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Abstract: This paper is concerned with the fault detection issue for a class of discrete-time switched
systems via the data-driven approach. For the fault detection of switched systems, it is inevitable to
consider the mode matching problem between the activated subsystem and the executed residual
generator since the mode mismatching may cause a false fault alarm in all probability. Frequently,
studies assume that the switching laws are available to the residual generator, by which the residual
generator keeps the same mode as the system plant and then the mode mismatching is excluded.
However, this assumption is conservative and impractical because many switching laws are hard to
acquire in practical applications. This work focuses on the case of switched systems with unavailable
switching laws. In view of the unavailability of switching information, the mode recognition is
considered for the fault detection process and meanwhile, sufficient conditions are presented for the
mode distinguishability. Moreover, a novel decision logic for the fault detection is proposed, based
on which new algorithms are established for the data-driven realization. Finally, a benchmark case
on a three-tank system is used to illustrate the feasibility and usefulness of the obtained results.

Keywords: switched systems; fault detection; data-driven methods

1. Introduction

With the increasing complication of industrial systems, high requirements are brought
with the safety and reliability, which are critical to the stability and system performance.
As is well known, fault detection has served as an effective tool to guarantee the safety
and reliability of dynamic systems. Nowadays, the study on fault detection has drawn
considerable attention from the literature [1–9]. The model-based fault detection takes
up an important role in the fault detection field. By constructing the process model,
the analysis and control issues have been excessively studied and numerous results of
the model-based fault detection have been reported, see, e.g., [10–14] and the references
therein. Recently, with the rapid development of communication technology, data-driven
methodologies have been extensively addressed for the fault detection problems. Different
from the model-based methodology, which requires a time-consuming and complicated
modelling process from practical applications, the data-driven methodology gets rid of the
modelling complexity and meanwhile sufficiently exploits the process data information.
Therefore, great efforts have been made for the data-driven fault detection of various
dynamical systems and practical applications, see, e.g., [15–21] and the references therein.

Moreover, increasing interest has been paid to the research on switched systems owing
to their capacity in modelling the systems with switching behaviours [22–31]. As is known,
a switched system usually consists of a finite number of distinct subsystems and a law
governing the switching dynamics between these subsystems. The application of switched
system models is rather widespread, such as flight control systems, communication systems,
automotive industry and many other areas. Up to date, much research has been done
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on the analysis and synthesis of switched systems. For instance, the stability analysis
and controller design are investigated for switched systems with constrained switching
signals by exploiting the Lyapunov theory in [32–35]. Moreover, the switched systems with
random switching signals are also considered and addressed to deal with the stability and
stabilisation issues, such as [36–38].

As for the fault detection of switched systems, some results are available in the
literature, see, e.g., [39–42]. It is worth mentioning that most of the existing results for the
fault detection of switched systems are carried out on the assumption that the switching
law is known and switching information is acquired to the residual generator. Based on this
assumption, the modes between subsystem and residual generator are perfectly matched,
which thus excludes the influence of system switching on the fault detection. In [43,44],
the model-based approaches are investigated for switched systems with the determinate
switching law, and in [45], a combination of switching observer and Bond Graph method
is proposed while the switching signal is known. In [46,47], parity space method is applied
to fault detection of the switching system, but the possibility that the switching signal is
unknown is not considered. However, it is more frequent that the switching laws cannot
be known or acquired in practice. In this case, the assumption of the switching information
available to the residual generator is no longer applicable. Therefore, this work aims to
cope with the fault detection for switched systems with unavailable switching laws.

Based on the discussion above, this paper focuses on achieving the data-driven fault
detection for a class of discrete-time switched linear systems. Different from existing
results, it is assumed that in this paper, the switching laws cannot be available to the mode-
dependent residual generator. In this case, the mode mismatching between subsystem and
residual generator may occur in the fault detection process, which may lead to incorrect
residual signals and thus cause a false fault alarm. To handle this problem, the mode
recognition is taken into account and sufficient criteria are proposed to ensure that the
modes of the switched system are distinguishable. A novel decision logic including the
mode recognition is developed in the data-driven fault detection, which avoids the false
fault alarm caused by the mode mismatching and thus improves the accuracy of the fault
detection. Then algorithms are presented to show the procedures of offline computation
and online detection. The effectiveness and advantages of the developed method are
demonstrated by the case study on a three-tank benchmark system. The paper is organised
as follows. Section 2 provides the system descriptions and some preliminaries. In Section 3,
the main results are presented including the sufficient criteria of mode distinguishability
and novel algorithms for data-driven fault detection. Section 4 utilises the benchmark
study of a three-tank model to illustrate the effectiveness and Section 5 concludes this work.

