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A B S T R A C T   

Background: The epigenetic regulator in cancer progression and immune response has been 
demonstrated recently. However, the potential implications of 5-methylcytosine (m5C) in soft 
tissue sarcoma (STS) are unclear. 
Methods: The RNA sequence profile of 911 normal and 259 primary STS tissues were obtained 
from GTEx and TCGA databases, respectively. We systematically analyzed the m5C modification 
patterns of STS samples based on 11 m5C regulators, and comprehensively correlated these 
modification patterns with clinical characteristics, prognosis, and tumor microenvironment 
(TME) cell-infiltrating. Furthermore, an m5C-related signature was generated using Cox propor-
tional hazard model and validated by the GSE17118 cohort. 
Results: Two distinct m5C modification patterns (cluster1/2) were discovered. The cluster1 had 
favorable overall survival, higher immune score, higher expression of most immune checkpoints, 
and active immune cell infiltration. The GSVA analysis of the P53 pathway, Wnt signaling 
pathway, G2M checkpoint, mTORC1 signaling, Wnt/β catenin signaling, and PI3K/AKT/mTOR 
signaling were significantly enriched in the cluster2. Moreover, 1220 genes were differentially 
expressed between two clusters, and a m5C prognostic signature was constructed with five m5C- 
related genes. The signature represented an independent prognostic factor and showed the 
favorable performance in the GSE17118 cohort. Patients in the low-risk group showed higher 
immunoscore and higher expression of most immune checkpoints. Further GSVA analysis indi-
cated that the levels of P53 pathway, Wnt signaling pathway, and TGF-β signaling pathway were 
different between low- and high-risk groups. Moreover, a nomogram incorporating m5C signature 
and clinical variables was established and showed well performance. 
Conclusion: This work showed that the m5C modification plays a significant role in the progression 
of STS and the formation of TME diversity. Evaluating the m5C modification pattern of tumor will 
enhance our cognition of TME infiltration characterization to guide more effective immuno-
therapy strategies.   
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1. Introduction 

Soft tissue sarcoma (STS) represents a heterogeneous collection of malignant tumors that occur primarily in the mesenchymal 
tissues, such as muscle and adipose tissues [1]. Although STS only accounts for roughly 1% of all human malignancies (12,750 new 
cases and 5270 deaths in the United States in 2019) [2,3], it accounts for approximately 10% of malignancies in children and ado-
lescents [4,5]. Surgery, chemotherapy, and palliative radiotherapy are still the preferred treatment methods [6,7], and other novel and 
effective treatment methods are intensively being explored [8,9]. Even if the treatment regimen is intensified or new drugs are added, 
the prognosis for STS is still poor, especially for advanced patients whoes 5-year survival rate reduced ignificantly, and was only 27.2% 
[10]. So far, the pathogenesis and progression of STS remains unclear, which limits the innovation of targeted therapy. Therefore, it is 
necessary to elucidate the pathogenesis and progression of STS from different perspectives. 

Epigenetic regulation is fundamentally involved in transcriptional regulation, and is critical for genomic integrity, cell prolifera-
tion, and cell fate [11]. In addition to DNA methylation and histone modification, reversible RNA modification has been confirmed to 
be another important factor in gene expression regulation [12]. 5-Methylcytosine (m5C) was first identified in stable and abundant 
tRNAs and rRNAs [13], and its regulatory role in mRNA has been explored recently [14,15]. Yang et al. [14] revealed that m5C 
modification is enriched in CG-rich regions as well as regions immediately downstream of translation initiation sites, showing dynamic 
and tissue-specific features. Notably, increasing evidence demonstrated that mRNA m5C plays a crucial role in a variety of biological 
behaviors, including mRNA alternative splicing, export, localization and translation [16,17]. Similar to the modification of m6A [18], 
m5C is manipulated by three types of regulators, including “writer” (methyltransferase), “reader” (binding or recognition protein), and 
“eraser” (demethylase). The “writers” (NSUN1-7, DNMT1-2, and DNMT3A-B) catalyze the formation of m5C, the “reader” (ALYREF) 
decodes methylation of m5C, and the “eraser” (TET2) selectively removes the methyl code [19–22]. 

