nine with SMC) and 83 healthy volunteers recruited
between May 2019 and March 2020. The cohort characteristics
including age, diagnosis, and MoCA scores are summarized in
Table 1.

Language and Eye-Movement Assessment
For each participant in our cohort, we collect language and
eye movement data for the four tasks: pupil calibration, picture
description, paragraph reading, and memory recall.

In the pupil calibration task, participants fixate on a static
target for 10 s (Table 2). This fixation task aims to capture
potential square-wave jerks characteristic of AD (Nakamagoe
et al., 2019).

In the picture description task, participants describe the
Boston Cookie Theft picture from the BostonDiagnostic Aphasia
Examination (Goodglass and Edith, 1972; Table 2), a widely
used and validated method for spontaneous speech assessment
in a variety of clinical contexts, including Alzheimer’s disease
(Cummings, 2019). It has been used in prior work for AD
prediction using language (Fraser et al., 2016; Karlekar et al.,
2018; Kong et al., 2019).

TABLE 1 | Baseline demographic and clinical data.

Patient Control

Total participants N 79 83
Age at enrollment Average 72.09 65.63

Range 53–96 50–92
Standard deviation 9.1 9.8

Expert clinician diagnosis Mild-moderate AD 48
MCI 22
SMC 9

MoCA Score Available scores (N) 75 83
Average 20.0 27.3
Range 3–30 19–30
Standard deviation 6.2 2.6
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TABLE 2 | Instructions and visual stimuli for each task.

Instructional prompt Visual stimulus

Pupil calibration task:

“A cross will appear in the middle of
the screen. Please fixate your eyes on
the cross. Do not look away from it.
This will take about 10 s.”

Picture description task:

“You will be shown a picture on the
screen. Describe everything you see
going on in this picture. Try not to
look away from the screen while
describing the picture.”

Reading task:

“You will be shown a paragraph on
the screen. Please read the
paragraph out loud.”

Memory description task:

“Please recall a positive life event.
Some examples are listed here: Your
first job, how you met your best
friend, a place you have traveled, your
favorite teacher, your first pet, or the
birth of your first child.”

In the reading task, participants read a standardized
paragraph aloud from the International Reading Speed Texts
(IReST), an assessment tool for reading impairment designed to
be readable at a sixth-grade level (Trauzettel-Klosinski and Dietz,
2012). The entire paragraph was presented to the participant at
the same time to recreate a natural reading task, similar to a
newspaper or book (Table 2). The goal of the reading task is
to capture common reading-task deficits associated with AD,
including reduced reading speed, and increased word fixations
or re-fixations.

For the memory description task, participants describe a
pleasant past experience to capture additional spontaneous
speech data, with the goal of eliciting speech deficits that may be
missed in a picture description or reading task. Additionally, the
lack of visual stimuli (Table 2) allows the task to be completed
identically despite possible variation in participant vision (e.g.,
low visual acuity, or blurred vision).

In summary, these tasks are designed around three
dimensions—spontaneous vs. non-spontaneous speech, visual
searching vs. fixation, as well as visual stimulus vs. no visual
stimulus (Table 3). Owing to the variety of cognitive domains
assessed through each of these dimensions, this may allow us
to capture a broader range of AD/MCI-related discriminative
language and eye movement data.

To assess baseline cognitive performance and to track
potential risk factors for cognitive impairment, we administered

TABLE 3 | Description of the three dimensions involved across the four tasks.

Task Language Visual activity Visual stimulus

Pupil Calibration None Fixation Yes
Picture Description Spontaneous Searching Yes
Reading Non-Spontaneous Searching Yes
Memory Description Spontaneous None None

a brief cognitive assessment, as well as a medical history and
demographics questionnaire to each participant. Participants
completed the Montreal Cognitive Assessment (MoCA), a
10-min pencil-and-paper cognitive screening test used by
health professionals to assess MCI and AD (Nasreddine
et al., 2005; Cordell et al., 2013). In addition, participants
completed a demographic questionnaire and a medical history
questionnaire. Participant responses were cross-checked against
medical records (Supplementary Table 1).

For the language and eye movement battery, participants
were seated at a testing platform, consisting of a monitor with
a video/sound recorder and an infrared eyetracker affixed
at the bottom of the monitor to record gaze and pupil size
data. Participants were asked to keep looking at the screen
during the battery and to avoid looking at the experimenter.
Then, we calibrated the eye-tracking device by administering a
standard 9-point eye-tracking calibration. Following successful
calibration, participants performed the four tasks in order.
Instructions and visual prompts for all tasks can be found in
Table 2. All four tasks took approximately 10 min in total to
complete.