Notations. The notations used in this paper are standard. Rn means the n-dimensional
Euclidean space. RHm×n

∞ stands for the set of all m× n-dimensional real-rational transfer
functions of stable systems. N+ represents the set of all positive integers. H2 defines the
subspace of all signals v(k) satisfying v(k) = 0 for t < 0 and energy boundedness. ‖ · ‖2 is
the Euclidean norm. σmax(·) defines the maximal singular value of a matrix. The superscript
“T” represents the transpose of a matrix and the superscript “⊥” represents the orthogonal
complement. The dimension of a matrix is assumed to be compatible with algebraic
operations if it is not explicitly stated.

2. System Descriptions and Preliminaries
2.1. System Descriptions

This paper investigates the discrete-time switched linear system as below{
x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k) + ξ(k),

y(k) = Cσ(k)x(k) + Dσ(k)u(k) + ν(k),
(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny respectively denotes the system state, input
and output signals. The symbol σ(k) defines the switching signal which is a piecewise
constant function taking values in a finite set £ = {1, 2, · · · , M}. M(∈ N+) stands for the
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number of subsystems. ξ(k) and ν(k) stand for the system and measurement noise vectors
which are normally distributed and statistically independent from x(0) and u(k). In the
following, Ai, Bi, Ci, Di are used to represent the system matrices Aσ(k), Bσ(k), Cσ(k), Dσ(k)
for σ(k) = i ∈ £.

For system (1) with ξ(k) = 0, ν(k) = 0, its transfer matrix Gi(z), i ∈ £ describes the
input-output behaviours of the system in the frequency domain as follows

y(z) = Gi(z)u(z),

where z is the complex variable. From the state space representation (1), there holds that

Gi(z) = Ci(zI − Ai)
−1Bi + Di,

and usually, it is denoted that

Gi(z) =
[

Ai Bi
Ci Di

]
.

2.2. SKR-Based Residual Generators

Assume that Gi(z), i ∈ £ is a proper real-rational matrix. The left and right coprime
factorisations are represented by

Gi(z) = M̂−1
i (z)N̂i(z) = Ni(z)M−1

i (z), (2)

where Ni(z) ∈ RHny×nu
∞ , Mi(z) ∈ RHnu×nu

∞ , N̂i(z) ∈ RHny×nu
∞ , M̂i(z) ∈ RHny×ny

∞ . Then
there exist Xi(z) ∈ RHnu×nu

∞ , Yi(z) ∈ RHnu×ny
∞ , X̂i(z) ∈ RHny×ny

∞ , Ŷi(z) ∈ RHnu×ny
∞ satisfying

[
Xi(z) Yi(z)

][ Mi(z)
Ni(z)

]
= Inu×nu ,

and

[
M̂i(z) N̂i(z)

][ X̂i(z)
Ŷi(z)

]
= InY×nY .

The stable kernel representation (SKR) for each subsystem of system (1) is defined
as follows.

Definition 1. For given system Gi(z), i ∈ £, if for any input u(z), it holds that

Ki

[
u(z)
y(z)

]
= 0,

then the stable linear system Ki is called a SKR of Gi(z).

It can be easily derived from the left coprime factorization in Equation (2) that

Ki =
[
−N̂i(z) M̂i(z)

]
.

Let ri(z) be the residual signal of Gi(z), i ∈ £. The SKR-based residual generator is
given by

ri(z) = Ki

[
u(z)
y(z)

]
=
[
−N̂i(z) M̂i(z)

][ u(z)
y(z)

]
. (3)
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2.3. K-Gap Metric

For the fault detection of systems with multiple modes, to measure the distance
between the kernel subspaces of different modes is necessary. As is known, the K-gap
metric works as an effective tool in measuring the distance between two kernel subspaces.
Hence, this subsection introduces the concept of the K-gap metric. Firstly, the graph of
subsystem Gi, i ∈ £ is defined by

Ki =

{[
ui
yi

]
:
[
−N̂i(s) M̂i(s)

][ ui
yi

]
= 0,

[
ui
yi

]
∈ H2

}
,

which is a closed subsystem inH2 representing the kernel subspace of Gi. The definition of
the directed K-gap between two different graphs Ki and Kj, i 6= j is described as below.

Definition 2 ([48]). For any i 6= j, the equation

~δk
(
Ki,Kj

)
= sup[

ui
yi

]
∈Ki

inf uj
yj

∈Kj

∥∥∥∥[ ui
yi

]
−
[

uj
yj

]∥∥∥∥
2∥∥∥∥[ ui

yi

]∥∥∥∥
2

is called the directed K-gap of Ki and Kj.