Recently, emerging evidence has shown that the mRNA m5C is associated with the occurrence, progression, and drug responses of 
malignant tumors [21]. Chen et al. [15] identified many oncogene RNAs with hypermethylated m5C sites, which had a causal rela-
tionship with their upregulation in the bladder cancer. This demonstrated that NSUN2 drives the pathogenesis of bladder cancer by 

Table 1 
Baseline characteristics of 259 soft tissue sarcoma patients.   

Total set(n = 259) 

Age, years 60.71 ± 14.59 
Race 

White 226(87.3) 
Black 18(6.9) 
Asian 6(2.3) 
Unknown 9(3.5) 

Sex 
Male 118(45.6) 
Female 141(54.5) 

Tumor site 
Extremity 85(32.8) 
Other 174(67.2) 

Histological type 
Leiomyosarcoma 104(40.2) 
Dedifferentiated liposarcoma 58(22.4) 
UPS 51(19.7) 
Myxofibrosarcoma 25(9.7) 
Other 21(8.1) 

Margin status 
R0 154(59.5) 
R1/2 78(30.1) 
Unknown 27(10.4) 

Metastasis 
No 120(46.3) 
Yes 56(21.6) 
Unknown 83(32.0) 

Multifocal indicator 
No 197(76.1) 
Yes 40(15.4) 
Unknown 22(8.5) 

Radiotherapy 
No 140(54.1) 
Yes 73(28.2) 
Unknown 46(17.8) 

Pharmacotherapy 
No 176(68.0) 
Yes 37(14.3) 
Unknown 46(17.8) 

UPS: Undifferentiated pleomorphic sarcoma. 
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targeting specific m5C methylation site. In prostate cancer, Frye et al. [23] observed high expression of NSUN2 in cancer tissues, and 
identified NSUN2 as a critical protein in PAR2-mediated cancer cell migration via specific methylation. In addition, Zhang et al. [24] 
evidenced that the distribution pattern of mRNA m5C was associated with extensive cellular functions. However, the relationship 
between m5C regulators and STS remains unclear, and thus it is necessary to do further research. 

This study aimed to explore the correlations of m5C RNA methylation regulators with prognosis, tumor microenvironment (TME), 
immune cells infiltration, and immune checkpoints in STS. Clustering subtypes and risk models of m5C RNA methylation regulators 
were established to improve prognostic risk stratification of STS patients, thereby facilitating treatment decision making. Additionally, 
we also explored the mechanisms of the interaction between m5C RNA methylation regulators and STS using a variety of bioinfor-
matics tools. 

2. Materials and methods 

2.1. Data collection and processing 

The RNA-sequence data of TCGA-SACR cohort were downloaded from the UCSC Xena browser (https://xenabrowser.net/), which 
contains 259 primary STS patients. The corresponding clinical information of TCGA-SACR was obtained from the cBioPortal (www. 
cbioportal.org). The expression data of 911 normal muscle and adipose tissues from GTEx project were also downloaded from the 
UCSC Xena browser to verify the expression pattern of the m5C regulators between tumor and normal tissues. For the TCGA and GTEx 
database, the RNA-sequence data (FPKM values) were normalized into log2(FPKM+1). Additionally, the data of the GSE17118 dataset 
were downloaded from the gene expression omnibus (GEO) database to validate our signature. The baseline information of all patients 
is summarized in Table 1. 

2.2. Differential, correlation, and survival analyses of m5C regulators 

Thirteen m5C regulators were identified from previous published papers, including “writers” (NSUN1-7, DNMT1, DNMT2, 
DNMT3A, and DNMT3B), “reader” (ALYREF), and “eraser” (TET2) [25]. After gene expression profiles of STS and normal tissues were 
normalized by “LiMMA-normalizeBetweenArrays”, the differential expressions of m5C regulators were evaluated by the Wilcoxon 
signed-rank test with the “limma” package. Pearson correlation analysis was used to study the correlation between regulators, and was 
performed separately in tumors and normal tissues. Moreover, the information of expression data and overall survival (OS) was in-
tegrated, and the univariate Cox analysis was performed to assess the prognostic value of each regulator. In the present study, except 
for special instructions, the p-value<0.05 (two side) was considered as statistical significance. 