Following the language and eye movement assessment,
participants were asked to rate their experience with assessment
by completing a 10-item questionnaire. Participants were asked
to rate their comfort, interest, and willingness to repeat the
assessment on a 4-point Likert scale, in order to determine
the usefulness and scalability of the technology for routine
assessment. We created and administered this questionnaire
after recruiting the first 35 participants. As a result, only
127/162 participants completed this questionnaire (62 patients
and 65 controls).

Data Preprocessing
Following data collection, both gaze and speech recordings
underwent pre-processing in order to standardize the format of
the data and to facilitate subsequent experiments. Speech data
was transcribed and timestamped either using Google Cloud
speech-to-text service (n = 149), or manually (n = 13) if the
participant requested to not have their voice data shared with
the Google Cloud Platform. Following automatic transcription,
human transcribers manually verified each transcript for
accuracy. As the Google Cloud Platform does not transcribe filler
words (e.g., ‘‘uh’’ or ‘‘um’’) these were added manually by human
transcribers. Additionally, as the Google Cloud Platform only
transcribes utterances, unfilled pauses were manually marked as
‘‘[pause].’’ An unfilled pause was considered to be equal to or
greater than 0.25 s of silence. The summary data statistics of the
transcripts are in Table 4.

To ensure data between modalities was aligned, timestamps
of each transcript and gaze data file were manually checked
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TABLE 4 | Summary statistics of participant transcripts.

Task Average # of sentences per transcript Average # of words per sentence # of words (total) # of unique words (total)

Picture description 19.0 10.2 27,319 1,730
Reading 9.4 18.3 25,862 434
Memory description 17.8 11.9 28,801 3,026

TABLE 5 | Abbreviated table of features used in the predictive models.

Task Modality Feature group and amount (n)

Pupil Calibration Eye-Movement Fixation (6), Saccade (22), and Pupil size (6).

Picture Description Language Cookie Theft image information units (13), Part-of-speech (15), Context-free-grammar rules (44), Syntactic
complexity (24), Vocabulary richness (4), Psycholinguistic (5), Repetitiveness (5), and Acoustic (172).

Eye-Movement Fixation (6), Saccade (22), and Pupil size (6), Fixation on AoIs (9), Transitions to AoIs (2), and Pupil size when
looking at AoIs (6).

Reading Language Syllable count (1), Pause count (1), Total duration (1), Total time spent speaking (1), Proportion of time spent
speaking (1), Speech rate (1), Average syllable duration (1), Pauses per syllable (1), Pause rate (1), Pause
duration (3), and Acoustic (172).

Eye-Movement Fixation (6), Saccade (22), and Pupil Size (6), Fixation on AoIs (9), Transitions to AoIs (2), Pupil Size when looking
at AoIs (6), regression amplitude (3), regression distance (3), first-pass fixations (3), later-pass fixations (1),
multi-fixations (1), re-fixation (1), reading fixation (1), re-reading fixation (1), and wrap-up gaze (3).

Memory Description Language Part-of-speech (15), Context-free-grammar rules (44), Syntactic complexity (24), Vocabulary richness (4),
Psycholinguistic (5), Repetitiveness (5), and Acoustic (172).

Details and heatmaps of the Top 10 features correlated with classification labels (patients vs. controls) are reported in Supplementary Table 2 and Supplementary Figures 1–4.

against the screen recording of the visual stimulus. Manual
transcribers corresponded timestamps of each task in the screen
recordings to start and end timestamps in transcripts or gaze
files. Additionally, task instructions were removed to include
only participant speech in our analyses.

The Tobii Pro Studio software was used to export eye-tracking
data. This includes fixations, saccades, and pupil size. Pupil
size data was standardized by subtracting the mean pupil size
during the pupil calibration task, described in ‘‘Language and
Eye-Movement Assessment’’ section (Iqbal et al., 2005).

Machine Learning Setup
Feature Engineering
After preprocessing the language and eye movement data, we
then extracted linguistic and eye-tracking features from the raw
data for AD/MCI classification.

Language Features
We used different sets of language features for the picture
description, reading, and memory description tasks, respectively.
Language features were not examined for the pupil calibration
task as there was no speaking involved during this task. The entire
feature set is summarized in Table 5.

For the picture description task, we extracted a
comprehensive set of language features following (Fraser et al.,
2016) as in our previous work (Field et al., 2017; Kong et al.,
2019; Barral et al., 2020). These features comprise text features
and acoustic features. The text features include part-of-speech,
context-free-grammar rules, syntactic complexity, vocabulary
richness, psycholinguistic, repetitiveness, and information units.
Information unit features correspond to mentions of specific
visual features in the picture description task. The acoustic
features include Mel-frequency Cepstral Coefficients (MFCCs),

which represent spectral information from speech signals
transformed into the Mel-frequency scale (n = 172).