Further, the K-gap metric of Ki and Kj is defined by

δk
(
Ki,Kj

)
= max

{
~δk
(
Ki,Kj

)
,~δk
(
Kj,Ki

)}
.

2.4. Structure of Data Matrices

In this subsection, the data structure is presented for the data-driven design of the
fault detection in the latter text. For input u(k) and output y(k), define the following
stacked data vectors

us(k) =

 u(k)
...

u(k + s− 1)

, ys(k) =

 y(k)
...

y(k + s− 1)

,

where s ∈ N+ is the data length. For a given N ∈ N+, the Hankel matrices and the
extended state vector are defined by

Uk,s =


u(k) u(k + 1) · · · u(k + N − 1)

u(k + 1) u(k + 2) · · · u(k + N)
...

...
. . .

...
u(k + s− 1) u(k + s) · · · u(k + N + s− 2)


=
[

us(k) · · · us(k + N − 1)
]
,

Yk,s =


y(k) y(k + 1) · · · y(k + N − 1)

y(k + 1) y(k + 2) · · · y(k + N)
...

...
. . .

...
y(k + s− 1) y(k + s) · · · y(k + N + s− 2)


=
[

ys(k) · · · ys(k + N − 1)
]
,

Xk,1 =
[

x(k) · · · x(k + N − 1)
]
.
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Moreover, the past and future Hankel matrices are denoted by

Zp =

[
Up
Yp

]
=

[
Uk−s,s
Yk−s,s

]
,

Z f =

[
U f
Yf

]
=

[
Uk,s
Yk,s

]
.

The data-driven SKR for each subsystem of system (1) is presented based on the
data structure.

Definition 3. For given system Gi(z), i ∈ £, if for any us(k), x(0), it holds that

Ki,d,s

[
us(k)
ys(k)

]
= 0, ∀k ≥ 0,

then the matrix Ki,d,s is called a data-driven realisation of the SKR of Gi(z).

According to the formula (3), the data-driven residual generator is obtained as

ri(k) = Ki,d,s

[
us(k)
ys(k)

]
. (4)

3. Main Results
3.1. Problem Descriptions

This paper is concerned with the data-driven fault detection for discrete-time switched
systems with unavailable switching laws. It is noteworthy that in the literature, most
studies on the fault detection of switched systems are carried out on the assumption
of the switching law availability. As shown in Figure 1, the available switching signal
is transmitted to the system plant and residual generator simultaneously. In this case,
the residual generator keeps the same mode with the system plant to generate the residual
signal for fault detection, which in other words means that the system switching has no
influence on the fault detection implementation.

Mode  1

Mode  2

Mode  N

Residual  Generator  1

Residual  Generator  2

Residual  Generator  N

yu

r

switching  singal

Figure 1. Schematic diagram of fault detection for switched systems with available switching laws.
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However, in engineering practice, it is more likely that the switching laws of a switched
system cannot be known or acquired. For the switched system with unavailable switching
laws, the fault detection becomes more complicated and challenging because of the possible
mode mismatching between subsystem and residual generator. For example, when the
system plant is activated in the mode i, the residual generator may work in the mode
j(i 6= j ∈ £) because of the unavailability of the switching laws. The mode mismatching
between subsystem and residual generator may cause a terrible effect on the residual
signal and thus the evaluation function. Even in the fault-free case, the evaluation function
exceeds the threshold and a fault alarm is triggered. To handle this problem, this work
establishes a set of decision logic as shown in Figure 2, in which the mode recognition is
taken into account in the fault detection implementation. Thus, the mode mismatching
influence is eliminated and the accuracy of the fault detection is improved. It is noteworthy
that the mode recognition is carried out based on the distinguishability of different system
modes, which will be discussed in detail in the following subsection.

Mode  1

Mode  2

Mode  N

Residual  Generator  1

Residual  Generator  2

Residual  Generator  N

yu

rDecision

Logic

r1

r2

rN

Figure 2. Schematic diagram of fault dection for switched systems proposed in this paper.

3.2. Mode Distinguishability Conditions

To achieve the mode recognition, it is required that any two modes of the switched
system are distinguishable. In the following, the discussion on the mode distinguishability
is sufficiently presented. Consider the subsystem Gi, i ∈ £ of switched system (1) with the
associated SKR Ki. The definition of the cluster is recalled here for later use.