2.3. Unsupervised clustering for m5C regulators 

In order to explore the potential m5C modification patterns in STS, unsupervised cluster analysis was performed based on the 
expression of m5C regulators to classify patients for further analyses [26]. The number of clusters were determined by the Elbow 
method and the Gap statistic. The distinct OS outcomes between clusters were compared using the log-rank test and the Kaplan-Meier 
(K-M) curves. In addition, ImmucellAI and ESTIMATE algorithms were used to quantify the immune cell infiltration and TME score, 
respectively [27,28]. The differences of clinical characteristics, TME scores, immune checkpoints, and 24 types of immune infiltration 
cells between clusters were compared. 

2.4. Gene set variation analysis (GSVA) 

To investigate the difference on biological process between m5C modification patterns, we performed GSVA enrichment analysis 
using the “GSVA” R package. GSVA, a non-parametric unsupervised analysis method, is commonly used for evaluating the variation in 
the pathway and biological activity between different samples [29]. In this study, we performed GSVA analysis with the “GSVA” 
package to investigate the difference in biological activity between distinct m5C modification clusters, and the gene sets of “c2. cp. 
kegg.v7.1.-symbols” and “h.all.v7.1. symbols” were obtained from the MsigDB database for GSVA. 

2.5. Identification of differentially expressed genes (DEGs) between m5C subtypes 

According to results of the unsupervised cluster analysis, we classified 259 STS patients into two distinct m5C clusters, and the 
“limma” R package was used to screen DEGs between the two m5C modification clusters. Genes with FDR<0.05 and |log2FC|>1 were 
defined as DEGs, namely the m5C-related genes. Then, functional annotations, including Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses, were performed in m5C-related genes using the “clusterProfiler” package, and FDR<0.5 was 
set as the cutoff value. 

2.6. Construction and external validation of the m5C-related signature 

To further understand the prognostic value of m5C-related genes in STS, survival analysis was performed. First, the univariate Cox 
regression analysis was performed to identify OS-related genes, and the genes meeting the screening criteria of P < 0.05 were selected. 
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Then, we utilized LASSO regression analysis to choose the most significant prognostic genes with the “glmnet” package [30]. Finally, 
those genes identified from the LASSO regression analysis were incorporated into the multivariate Cox analysis, and an m5C-related 
signature was constructed. The individual riskScore of each STS patient in the training cohort was calculated according to coefficients 
and expressions of selected genes, and the equation is shown as follows: 

riskScore=
∑n

i=0
Expi ∗ Coei  

where① Expi is the expression of the selected gene, Coei is the estimated regression coefficient of the gene from the multivariate Cox 
proportional hazards regression analysis, and n is the number of genes. 

Using the median riskScore as the cutoff, the patients were divided into low-risk and high-risk groups. The K-M survival curve with 
the log-rank test was generated to show the difference of OS status between the two groups. Besides, the time-dependent receiver 
operating characteristic (ROC) curves at 2-, 4-, and 6-years were generated to evaluate the discrimination of the signature with the 
“survivalROC” package, and the corresponding values of area under the curve (AUC) were calculated simultaneously. Then, the 
expression data of the genes enrolled in the m5C-related signature were extracted from the GSE17118 dataset to calculate the risk-
Score. Similarly, the K-M survival and ROC curves were selected to perform external validation. 

2.7. Construction of a novel nomogram based on the m5C-related signature and clinical prognostic variables 

We further explored the independent prognostic role of the m5C-related signature with univariate and multivariate Cox regression 
analyses. Clinical variables were also incorporated into survival analyses, including age, sex, race, histological type, tumor site, 
metastasis status, margin status, multifocal indicator, radiotherapy status, and pharmacotherapy status (Supplementary Table 1). 
Variables with a P < 0.05 in the univariate Cox analysis were further included in the multivariate Cox analysis, and independent 
prognostic variables were identified. Using the “rms” package, a prognostic nomogram based on the m5C-related signature and in-
dependent clinical prognostic variables was established. C-index and calibration curves were used to assess the performance of the 
nomogram. 