For the reading task, we use 12 task-specific features as in
(Fraser et al., 2019). These features include syllable count, pause
count, total duration, total time spent speaking, the proportion
of time spent speaking, speech rate, average syllable duration,
pauses per syllable, pause rate, and pause duration (max, mean,
and standard deviation). These features aim to measure reading
fluency such as speed, pauses, and disfluencies when reading,
rather than assessing sentence formation or devising information
unit features, as in the picture description task. This is due to
the fact that all participants read the same paragraph, making
spontaneous-speech-related features less meaningful.

For the memory description task, we extracted the same
feature set as the picture description task, with the exception
of information unit features. The information unit features
were not used because while all other features aimed to assess
basic language abilities such as fluency, syntax, or grammar, the
information unit features are specific to the Cookie Theft picture.

For parsing and part-of-speech tagging, the Stanford
CoreNLP was used. To obtain psycholinguistic features, the
MRC database was used for concreteness, familiarity, and
imageability of words. To detect pauses from audio, we used
pydub, a Python package for audio processing.

Eye-Tracking Features
To capture participant eye movement and pupil behavior, we
computed a set of summary statistics on fixations, saccades,
and pupil size data. Fixations refer to a period of static gaze
lasting 60 ms or longer, while saccades refer to quick movements
between fixations. Pupil size refers to the actual physical pupil
diameter of the pupil of each eye (as opposed to the perceived
size depending on the view angle). The summary statistics
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FIGURE 2 | The reading task. AoIs are shown as individual red boxes.

for fixations and saccades include the sum, average, standard
deviation, and max of the related gaze coordinates. In addition,
we compute the count and rate for both fixations and saccades,
as well as the distance, duration, speed, and angle for saccades
only. For pupil size, we account for its average, standard
deviation, and range. To compute these statistics, we used a
similar approach as in related work (D’Mello et al., 2012; Lallé
et al., 2016; Toker et al., 2017, 2019), which involves defining
the duration of fixation, minimizing gaze location errors, and
managing scanpath interruptions caused by blinking or head
movement (Goldberg and Helfman, 2010). These rudimentary
eye movement summary statistics for gaze features were used as
features for all the tasks, except the memory description task. The
entire feature set is summarized in Table 4.

For the pupil calibration task, we used only the eye-movement
summary statistics for fixation, saccades, and pupil size as
features, while participants stared at a fixed point on the screen.

For the picture description and reading tasks, which involve a
complex visual stimulus with respect to pupil calibration (i.e., the
picture to be described and text to be read by the participants),
we defined additional features based on Areas of Interest (AoIs).
An AoI is defined as any region of the input deemed relevant to
the task. We use AoIs to bind gaze data to semantic information
in the visual stimulus.

For the picture description task we defined Areas of Interest
(AoIs) as features to encode elements in the Cookie Theft picture
(Figure 1), As in our previous work (Barral et al., 2020), all AoIs
used are analogous to information units (Croisile et al., 1996)

from language features: cookie, cookie jar, boy, girl, woman, stool,
plate, dishcloth, water, window, curtain, dishes, and sink. This was
to capture important elements in the image that participants are
likely to fixate on while completing the description task.

For the reading task, we defined AoI features to encode each
word in the paragraph reading task (Figure 2). The beginnings
and ends of each sentence and line were marked as well. This
was to correlate participant eye movements with progression
through the reading task. We also incorporated reading-task-
specific eye-tracking features from Fraser et al. (2019) such as
fixation time for the last word in a sentence, the number of
fixations on a word after the first pass, and themaximumnumber
of words included in a regressive saccade. An abbreviated list of
all feature groups can be found in Table 4.

For the memory description task, we also computed the same
eye movement summary statistics as above. However, according
to our preliminary analysis, all eye movement features from this
task showed a poor correlation for AD/MCI classification. We
speculate that this is due to the absence of visual stimulus during
the task, causing participants to look at the screen randomly, or
to look away from the screen towards the experimenter. For this
reason, we have excluded eye movement data from the memory
description task in further experiments.

We processed the eye tracking data using the Eye Movement
Data Analysis Toolkit (EMDAT), an open source Python library.
EMDAT produces a comprehensive set of eye tracking metrics
specified over the entire display (task-agnostic), and over
task-specific Areas of Interest (AoIs).
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FIGURE 3 | Diagram outlining the steps in modality and task fusion. Pupil, Pupil calibration; Memory, Memory description; PP, Prediction probability.

Due to difficulty calibrating the eye tracking device, or
due to some participants having pre-existing eye conditions,
we excluded 36 participants (19 patients and 17 controls)
from subsequent gaze analysis in the pupil calibration, picture
description, or reading tasks. These participants were either
automatically rejected due to lack of samples by EMDAT, or
manually rejected due to poor 9-point calibration results.