Definition 4 ([48]). Given a scalar ri ∈ (0, 1), the set

Si ⊆ {K : δk(K,Ki) ≤ ri}

is called Si cluster with the cluster centre Ki and cluster radius ri.

On the basis of Definition 4, the definition of mode distinguishability is established
as below.
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Definition 5. We say that the modes Gi, i ∈ £ of switched system (1) are distinguishable if for any
K ∈ Si, there does not exist Sj, j 6= i ∈ £ such that K ∈ Sj.

Here, we are in a position to propose a sufficient theorem for the mode distinguishability.

Theorem 1. Consider the SKR Ki with the corresponding cluster Si, i ∈ £. Ki is the cluster centre
and ri is the cluster radius. If for any i 6= j ∈ £, there holds that

δk
(
Ki,Kj

)
> ri + rj, (5)

then the modes of switched system (1) are distinguishable.

Proof of Theorem 1. Firstly, suppose that the system modes are not distinguishable. Ac-
cording to Definition 5, it holds that for some K ∈ Si, there exists mode j 6= i ∈ £ such that
K ∈ Sj. Due to K ∈ Si and K ∈ Sj, the following inequalities hold

δk(K,Ki) ≤ ri (6)

and

δk
(
K,Kj

)
≤ rj. (7)

On the other hand, it is easy to get

δk
(
K,Kj

)
≥ δk

(
Ki,Kj

)
− δk(K,Ki).

Substituting condition (5) yields

δk
(
K,Kj

)
> ri + rj − ri = rj,

which is contradictory to the inequality (7). Therefore, it can be concluded that the system
modes are distinguishable, and the proof is completed.

Theorem 1 presents a sufficient condition (5) to ensure that the modes of switched
system are distinguishable. As shown in condition (5), the cluster radius ri is considered
to be mode dependent, which gives rise to more freedom and thus less conservatism.
By setting ri = r, ∀i ∈ £, a degraded version of Theorem 1 could be derived as in the
following corollary.

Corollary 1. Consider the SKR Ki with the corresponding cluster Si, i ∈ £. Ki is the cluster
centre and r is the cluster radius. If for any i 6= j ∈ £, there holds that

δk
(
Ki,Kj

)
> 2r,

then the modes of switched system (1) are distinguishable.

3.3. Mode Distinguishability Realisation

The above subsection constructs the sufficient conditions for the mode distinguisha-
bility of switched system (1). The essential issue is to ensure the K-gap metric of any two
SKRs larger than the sum of their radii. Since this paper is concerned with the data-driven
studies, this subsection aims to develop the data-driven realization of the K-gap metric.
To this end, the normalised data-driven SKR is investigated in the first place.

Definition 6 ([49]). If the data-driven SKR in Definition 3 satisfies Ki,d,sKT
i,d,s = I, then it is

called the normalised data-driven SKR.
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In the following, the normalised data-driven SKR is denoted as K̄i,d,s to avoid confu-
sion with the general version of SKR.

3.3.1. Normalised Data-Driven SKR in the Open-Loop Case

For subsystem Gi, i ∈ £, denote

Γi,s =


Ci

Ci Ai
...

Ci As−1
i

, Hi,u,s =


Di · · · 0 0

CiBi · · · 0 0
...

. . .
...

...
Ci As−2

i Bi · · · CiBi Di

.

The extended state space representation of subsystem Gi, i ∈ £ is modelled by

Yi
k,s = Γi,sXi

k,1 + Hi,u,sUi
k,s + Hi,ξ,sΞi

k,s + Vi
k,s, (8)

where Hi,ξ,s has the same structure with Hi,u,s and Ξi
k,s, Vi

k,s have the same structure with
Ui

k,s as defined in Section 2.4. Hi,ξ,sΞi
k,s + Vi

k,s indicates the noise influence on the output.
Rewrite (8) as[

Ui
k,s

Yi
k,s

]
= Ψi,s

[
Ui

k,s
Xi

k,1

]
+

[
0

Hi,ξ,sΞi
k,s + Vi

k,s

]
, Ψi,s =

[
I 0

Hi,u,s Γi,s

]
. (9)

Clearly, Ψ⊥i,s is a data-driven realisation of the SKR Ki,d,s. The identification of Ki,d,s =

Ψ⊥i,s is built according to the following LQ decomposition Zi
p

Ui
f

Yi
f

 =

 Li,11 0 0
Li,21 Li,22 0
Li,31 Li,32 Li,33

 Qi,1
Qi,2
Qi,3

. (10)

Since [
Ui

f
Yi

f

]
=

[
Li,21 Li,22
Li,31 Li,32

][
Qi,1
Qi,2

]
+

[
0

Li,33Qi,3

]
,

and

Li,33Qi,3 = Hi,ξ,sΞi
k,s + Vi

k,s,

it is implied that

Ψ⊥i,s

[
Li,21 Li,22
Li,31 Li,32

]
=
[

Ψ⊥i,s,u Ψ⊥i,s,y

][ Li,21 Li,22
Li,31 Li,32

]
= 0.