2.8. Statistical analysis 

All statistical analyses were performed using R (version 3.6.1). Unpaired Student’s t-test, the Wilcoxon rank-sum test, ANOVA, and 
the Kruskal-Wallis test were used for the comparison of continuous variables. The chi-square test and Fisher’s exact test were used to 
compare categorical variables. Pearson analysis was used for the correlation analyses. p-value <0.05 (two-tailed) was considered as 
statistical significance. 

Fig. 1. Overeview of 11 m5C regulators in normal and STS tissues. (A) Heatmap showed the expression of 11 m5C regulators in normal and STS 
tissues; (B) Violin plot showed the difference of m5C regulators expression between normal and STS tissues. 
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Fig. 2. m5C-based clusters significantly associated with prognosis, tumor immune microenvironment and immune checkpoints. (A) Consensus 
matrix heatmap defined two distinct m5C clusters for STS patients; (B) Kaplan-Meier survival analysis shows the distinct prognosis of STS between 
two clusters; (C) Stromal score, Immune score, and ESTIMATE score between two m5C modification clusters. 
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Fig. 3. GSVA enrichment analysis showed the activation states of biological pathways in distinct m5C modification patterns. (A) The heatmap 
showing the GSVA analysis in two clusters; (B) The GSVA socre of six pathways closely were associated with tumors. 
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3. Results 

3.1. Overview of m5C regulators in normal and STS tissues 

Of the 13 m5C regulators, 11 were found to be expressed in TCGA-SARC and GTEx cohorts, including 9 writers (NSUN2-7, DNMT1, 
DNMT3A, and DNMT3B), 1 reader (ALYREF), and 1 eraser (TET2). Except for DNMT3A, the other 10 m5C regulators were differentially 
expressed in STS tissues and normal tissues (Fig. 1A and B). ALYREF, NSUN7, DNMT1, NSUN3, NSUN5, and DNMT3B had higher 
expression levels in STS tissues, while NSUN2, NSUN6, NSUN4, and TET2 had lower expression levels in STS tissues (Fig. 1A and B). 

The relationships between 11 m5C regulators were explored by Pearson correlation analysis in STS and normal tissues. As shown in 
Supplementary Fig. 1A, it was found that not only the same-functional m5C regulators presented a remarkable correlation, but also 
among writers, reader, and eraser in normal tissues. However, the significant relationship between each two of them was almost 
nonexistent in STS tissues. These results indicated that the disruption of the cross-talk between m5C regulators may play an important 
role in the oncogenesis of STS. In addition, survival analysis suggested that STS patients with high expression of three genes (DNMT3A, 
DNMT3B, and NSUN6) had a significantly worse OS, while patients with high expression of NSUN5 had a favorable OS (Supplementary 
Fig. 1B). 

3.2. Two distinct m5C modification patterns significantly associated with the prognosis and TME characteristics 

Two distinct m5C modification patterns were identified, including 164 cases in cluster1 (C1:63.3%), and 95 cases in cluster2 
(C2:36.7%) (Fig. 2A). Survival analysis revealed the particularly prominent OS advantage in the cluster1 (P = 0.012) (Fig. 2B). More 
importantly, the comprehensive bioinformatics analyses suggested that two m5C modification clusters had distinct TME and immune 
cell infiltration. The prognosis of the cluster1 with a higher immune, stromal, and ESTIMATE scores was better than that of the cluster2 
(Fig. 2C). Additionally, the distribution of sex, histological type, and metastatic status were significantly different between the two 
clusters (Supplementary Fig. 2). Subsequently, we further analyzed the fraction of 24 immune cell types between two clusters. The 
results showed that 18 immune cells were significant differences between the two clusters (Supplementary Fig. 3A). The infiltration 

Fig. 4. Differential analysis of mRNA between two m5C clusters. (A) The heatmap showed the 1220 DEGs in normal and STS tissues. (B) Volcano 
plot showed the results of differential expression alaysis between two m5C clusters. 
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level of Tc, Tex, Th1, Th2, Tfh, central memory T (Tcm), NkT, MAIT, Macrophage, NK, Tgd(gamma delta T), CD4 T, and CD8 T cells 
were significantly higher in the cluster 1, while the infiltration levels of CD4 naive, CD8 naive, Tr1, nTreg, iTreg, and Neutrophil cells 
were significantly lower in cluster 1. 