Classification Strategies
We performed binary classification for patient and control
groups. The patient group included individuals with AD, MCI,
and SMC. We chose to analyze these heterogeneous diagnoses
together within the ‘‘patient’’ category because our overall goal is
to build a screening tool instead of a diagnostic tool. Further, in
this way, we can identify highly predictive features shared across
the entire disease spectrum.

To investigate the usefulness of our dataset, as well as the
new and existing tasks for AD/MCI/SMC classification, we first
evaluated single-task classification models using data from each
of the four individual tasks and compared the performance of our
novel tasks to the performance of the established tasks. Then, we
assessed a task-fusion model to determine whether the new tasks
can be used in combination with the established tasks to improve
AD/MCI/SMC classification.

Classification With Individual Task Data
We first built our individual task models independently, testing
for each of three different classification algorithms: Logistic
Regression (LR), Random Forest (RF), and Gaussian Naïve Bayes
(GNB). We selected these algorithms because they generated the
best performances in our previous work using both eye-tracking
and language collected from the picture description task (Barral
et al., 2020). For tasks involving two modalities (language
and eye movement, e.g., the reading task), we aggregated
unimodal prediction probabilities using averaging, a widely used
late fusion scheme (Battiti and Colla, 1994). In both (Fraser
et al., 2019) and our previous work (Barral et al., 2020),
late fusion outperformed early fusion for multimodal AD/MCI
classification.

Classification With Combined Task Data
Next, we aggregated classification predictions across all tasks,
with the goal of determining synergy between tasks. We present
our task-fusion model in Figure 3, to combine predictions from
all four tasks: pupil calibration, picture description, reading,
and memory description. We first built individual task models
using a single classification algorithm (as described in section
Classification with Individual Task Data) and generated an
output prediction for each task. Then, we used averaging
to fuse results across all four task models. We report the
results of task fusion for the three algorithms: LR, GNB, and
RF. Note that each algorithm is used to process data for all
tasks, in other words, we do not allow cross-algorithm task
fusion.

For participants lacking eye movement data due to calibration
problems (n = 36), we used only language data for classification,
i.e., data from those participants were included only for learning
individual task models using language.

Classification Settings
To perform classification, we used scikit-learn (v0.19.1), a Python
package. We used default hyper-parameters in the scikit-learn
APIs for each algorithm. For LR, we used L2 regularization. For
GNB, we did not assign any prior probabilities of the classes. For
RF, the number of trees was 10, the minimum number of samples
required to split an internal node was two, and we allowed a tree
to grow until all leaves were pure or until all leaves contained less
than two samples. Gini impurity was computed for measuring
the quality of a split.

To strengthen the stability of the results, we used stratified
10-fold cross-validation repeated 10 times on different stratified
splits. Classification performance is reported in terms of Area
Under the receiver operating characteristic Curve (AUC),
calculated by averaging AUC results over the 10 folds and
the 10 runs. We performed correlation feature selection (Hall,
1998) at each fold of cross-validation, to remove highly pairwise
correlated features (Pearson r < 0.85) and features that showed
very low correlation with the classification labels (patients vs.
controls; r < 0.2). Note that we did not use feature selection
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for RF, as RF essentially performs feature selection as part of the
algorithm.

Statistical Analysis
To determine whether the two given model performances differ
significantly from each other, we performed a series of statistical
comparisons. In each comparison, we ran one-way ANOVA
or two-way ANOVA tests with model AUC as the dependent
variable. Classification models and tasks were used as factors.
Following this, we completed subsequent pairwise post hoc
testing via the Tukey Honestly Significant Difference (HSD),
which adjusts for multiple comparisons.

Below we outline three alternate hypotheses to be tested
statistically, as well as our testing methodology. A classifier was
considered to be significant if the null hypothesis was rejected in
each comparison.

1. Novel tasks are significantly discriminative. Here we
compared the performance of novel task models to uniform
dummy models trained on the same task data. The dummy
model essentially classifies participants randomly (∼0.5 AUC).

2. Novel tasks are not significantly different from established
tasks. Here we compared the AUC of our novel task models to
the AUC of established task models.

3. Task fusion significantly outperforms individual tasks. Here
we compared the AUC of our task fusion models to the AUC
of the individual task models.

Feature Importance Analysis
To generate further insights from our classification experiments,
we examined the most predictive features in our models. Since
the LR model for task fusion was the best performing classifier,
we investigated predictive features of each LR classification
model (e.g., eye tracking classifier for the picture description
task) used for the ensemble. Since LR models are linear, meaning
the prediction is the weighted sum of the input values, we use
the t-statistic for each coefficient to rank predictive features for
classification.