Performing the singular value decomposition ofKi,d,s = Ψ⊥i,s =
[

Ψ⊥i,s,u Ψ⊥i,s,y

]
yields

Ki,d,s = UiΣiVT
i = Ui

[
Σ1,i 0

][ VT
1,i

VT
2,i

]
.

As a consequence, the normalised data-driven SKR K̄i,d,s in the open-loop case is
obtained as

K̄i,d,s = VT
1,i. (11)
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3.3.2. Normalised Data-Driven SKR in the Closed-Loop Case

For switched system (1), consider the feedback control system given by{
x̃(k + 1) = Ãi x̃(k) + B̃i(w(k)− y(k)),

u(k) = C̃i x̃(k) + D̃i(w(k)− y(k)),
(12)

where x̃(k) is the controller’s state and w(k) is the tracking reference. Suppose that
the closed-loop of the i-th subsystem is well posed and internally stabilised by Ki(z) =
[Ãi, B̃i, C̃i, D̃i]. A similar representation as Formula (8) can be derived as below

Ui
k,s = Γ̃i,sX̃i

k,1 + H̃i,u,sWi
k,s − H̃i,u,sYi

k,s, (13)

where Γ̃i,s and H̃i,u,s are composed of Ki(z) = [Ãi, B̃i, C̃i, D̃i] and have the similar structure
with Γi,s and Hi,u,s, respectively. For the i-th controller, X̃i

k,1 =
[

x̃(k) · · · x̃(k + N − 1)
]

and Wi
k,s is a Hankel matrix composed of vector w(k). By substituting Equation (13) into

Equation (8), the following formula holds

Ti,sYi
k,s = Γi,sXi

k,1 + Hi,u,sΓ̃i,sX̃i
k,1 + Hi,u,sH̃i,u,sWi

k,s + Hi,ξ,sΞi
k,s + Vi

k,s, (14)

where Ti,s = I + Hi,u,sH̃i,u,s. Note that the well-posedness of the i-th closed-loop guarantees
the invertibility of matrix Ti,s. By denoting

Mi
k,s = Ui

k,s + H̃i,u,sYi
k,s = Γ̃i,sX̃i

k,1 + H̃i,u,sWi
k,s,

the Formula (14) can be rewritten as

Yi
k,s = T−1

i,s Γi,sXi
k,1 + T−1

i,s Hi,u,s Mi
k,s + T−1

i,s

(
Hi,ξ,sΞi

k,s + Vi
k,s

)
. (15)

Define

Z̃i
p =

[
Mi

p
Yi

p

]
, Z̃i

f =

[
Mi

f
Yi

f

]
,

Mi
p =Ui

p + H̃i,u,pYi
p,

Mi
f =Ui

f + H̃i,u, f Yi
f .

Similarly, by utilising the LQ decomposition Z̃i
p

Mi
f

Yi
f

 =

 L̃i,11 0 0
L̃i,21 L̃i,22 0
L̃i,31 L̃i,32 L̃i,33

 Q̃i,1
Q̃i,2
Q̃i,3

, (16)

and referring to [50], a data-driven SKR of Gi, i ∈ £ can be derived as

Ki,d,s =
[
K̃i,m, f K̃i,y, f + K̃i,m, f H̃i,u, f

]
,

where

[
K̃i,m, f K̃i,y, f

][ L̃i,21 L̃i,22
L̃i,31 L̃i,32

]
= 0.

Then consider the singular value decomposition

Ki,d,s = ŨiΣ̃iṼT
i = Ũi

[
Σ̃1,i 0

][ ṼT
1,i

ṼT
2,i

]
.
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The normalised data-driven SKR K̄i,d,s in the closed-loop case is given by

K̄i,d,s = ṼT
1,i. (17)

3.3.3. Data-Driven Realisation of the K-Gap Metric

Based on the obtained normalised data-driven SKR K̄i,d,s either in the open-loop or
the closed-loop case, a theorem will be proposed to show how to realise the data-driven
calculation of the K-gap metric between any two different modes. Before that, some
preliminaries are restated here for the use of the deduction of the theorem.