3.3. Association of immune checkpoints with m5C modification patterns 

To explore the involvement of immune checkpoints with m5C modification patterns, we assessed the differential expression of 12 
common immune checkpoints in two clusters. A total of 10 immune checkpoints (PD-1, PDL1, BTLA, CTLA4, LAG3, PDCD1LG2, ICOS, 
CD27, HAVCR2, and LGALS9) had higher expression level in the cluster1 (Supplementary Fig. 3B), which indicated that STS patients in 
cluster1 were more suitable for targeted therapy with immune checkpoint inhibitors. In addition, the prognosis of cluster2 with a 
higher PVR and VTCN1 was worse than that of the cluster1 (p < 0.05) (Supplementary Fig. 3B). Different expression patterns of 
immune checkpoints suggested that two groups of patients had different susceptibility targeted immunotherapy drugs. 

3.4. GSVA analysis showing the different biological mechanisms between two m5C modification clusters 

The biological mechanisms between two distinct m5C modification clusters were further studied by the GSVA analysis. As shown in 
Fig. 3A–B, cluster1 was markedly enriched in the metabolism of xenobiotics by cytochrome p450, drug metabolism cytochrome p450, 
arachidonic acid metabolism, steroid hormone biosynthesis, and olfactory transduction. Cluster2 presented enrichment pathways 
associated with cell cycle, progesterone mediated oocyte maturation, oocyte meiosis, p53 signaling pathway, pathogenic Escherichia 
coli infection based on the top five terms. The results revealed cluster2 was significantly associated with the activation of proliferation, 
leading to an accelerated progression of STS and poorer OS. 

3.5. m5C-related DEGs showing distict biological behavior between two modification patterns 

To further investigate the potential biological behavior of each m5C modification pattern, we identified 1220 m5C-related DEGs 
using the “limma” package (Fig. 4A–B) (Supplementary Table 2). The “clusterProfiler” package was used to perform GO enrichment 
analysis for the DEGs. For DEGs that upregulated in C1, the most significant GO enriched terms were T cell activation, leukocyte cell- 
cell adhesion, and leukocyte proliferation; external side of plasma membrane, specific granule, and MIHC class II protein complex 
(CC); and immune receptor activity, cytokine activity, and chemokine activity (MF) (Supplementary Fig. 4). Generally, immune- 
related terms were significantly enriched in the C1. Several immune-related pathways, such as B cell receptor signaling pathway, 
Th1 and Th2 cell differentiation, Primary immunodeficiency, Th17 cell differentiation, and NF− kappa B signaling pathway, were 
enriched in the C1 (Supplementary Fig. 5). Compared with C1 upregulated DEGs, the relationship between C2 upregulated DEGs and 
immune features was not as strong. It was remarkably enriched in chromosome segregation, nuclear chromosome segregation, and 
mitotic sister chromatid segregation (BP); chromosome, centromeric region, spindle, and chromosomal region (CC); microtubule 
binding, DNA-binding transcription activator activity, and RNA polymerase II-specific (MF) based on GO analysis (Supplementary 
Fig. 6). Additionally, the KEGG analysis of C2 upregulated DEGs were ecriched in cell cycle, p53 signaling pathway, and oocyte meiosis 
(Supplementary Fig. 7). Generally, these results fully revealed the biological differences between two m5C modifications clusters, 
thereby providing the basis for the further research. 

3.6. Construction and validation of the m5C-related prognostic signature 

The above analyses implied the potential application of m5C regulators in predicting the prognosis of STS. Then, a total of 311 OS- 
related DEGs were identified by the univariate Cox regression analysis (Supplementary Table 3), and six prognostic genes were 
selected by LASSO analysis (Supplementary Table 4). Finally, a signature that incorporating five OS-related DEGs (GPC2, RNF182, 
DUSP9, TMEM176B, and GLIS1) were constructed using the multivariate Cox proportional hazards model (Table 2). The formula of 
riskScore was shown as follows: riskScore = 0.1644*expression of GPC+0.0992*expression of RNF182 + 0.0456*expression of 
DUSP9–0.0024*expression of TMEM176B + 0.0465*expression of GLIS1. The AUC values of signature for predicting 2-, 4-, and 6-year 
OS were 0.727, 0.705, and 0.709, respectively (Fig. 5A). It indicated that this m5C-related signature was a valuable tool for OS pre-
diction. Additionally, the K-M survival curve indicated that the patients in the high-risk group had a significantly worse OS than those 

Table 2 
The results of Cox analyses for genes in the final signature.  