RESULTS

In this section, we first outline the classification results from
both individual tasks as well as the novel tasks and discuss the
statistical significance of these results. Following this, we discuss
the most predictive features determined by feature importance
analysis. Finally, we present participant experience survey results.

Classification Results
A summary of classification results is shown in Table 6. First
of all, we found that both of our novel tasks, pupil calibration,
and memory description, achieved reasonable classification
accuracies of AUC 0.71 ± 0.01 and 0.78 ± 0.01, respectively.
These significantly outperformed dummy classifiers (p ≤ 0.001),
which suggests that these new tasks are discriminative (H1).

Second, we performed comparisons between novel tasks
models and established task models. We found that the novel
task results are lower than established task results (language+eye-
movement; p ≤ 0.001) with the exception of the memory

task GNB model (p > 0.1). However, we did not find a
significant difference when comparing language-alone models
for the established tasks against the best memory task model
(p > 0.1), with the exception of the picture description RF model,
which was significantly outperformed by the memory GNB
model (p ≤ 0.001). This trend was similar for eye-movement,
which also showed no significant difference when comparing
eye-movement-alone models for the established tasks against the
best pupil calibration task model (p > 0.06). This indicates the
novel tasks are performing similarly to the established tasks, with
regard to their respective modality (H2).

Third, when we compared task-fusion to individual-task
models, LR task-fusion models significantly outperformed
all individual-task models (p ≤ 0.03). The other two
task-fusion models were significantly better when compared
to individual-task model performance, with a few exceptions
(e.g., GNB task-fusion vs. GNB picture description, p > 0.37).
This suggests that task-fusion has a synergistic effect, increasing
performance over individual tasks (H3).

Highly Predictive Features
Following classification experiments, we performed feature
importance analysis. These results are found in Table 7.

In the pupil calibration task, we found that patients showed
more variation in their eye movements, and had more eye
movements overall. More variation is indicated by a higher
standard deviation for saccade speed and distance compared to
the control group. More eye movements are indicated by a lower
mean fixation duration in patients compared to controls. As the
task is only 10 s in total, a lower mean of fixations corresponds
to shorter average fixations. This suggests that patients are more
prone to refixation during the task.

In the eye-tracking model for the picture description task,
three window-related AoIs were ranked as highly important:
longest fixation on the window AoI, number of transitions from
curtain AoI to window AoI, and number of transitions from
dishcloth AoI to window AoI. This is in line with our previous
work, where we found that four of the 10 top eye-movement
features in the picture description task were related to the
window AoI (Barral et al., 2020). This is especially noteworthy
because the exterior information unit was ranked first overall
among language features, and was the only text feature among
top ranked features.

In general, acoustic features were generally ranked as more
important than other language features in all three language-
based tasks with two exceptions: information unit mentions
(exterior), and duration of reading task. We found a higher task
duration in the patient group for the reading task, suggesting that
patients are more likely to take longer to complete the reading
task.

Results From Experience Questionnaire
The full results from the experience with the technology
questionnaire can be found in Table 8. Most participants
(>90%) answered ‘‘Agree’’ or ‘‘Strongly Agree’’ when asked if
they felt comfortable, relaxed, engaged, or interested during
the assessment. Few participants (11% of patients and 6%
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TABLE 6 | Fusion model results compared to individual task model results, reported in AUC ± standard deviation.

Feature Set Modality N GNB LR RF

Pupil Calibration (novel task) Eye 126 0.71 ± 0.02 0.68 ± 0.02 0.63 ± 0.05
Picture Description Eye 126 0.71 ± 0.02 0.73 ± 0.03 0.64 ± 0.04

Lang 162 0.78 ± 0.01 0.77 ± 0.02 0.74 ± 0.02
Eye + Lang 162 0.80 ± 0.02 0.79 ± 0.01 0.77 ± 0.02

Reading Eye 126 0.70 ± 0.02 0.73 ± 0.02 0.72 ± 0.03
Lang 162 0.79 ± 0.01 0.78 ± 0.01 0.78 ± 0.03
Eye + Lang 162 0.78 ± 0.01 0.80 ± 0.01 0.82 ± 0.02

Memory (novel task) Lang 162 0.78 ± 0.01 0.72 ± 0.02 0.72 ± 0.04
Task Fusion Eye + Lang 162 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.02

The highest classification performance for each task is in bold. Mod, modality; Eye, eye-movement alone; Lang, language alone; Eye + Lang, eye-movement and language aggregate
model. More evaluation metrics such as specificity and sensitivity are reported in Supplementary Table 3. The data in gray background represent unimodal model results when
multimodal data were available. So, they were not used for our statistical analysis when we compared task models.

TABLE 7 | Top-ranked important features from the logistic regression models for each task and modality, with corresponding odds ratio and 95% confidence intervals.