Definition 7 ([51]). Consider a truncation operator τs cutting off a time signal ϑ after s+ 1 sample
times and is accordingly as

τs : ϑ ∈ L[0,∞) → ϑtr ∈ L[0,s).

A truncated or data-driven K-gap metric δkd,s

(
Ki,Kj

)
(i 6= j ∈ £) of two subsystems Gi, Gj

with the corresponding SKRs Ki,Kj is defined by

δkd,s

(
Ki,Kj

)
= max{~δkd,s

(
Ki,Kj

)
,~δkd,s

(
Kj,Ki

)
}

with

~δkd,s

(
Ki,Kj

)
= sup

zi,s∈τsKi

inf
zj,s∈τsKj

∥∥zi,s − zj,s
∥∥

2
‖zi,s‖2

.

The following lemma shows that the truncated result approximates to the real value
of the K-gap metric as s→ ∞.

Lemma 1 ([51]). For two subsystems Gi, Gj(i 6= j ∈ £) with the corresponding SKRs Ki,Kj,
the following formula is satisfied as s→ ∞,

δkd,s

(
Ki,Kj

)
→ δk

(
Ki,Kj

)
.

Theorem 2. Consider two SKRsKi,Kj(i 6= j ∈ £) with normalised data-driven SKRs K̄i,d,s, K̄j,d,s.
The data-driven realisation of the K-gap metric can be obtained by

δkd,s

(
Ki,Kj

)
= max{~δkd,s

(
Ki,Kj

)
,~δkd,s

(
Kj,Ki

)
}, (18)

where

~δkd,s

(
Ki,d,s,Kj,d,s

)
= σmax

(
K̄T

i,d,s − K̄
T
j,d,sK̄j,d,sK̄T

i,d,s

)
. (19)

Proof of Theorem 2. Due to the normalisation property of matrices K̄i,d,s, K̄j,d,s, they re-
spectively construct the orthonormal basis of the kernel spaces Ki,Kj. The truncated kernel
spaces are given by

τsKi = C
(
K̄T

i,d,s

)
, τsKj = C

(
K̄T

j,d,s

)
.
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According to Definition 7,

~δkd,s

(
Ki,Kj

)
= sup

zi,s∈C
(
K̄T

i,d,s

) inf
zj,s∈C

(
K̄T

j,d,s

)
∥∥zi,s − zj,s

∥∥
2

‖zi,s‖2

=sup
α

inf
β

∥∥∥K̄T
i,d,sα− K̄T

j,d,sβ
∥∥∥

2∥∥∥K̄T
i,d,sα

∥∥∥
2

. (20)

It is obvious that with respect to β, the Equation (20) has only one minimal value in
the global domain. Hence, let

∂

∂β

{(
K̄T

i,d,sα− K̄T
j,d,sβ

)T(
K̄T

i,d,sα− K̄T
j,d,sβ

)}
= 0. (21)

The solution of Equation (21) is calculated as

β = K̄j,d,sK̄T
i,d,sα. (22)

Substituting (22) into Equation (20) gives rise to

~δkd,s

(
Ki,Kj

)
= sup

α

∥∥∥(K̄T
i,d,s − K̄

T
j,d,sK̄j,d,sK̄T

i,d,s

)
α
∥∥∥

2∥∥∥K̄T
i,d,sα

∥∥∥
2

, (23)

which thus implies the expression (19).

3.4. Data-Driven Fault Detection

In this subsection, the data-driven realisation of the fault detection is presented for
the switched system (1). For each subsystem Gi, i ∈ £, the residual evaluation function is
constructed by

Ji(k) = ‖ri(k)‖2
2 =

s−1

∑
n=0

rT
i (k + n)ri(k + n), (24)

and the threshold is set as

Ji,th = sup
k

Ji(k). (25)

The following Algorithm 1 is proposed to show how to determine the data-driven
residual generator and the threshold for each subsystem based on the offline process data.

Algorithm 1 Offline Data-Driven Procedure

Step 1: Collect the process data ui, yi of each subsystem Gi, i ∈ £
Step 2: Choose s, N and build the Hankel matrices Ui

k,s, Yi
k,s, Zi

p for open-loop case
or Z̃i

p, Mi
f , Yi

f for closed-loop case
Step 3: Perform LQ decomposition (10) or (16) and calculate the data-driven SKR Ki,d,s
Step 4: Utilise the singular value decomposition to get the normalised data-driven SKR K̄i,d,s

in (11) or (17)
Step 5: Calculate the K-gap metric δkd,s

(
Ki,Kj

)
of any two modes according to (18) and compare it

with given scalar λ > 0{
If δkd,s

(
Ki,Kj

)
> λ, ∀i 6= j ∈ £, go to Step 6

If there exist some i 6= j ∈ £ such that δkd,s

(
Ki,Kj

)
≤ λ, return to Step 1 and update the data

Step 6: Construct the data-driven residual generator according to (4)
Step 7: Run the evaluation function (24) and set the threshold Ji,th
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By virtue of the constructed residual generator in Algorithm 1, the online residual sig-
nal ri(k) and evaluation function Ji(k) can be obtained with the online data. By comparing
Ji(k) with Ji,th for each mode, the decision logic is implemented as follows.{