Gene Univariate analysis Multivariate analysis 

HR 95%CI P HR 95%CI P 

GPC2 1.324 1.190–1.473 0.000 1.179 1.026–1.355 0.021 
RNF182 1.121 1.070–1.175 0.000 1.097 1.036–1.160 0.001 
DUSP9 1.100 1.063–1.139 0.000 1.047 0.998–1.098 0.060 
TMEM176B 0.995 0.993–0.998 0.000 0.998 0.995–1.000 0.079 
GLIS1 1.072 1.033–1.113 0.000 1.048 1.004–1.093 0.030 

HR: hazard ratio; CI: confidence interval. 
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in the low-risk group (Fig. 5B). In the independent validation cohort, the 2-, 4-, and 6-year AUC values for the m5C signature were 
0.862, 0.629, and 0.709, respectively (Fig. 5C). Similar to the training cohort, high-risk patients in the validation cohort had signif-
icantly poor prognosis than low-risk patients (Fig. 5D). Two scatter diagrams were generated to show the survival status of STS pa-
tients. With the increase of riskScore, it was found that the survival time of patients was gradually decreased and the survival rate was 
continuously reduced (Supplementary Figs. 8A and 8B). These results suggested that the risk score that was calculated based on the five 
m5C-related genes could accurately predict the prognosis of STS patients. 

3.7. Correlations of the m5C signature with TME, immune checkpoints, and immune cell infiltration in STS 

The relationships between risk scores and immune features were further evaluated. The results showed STS patients in the low-risk 
group had a higher stromal score, higher immune score, and higher ESTIMATE score (Fig. 6A). For the 12 significant immune 
checkpoints between two m5C modification clusters, the low-risk group had higher expressions of PD-1, PDL1, BTLA, CTLA4, 

Fig. 5. Construction and external validation of the m5C-related signature for STS. (A) Time-dependent ROC curves of the m5C-related signature in 
the training cohort. The AUC values at 2-, 4-, and 6-years were 0.727, 0.705 and 0.709, respectively; (B) K-M survival curve showed the distict 
prognosis between low- and high-risk STS patients in the training cohort; (C) Time-dependent ROC curves of the m5C-related signature in the 
GSE17118 cohort, and the AUC values at 2-, 4-, and 6-years were 0.862, 0.629, and 0.709, respectively; (D) K-M survival curve showed the distict 
prognosis between low- and high-risk STS patients in the GSE17118 cohort. 
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PDCD1LG2, ICOS, and CD27, which tended to have the pretty positive response to specific immune checkpoint inhibitors, while the 
high-risk group tends to be useless (Fig. 6B). We further explored the role of the activated immune system in a better prognosis. STS 
patients in the low-risk group tended to have a higher infiltration level of Tc, Th1, Tfh, Tcm, NKT, MAIT, B cell, Macrophage, NK, Tgd, 
CD4 T, and CD8 T, and lower infiltration level of CD8 naive, Tr1, Th17, Monocyte, and Neutrophil (Fig. 6C). 

3.8. GSVA analysis of low- and high-risk groups 

To further investigate the potential biological behavior of low- and high-risk groups, GSVA analysis was performed (Fig. 7). The 
high-risk group was markedly enriched in the carcinogenic activation pathways, such as P53 signaling pathway, TGF-β signaling 
pathway, and WNT signaling pathway (Supplementary Figs. 9A–7C). Additionally, several pathways were enriched in the low-risk 
group, such as the JAK-STAT signaling pathway, regulation of autophagy, and intestinal immune network for IgA production (Sup-
plementary Figs. 9D–9F). Combined with the GSVA analysis in the unsupervised clustering analysis, some important pathways were 
highly enriched in patients with poor prognosis in both GSVA analyses. Hence, the P53 signaling pathway, TGF-β signaling pathway, 
and WNT signaling pathway might be implicated in the distinct TME and prognosis of STS patients. 