Task Modality Feature Direction Odds ratio 95% CI

Pupil calibration Eye movement Standard deviation of saccade speed + 1.46 (0.63, 3.37)

Mean fixation duration – 0.9997 (0.9989, 1.0005)

Standard deviation of saccade distance + 1.00 (0.99, 1.02)

Ratio of time spent fixating to saccading – 1.00 (0.98, 1.01)

Sum of saccade distance + 1.0003 (0.9988, 1.0019)

Picture description Eye movement Longest fixation on window AoI – 0.998 (0.996, 1.000)

Number of transitions from curtain AoI to
window AoI

– 0.83 (0.66, 1.07)

Number of transitions from boy AoI to cookie
AoI

– 0.40 (0.10, 1.70)

Time before first fixation on water AoI + 1.00006 (0.99996, 1.0015)

Number of transitions from dishcloth AoI to
window AoI

+ 2.57 (0.46, 14.52)

Language Mentions of exterior information unit – 0.43* (0.18, 0.99)

Variance of acoustic feature (MFCC 8) – 0.97 (0.93, 1.00)

Distribution of acoustic feature (MFCC 6) – 0.36 (0.11, 1.15)

Mean of acoustic feature (MFCC 5) + 1.17 (0.97, 1.41)

Mean of acoustic feature (MFCC 4) + 1.15 (0.95, 1.39)

Reading Eye movement Refixation count + 1.03 (0.99, 1.09)

Later pass first fixation count + 1.04 (0.97, 1.11)

Mean saccade distance – 0.66 (0.25, 1.79)

Mean wrap-up gaze duration – 0.99 (0.98, 1.01)

Fixation count – 0.99 (0.96, 1.02)

Language Variance of acoustic feature (MFCC 12) – 0.95* (0.92, 0.99)

Distribution of acoustic feature (energy
acceleration)

+ 1.17 (0.99, 1.38)

Mean of acoustic feature (MFCC 3) + 1.12 (0.99, 1.26)

Variance of acoustic feature (MFCC 2) – 0.99 (0.98, 1.00)

Overall task duration + 1.00004 (0.99999, 1.00010)

Memory description Language Variance of acoustic feature (MFCC 8) – 0.98* (0.95, 1.00)

Variance of acoustic feature (MFCC 2) – 0.99 (0.97, 1.00)

Mean of acoustic feature (energy) + 1.47 (0.80, 2.72)

Distribution of acoustic feature (MFCC 4) + 1.45 (0.75, 2.78)

Variance of acoustic feature (MFCC 3) + 1.01 (0.99, 1.02)

A positive (+) direction (odds ratio > 1) represents a higher feature value in the patient group. A negative (–) direction represents a higher feature value for the control group. *p = 0.05.
Details of these features are reported in Supplementary Table 4.

of controls) reported discomfort during the assessment. Very
few participants (5%) reported having privacy concerns with
the technology.

Themajority of participants (>90%) reported their willingness
to repeat the assessment again or to repeat the assessment on a
yearly basis in a clinical setting. However, only some participants
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TABLE 8 | (%) represents the proportion of patients or controls who answered
“Agree” or “Strongly Agree” when asked each question.

Patient Control
Total responded (N) 62 62

I experienced discomfort during the assessment 11% 6%
I was comfortable during the assessment 94% 95%
I was relaxed during the assessment 92% 97%
I have privacy concerns using this technology 5% 5%
I would be willing to do the assessment again 95% 100%
In a clinical setting: I would be willing to do the
assessment once a year

94% 97%

I would be willing to do the assessment once a
month

40% 51%

I would be willing to do the assessment once a
week

16% 20%

I would be willing to do the assessment once a day 2% 9%
I was engaged and interested during the
assessment

94% 98%

(40% of patients and 51% controls) reported that they were
willing to repeat the assessment once a month. Even fewer
participants (16% of patients and 20% controls) were amenable
for weekly re-assessment, and less again (2% of patients and 9%
controls) for daily re-assessment.

DISCUSSION

In this article, we present a new, contemporary, multimodal
dataset for AD classification that includes two novel tasks
and two established tasks. Importantly, our cohort is also
considerably larger than other similar contemporary datasets.

This article is a substantial extension of a conference article
previously published by our group (Barral et al., 2020), which
showed the potential of eye movement data in combination
with language data collected during the picture description task.
Building on our previous work, we added three more tasks to
explore the two data modalities, which include two completely
novel tasks, pupil calibration, and memory description, as well
as paragraph reading for AD/MCI/SMC classification. Second,
the cohort in our current article has increased in size since the
conference article (n = 162 vs. 141). Using multimodal data
collected from new tasks, we aimed to assess the discriminative
ability of these novel tasks for AD classification. We also aimed
to confirm our previous finding that eye-tracking and language
data increases classification performance, in a larger dataset with
more tasks.