If Ji(k) > Ji,th, ∀i ∈ £⇒ faulty
If there exists i ∈ £ such that Ji(k) ≤ Ji,th ⇒ fault-free

(26)

Then the online procedure of the data-driven fault detection for switched system (1) is
described in the following Algorithm 2.

Algorithm 2 Online Fault Detection

Step 1: Collect the online process data us(k), ys(k)
Step 2: Run the residual generator (4) with each SKR Ki,d,s, i ∈ £
Step 3: Obtain the residual signal ri(k) and the evaluation function Ji(k) according to (24)
Step 4: Implement the decision logic (26)

4. Benchmark Study

The benchmark study on a three-tank system has been demonstrated in this section,
which can be regarded as the prototype for many industrial systems. As sketched in
Figure 3, a basic structure of three-tank system includes three water tanks, two connecting
pipes, four drain pipes and two water pumps. All the six pipes can be opened or closed
by the adjustable ball valves PV1, PV2, PV3, LV1, LV2, LV3 through a controller or manual
adjustment. Through Pump 1 and Pump 2, water is pumped into Tank 1 and Tank 2 with
the incoming mass flow rates Q1 and Q2, respectively. The liquid levels h1, h2 and h3 of
three-tank can be measured by the liquid level sensors with the maximum allowable water
level hmax. The water pump will stop working when the liquid level is higher then hmax.
The incoming mass flow rates of two pumps Q1 and Q2 and the liquid levels h1, h2 and h3
are chosen as system inputs and measured outputs, respectively.

Tank 1
Tank 3

Tank 2

Pump 1 Pump 2

H
 

m
a
x

h1 

h3 
h2 

Lv1 Lv3 Lv2

Pv1 Pv3 Pv2

Figure 3. Structure of the three-tank system.

In this work, the three-tank system operates around the working point h1 = 45 cm,
h2 = 15 cm and h3 = 30 cm. Different combinations of the adjustable ball valve’s state
compose the different modes of the system. Consider the three-tank system with three
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modes as shown in Table 1. Specifically, the mathematical model for each mode is described
as follows.

Table 1. The three modes of the three-tank system.

Mode PV1 PV2 PV3 LV1 LV2 LV3

Mode 1: open open open open close close
Mode 2: open open open close close close
Mode 3: open close open open open close

For the first mode, open the valves PV1, PV2, PV3 fully, open the valve LV1 by 80%
and close the valves LV2,LV3. The dynamics of this system mode is formulated by

Aḣ1 =Q1 − α1snsgn(h1 − h3)
√

2g|h1 − h3| − 80%β1sl
√

2gh1,

Aḣ2 =Q2 + α3snsgn(h3 − h2)
√

2g|h3 − h2| − α2sn
√

2gh2,

Aḣ3 =α1snsgn(h1 − h3)
√

2g|h1 − h3| − α3snsgn(h3 − h2)
√

2g|h3 − h2|.

For the second mode, open the valves PV1, PV2, PV3 fully and close the valves LV1,
LV2, LV3. The dynamics of this system mode is given by

Aḣ1 =Q1 − α1snsgn(h1 − h3)
√

2g|h1 − h3|,

Aḣ2 =Q2 + α3snsgn(h3 − h2)
√

2g|h3 − h2| − α2sn
√

2gh2,

Aḣ3 =α1snsgn(h1 − h3)
√

2g|h1 − h3| − α3snsgn(h3 − h2)
√

2g|h3 − h2|.

For the third mode, open the valves PV1, PV3 fully, open the valves LV1, LV2 by 20%,
80%, respectively and close the valves PV2, LV3. Correspondingly, the dynamics of this
mode is described by

Aḣ1 =Q1 − α1snsgn(h1 − h3)
√

2g|h1 − h3| − 20%β1sl
√

2gh1,

Aḣ2 =Q2 + α3snsgn(h3 − h2)
√

2g|h3 − h2| − 80%β2sl
√

2gh2,

Aḣ3 =α1snsgn(h1 − h3)
√

2g|h1 − h3| − α3snsgn(h3 − h2)
√

2g|h3 − h2|.