3.9. Development of a novel m5C-clinical nomogram 

Risk, age, metastatic status, margin status, and multifocal indicator were significantly associated with the OS of STS patients 
(Fig. 8A). Then, four independent prognostic variables were identified, including risk, age, metastatic status, and margin status 
(Fig. 8A). A novel m5C-clinical nomogram combining the m5C-related signature and clinical variables was established (Fig. 8B). The 
nomogram could accurately predict OS, with a C-index of 0.813 by performing bootstrap resampling. In addition, the favorable 
calibration analysis of the nomogram-predicted OS was highly consistent with the actual outcome at 2-, 4-, and 6-years (Fig. 8C–E). 

4. Discussion 

m5C is a common modification of both DNA and various cellular RNAs [31,32]. With the recent advance in mapping technologies, 
the regulatory role of m5C in mRNAs is beginning to be revealed, and ao far, it has been found that mRNA m5C plays pivotal regulatory 
roles across many biological processes, including gene expression, genome editing, cellular differentiation, and organismal 

Fig. 6. Distinct TME status between low- and high-risk groups. (A) Stromal score, Immune score, and ESTIMATE score between low- and high-risk 
STS patients; (B) The differences of immune checkpoints between low- and high-risk STS patients; (C) The differences of 24 types of immune cells 
between low- and high-risk STS patients. STS: soft tissue sarcoma. 
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development [33,34]. However, little is known regarding the relationship between mRNA m5C and STS, while increasing types of STS 
have been considered as basically epigenetic diseases with widespread epigenetic dysregulation caused by a small number of genetic 
changes, or even a single [11,35]. In this study, we applied a series of bioinformatics and machine learning algorithms to demonstrate 
the key regulatory roles of 11 m5C regulators in STS, and identified two m5C modification patterns with distinct TME characteristics 
and prognosis. Moreover, an m5C-related signature and a comprehensive nomogram were established for prognostic prediction of STS 
patients. 

Previous studies revealed that m5C regulators play important roles in cell death, developmental defects, and cell proliferation [36, 
37]. More importantly, anomalous interactions between “writers” and “erasers”, arising from alterations to their expression, were 
found to be linked to malignant tumor pathogenesis and progression [22,38]. Here, 10 of 11 m5C regulators were differentially 
expressed between STS and normal tissues. These results indicated a close relationship between these regulators and tumorigenesis. 
The correlation analyses further suggested that the dysregulation of m5C regulators in STS. As with STS, several m5C regulators were 
abnormally expressed in many malignancies [25,39–41]. For example, the expression of NSUN2 was downregulated in the lung 
adenocarcinoma and the expressions of ALYREF and NSUN4 were upregulated in liver cancer [25]. Additionally, the expression of 
DNMT1 was upregulated in breast cancer, and TET2 was downregulated in prostate cancer [42,43]. To explore the reasons, it may be 
that the damage of normal interactions between m5C regulators causes the disruption of cellular functions and activation of 
tumor-related pathways [22,44]. 

Further, based on the expression of m5C regulators, we revealed two distinct m5C modification clusters with remarkably different 
prognosis and TME characteristics. Cluster1 was characterized by the activation of stroma and immunity with a higher stromal score, 
immune score, and ESTIMATE score, while cluster2 was opposite. Mimicking a similar study reached by Zhang et al. [45] who used 
unsupervised clustering analysis to identify distinct N6-methyladenosine (m6A) modification patterns, and GSVA enrichment analysis 
to explore the biological behaviors among these distinct m6A modification patterns in studying potential roles of m6A modification in 
TME cell infiltration, we defined cluster1 as “hot-tumor” with significantly better prognosis, and cluster2 as “cold-tumor” with a worse 
prognosis. It should be pointed out that “hot-tumor” with higher infiltration levels of stromal and immune cells could interfere with 
signal transduction between tumor cells, disrupt tumor cell metabolism, and finally inhibit tumor growth, invasion, and metastasis 
[46–48]. The “cold-tumor” with lower infiltration level was associated with immune tolerance and ignorance, and a lack of activated 
and priming T-cell [49]. Moreover, consistent with the above definitions, we found that 13 of 24 immune cell types have remarkably 
higher infiltration level in the cluster1. Therefore, our results could draw a conclusion that mRNA m5C might play a nonnegligible part 