To our knowledge, this is the first investigation of pupil
calibration and memory description tasks for AD/MCI/SMC
classification. Our approach has several advantages over
similar investigations. Here we build a high-quality dataset
of synchronized speech and gaze data collected during four
distinct tasks (two novel and two that have been studied
more extensively in the field). Our cohort (n = 162) is also
larger than other contemporary datasets which have included
between 55 and 86 participants in total (Biondi et al., 2017;
Pavisic et al., 2017; Toth et al., 2018; Fraser et al., 2019).
Furthermore, our dataset incorporates current AD/MCI/SMC
diagnostic practices, in contrast to the large DementiaBank

cohort of picture descriptions for AD classification (Becker et al.,
1994), which was collected in the mid-1980s and incorporates
clinical diagnoses from best practices at that time.

Discussion on Classification Results
Our analyses show that the novel tasks alone and in combination
with previous tasks significantly outperform a dummy model,
demonstrating their discriminative ability for AD/MCI/SMC.
This suggests that eye movements collected during a fixation
task and language data collected during an open-ended
spontaneous speech task are discriminative of AD/MCI/SMC vs.
controls.

Additionally, our results show that the established tasks
outperform novel tasks, reinforcing and validating their
continued use for classification. However, this variation in
performance could also be attributed to the fact that our novel
tasks only incorporate data from a single modality, either eye
tracking or speech, as opposed to the multimodal established
tasks. When comparing eye-movement-only model results, we
found that the pupil calibration, picture description, and reading
tasks all showed similar performance. This suggests that our
novel pupil calibration task achieves similar performance to the
established tasks when comparing the same modality. Similarly,
when comparing language-only model results, we found that
our novel memory task models had comparable performance to
reading and picture description task models.

We also show that our best-performing task-fusion model
(LR) significantly outperforms all individual-task models. This
suggests that data from the four tasks in our assessment act
synergistically to significantly improve the overall AD/MCI/SMC
classification performance.

We found in both picture description and reading that fusing
modalities improves performance over individual modalities.
This observation reinforces what we found in our previous
investigation for the picture description task (Barral et al., 2020).
Additionally, these results in the reading task validate results
from other investigations (Fraser et al., 2019).

Task Dimension Comparison
When examining the dimensions of our tasks (Table 3) we first
compared the performance of a non-spontaneous speech task
(reading) to spontaneous speech tasks (picture and memory
description). It was noteworthy that language-alone performance
among all three of these tasks was similar considering that in the
reading task all participants read the same paragraph, limiting
word choices used in the task, as opposed to open-ended and
spontaneous speech from the picture and memory description
tasks. This suggests that speech characteristics captured by
acoustic analysis (such as pause and speed) may be more
discriminative in this investigation.

Second, we compared the results of searching (picture
description and reading) vs. fixation (pupil calibration) tasks.
Here, the eye-movement-only performance among all three tasks
was found to be similar. The pupil calibration task yielded
analogous results (best AUC of 0.71) to eye-movement models
from the other tasks, especially considering its simplicity and
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short 10-s duration. This suggests that the pupil calibration task
could be a very good candidate for high-throughput screening.

Not only does the pupil calibration task perform well,
our feature importance results suggest that the task classifier
may also be capable of capturing abnormal saccadic behavior
associated with AD. In particular, we observed that the most
discriminative features in this task showed that patients tended
to have shorter fixations, more eye movements, and more
varied eye movements during the task. This abnormal saccadic
eye movement behavior may be attributed to AD-related
amyloid plaques in the brainstem (Parvizi et al., 2001), affecting
premotor burst neurons responsible for generating saccades
(Scudder et al., 2002; Otero-Millan et al., 2011). Such results
make the pupil calibration task highly promising for future
investigations, especially as it is brief, efficient, and could
be readily implemented and measured using existing webcam
technology.

Third, we compared the results of tasks with visual stimuli to
tasks with no visual stimuli (memory description). Our models
trained on eye movement data collected during the memory
description task had essentially random results. This suggests that
tasks that aim to collect eye movement data should include a
visual stimulus.

Discussion on Experience Questionnaire
We also show that our four-task assessment is highly tolerable
in our target population. The large majority (>90%) of older
adult controls and patients reported that they were comfortable
and relaxed during the assessment. The majority of our target
population also did not have privacy concerns with recording
and analyzing speech, video, or eye-tracking for classification.
This suggests that our assessment would be appropriately applied
to this population for the purpose of non-invasive AD/MCI
screening. Targeted screening of older adults is key for detecting
AD/MCI in the community (Rasmussen and Langerman, 2019),
and it is important that this is as tolerable as possible for
participants. Screening can also help identify AD/MCI early,
which improves long-term prognosis in cognitively impaired
individuals (Rasmussen and Langerman, 2019).