The parameters of the three-tank model are listed in Table 2. With the linearisation
technique, the three-tank system can be formulated in the switched system form (1) with
the switching law displayed in the Figure 4. The total running time is 12,000 s and the
switching of system modes occurs at 5000 s and 8000 s, respectively. The data of system
input and output are collected as shown in Figure 5 with the sampling interval Ts = 2 s.

Collect the offline data in the fault-free case and apply Algorithm 1 for each mode.
By choosing a proper data length, the Hankel matrices are constructed, based on which
the LQ decomposition is implemented and the data-driven SKR is derived. Then the nor-
malised data-driven is calculated via the singular value decomposition. By calculating and
comparing the K-gap metric, the residual generators, evaluation functions and thresholds
are obtained and exhibited in Figure 6. Observing these curves, it is clear that the three
modes are distinguishable. Then the online algorithm, i.e., Algorithm 2, is implemented to
show the effectiveness in fault detecting. By collecting the online process data, the residual
generator for each mode is presented and further, the residual signals and evaluation
function values when there is no fault occurring in the three-tank system are obtained as
displayed in Figure 7, from which one can see that the false alarm rate is extremely low.
In other words, the designed decision logic improves the mode matching of system plant
and residual.
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Table 2. Parameters of the three-tank model.

Parameters Symbol Value Unit

Cross section area of tanks A 154 cm2

Cross section area of pipes sn 0.5 cm2

Cross section area of drain pipes sl 0.5 cm2

Max. height of tanks Hmax 62 cm
Max. flow rate of pump 1 Q1max 100 cm3/s
Max. flow rate of pump 2 Q2max 100 cm3/s
Coeff. of flow for pipe 1 α1 0.46
Coeff. of flow for pipe 2 α2 0.60
Coeff. of flow for pipe 3 α3 0.45
Coeff. of flow for drain pipe 1 β1 0.46
Coeff. of flow for drain pipe 2 β2 0.60
Coeff. of flow for drain pipe 3 β3 0.45

0 5000 8000 10000 12000

1

2

3 Mode1

Mode2

Mode3

0 5000 8000 10000 12000

No Fault

Fault

Mode1

Mode2

Mode3

Fault

Figure 4. Switching law and fault signal of the three-tank system.
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Figure 5. Input and output data.
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Figure 6. Residual generators, evaluation functions and thresholds designed by Algorithm 1.
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Figure 7. Fault detection result in the fault-free case.

Then consider the system with the plugging fault at 10,000 s, which is caused by
closing the valve PV1 by about 30%. Correspondingly, the fault detection result is shown
in Figure 8. Moreover, a 5% offset fault in the liquid level sensor of Tank 2 at 3500 s and
a leakage fault caused by opening the valve LV3 by about 20% at 6500 s are taken into
account. The fault detection results corresponding to the two cases are respectively given in
Figures 9 and 10. It can be concluded from these figures that Algorithm 2 effectively detects
the fault in progress and thus, the usefulness of the proposed method is demonstrated.

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
-5

0

5

10

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

20

40

60

80

100

J
Threshold

Figure 8. Fault detection result under the plugging fault.
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Figure 9. Fault detection result under the offset fault.
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Figure 10. Fault detection result under the leakage fault.

5. Conclusions

In this paper, a data-driven approach is developed for the fault detection of discrete-
time switched system. Considering the difficulties in acquiring the switching laws in many
practical applications, this paper assumes that the switching laws are unavailable to the
mode-dependent residual generators in the fault detection implementation. The unavail-
able switching information may lead to the mode mismatching between system plant and
residual generator, for which the mode recognition is considered in this work. Firstly,
sufficient criteria are constructed to ensure that the modes of the switched system are
distinguishable. Then a decision logic including the mode recognition is presented for the
fault detection. Furthermore, offline and online algorithms are elaborated to show the data-
driven realisation of the fault detection for the underlying system. A three-tank benchmark
system is studied to show the effectiveness of the methods proposed in this paper.
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It is worth mentioning that the main contribution of this work is to achieve the data-
driven fault detection for switched systems even without available switching laws, which
is of great significance from the viewpoint of practice. Actually, the mode recognition
approach proposed in this paper is effective in dealing with the analysis and synthesis
problems for switched systems with unavailable switching laws and could be further
applied to some other research topics of switched systems. In the future, we would like
to extend our research to fault-tolerant control for switched systems based on the fault
detection method of this work.
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