While baseline screening is important, follow-up screening is
also key to detecting longitudinal changes in cognition in keeping
with disease progression (Rasmussen and Langerman, 2019). Our
findings also show that our assessment would be suitable for re-
screening, with the majority of participants reporting that they
are amenable to annual re-assessment.

Limitations and Future Work
Size of the dataset: A key limitation of our work is the size
of our dataset. Despite our dataset being larger than other
contemporary AD/MCI classification datasets (Biondi et al.,
2017; Pavisic et al., 2017; Toth et al., 2018; Fraser et al.,
2019), more advanced machine learning algorithms such as
deep learning-based methods are powered by large datasets.
Even the traditional machine learning approaches used in this
investigation would benefit from a larger dataset. Recruitment
and follow-up are ongoing, with a goal of 500 participants overall
(250 patients and 250 controls). With a larger dataset, we aim

to explore more sophisticated machine learning models, more
advanced feature selection, and additional task fusion schemes.

Accessibility of eye-tracking device: One possible limitation
could be the resolution and quality of our eye-tracking device.
More sensitive eye-tracking devices can track microsaccades,
which may allow for better discrimination between patients
and controls. However, these devices require head fixation
with a chin rest and forehead strap and with more sensitive
and time-consuming calibration. Thus may be unsuitable or
uncomfortable for older adults, particularly with degenerative
cervical spine changes. To maximize participant comfort, we
instead chose to use the current eye-tracking device (Tobii
Pro X3-120), as this allowed for eye-movement data to be
collected while the participant is comfortably seated in a regular
chair without head fixation. In the future, more comfortable
eye-tracking technology with better resolution may become
available, or eye data collection based on webcam and phone
camera recordings may become more feasible. This would allow
scalable and remote assessment which could also be integrated
into mobile devices.

Possible misclassification of control subjects or patients:
Our participants are recruited from a memory clinic, based on
expert clinician diagnoses made using test scores, neuroimaging,
as well as laboratory or genetic data. Although our control
subjects did not carry a diagnosis of neurodegenerative disease,
without detailed phenotyping with detailed imaging, laboratory,
and clinical assessment, we cannot exclude the possibility that
some control subjects may have an undiagnosed mild cognitive
impairment, Alzheimer’s disease, or other pathology that could
contribute to misclassification.

Furthermore, our use of expert clinician diagnoses for our
patients may also be a source of mislabelling. One large
post-mortem study found that AD diagnostic sensitivity and
specificity can be as low as 70.9% and 44.3%, respectively (Beach
et al., 2012), and approximately 30% of people with MCI that
develop dementia do not meet the pathological criteria for
AD (Jicha et al., 2006). This limitation is not unique to this
investigation, with several dementia trials using expert diagnosis
as an inclusion criterion (Cummings et al., 2020).

Younger control group: Despite efforts for targeted
recruitment to age-match both cohorts, the average age of
our patient group (72.09 ± 9.1) remains higher than the average
age of our control group (65.63 ± 9.8). As a result, it is possible
that some of the differences between patients and controls may
be attributed to differences in speech or gaze related to normal
aging. For example, the control of eye movements and speech
can be impacted by both healthy aging-related and AD-related
neurodegeneration in the cerebral regions, spanning brainstem
to neo-cortex (Murphy et al., 1997; Pierrot-Deseilligny et al.,
2004), and could have impacted certain speech-gaze features,
such as repeat word mentions or visual re-fixations. We plan to
explore age-related task differences in our control group as a
future direction.

Multimodal features: In our feature importance analysis, we
found that features related to the window- or the exterior of
the home in the Cookie theft photo were ranked highly in both
eye-tracking and language task models. This finding suggests an
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interesting future direction using multimodal features leveraging
both eye-tracking and language simultaneously e.g., time delays
between fixating on an AoI, and saying the related information
unit. We plan to explore multimodal features in the future
to capture potential deficits in coordinated eye movement and
language.

Classification vs. risk-stratification: In this work, we aimed
to build upon work for classifying individuals with established
AD/MCI/SMC in a cross-sectional cohort. In the future, we aim
to create a tool that could also risk-stratify for progression of
neurodegenerative disease (i.e., progressing from SMC to MCI,
MCI to AD, or from early-stage AD to later AD stages). To
this end, we are performing longitudinal reassessments every
6 months up to 24 months for future risk-stratification models.

CONCLUSION

Our results show that our multimodal screening assessment
is well-tolerated and discriminates between memory clinic
patients and healthy controls. We also show that our novel
tasks can be leveraged in combination with established
tasks to bolster overall AD/MCI/SMC classification with
task fusion. These results are highly promising for future
investigations into non-invasive and automatic AD/MCI/SMC
classification.
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