Fig. 7. GSVA analysis of low- and high-risk groups. GSVA analysis showing the activation status of biological pathways in two groups; the green 
spectrum represents inhibited pathways and the red spectrum represents activated pathways. 
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Fig. 8. Construction of a novel nomogram based on the m5C-related signature and independent clinical variables. (A) Forest plots showed the 
results of univariate and multivariate Cox analyses of m5C-related signature and independent clinical variables; (B) A novel nomogram incorpo-
rating m5C-related signature and three clinical variables for the prediction of the overall survival for STS patients. (C-E) Calibration curves of the 
nomogram at 2-, 4-, and 6-years. STS: soft tissue sarcoma. 
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in shaping individual TME characteristics for STS. Furthermore, in this study, GSVA analysis and function annotation were used to 
investigate the differences of pathways and biological activities between two clusters. The results were consistent with the TME 
characteristics of the corresponding cluster. For example, the results of GO analysis revealed cluster1 upregulated genes were primarily 
enriched in T cell activation, regulation of leukocyte activation, and regulation of lymphocyte activation, which demonstrated the 
characteristics of “hot-tumor”. Thus, mRNA m5C modification could precisely reflect the infiltration of immune cells and related 
biological processes, while investigating immune cell distribution in individuals could provide key insights into immune status, tumor 
progression, and prognosis, as well as therapy [50]. Generally, the above results confirmed the reliability of our distinct m5C modi-
fication clusters for shaping individual TME characteristics of STS. 

Recently, tumor-infiltrating immune cells are considered to be the main immune signatures against tumor resistance and are 
strongly associated with the clinical outcomes of immunotherapies [8,51]. In addition, we gained insight into the role of immune 
checkpoints in predicting responses to immunotherapy and specific immune checkpoint inhibitors. Several clinical trials are currently 
testing immune checkpoint inhibitors in STS, but the process is slow and ineffective due to the diversity of STS [52–54]. Joseph et al. 
[52] explored the efficacy of CTLA-4 with ipilimumab in synovial sarcoma, and most of the patients exhibited radiological evidence of 
disease progression with little therapeutic effect. Ben-Ami et al. [53] performed a similar clinical trial, no STS patients showed a 
positive response to the anti-PD-1 antibody nivolumab. However, patients who received anti-PD-L1 (Durvalumab) and anti-CTLA-4 
(Tremelimumab) therapy for four cycles had a slight improvement and showed a partial response to combined therapy, which indi-
cated anti-tumor effects require the highly coordinated interaction of multiple immune checkpoint inhibitors. Here, we compressively 
analyze the expression of 12 immune checkpoints between two distinct m5C modification clusters. Ten immune checkpoints (PD-1, 
PDL-1, BTLA, CTLA4, LAG3, PDCD1LG2, ICOS, CD27, HAVCR2, and LGALS9) had significantly higher expression level in the cluster1, 
which indicated that patients in cluster1 might be positively responsive to combination immunotherapy with multiple immune 
checkpoint inhibitors and tumor-suppressive status [55], and they might have a better prognosis than before. On the contrary, cluster2, 
defined as “cold-tumor”, only had remarkably higher expression of PVR and VTCN1. Patients in cluster2 might have relatively poor 
results with immune checkpoint inhibitors, but they could still try targeted therapy for these two immune checkpoints. Combined with 
the expression of immune checkpoints in each cluster, it confirmed that mRNA m5C modification patterns could primely affect the 
therapeutic efficacy of immune checkpoint inhibitors, offering a promise for immunotherapy in individual STS patients. 

More importantly, as the m5C modification was of great importance in shaping distinct TME characteristics from the perspective of 
mRNA transcriptome, we defined these DEGs between two clusters as m5C-related genes. An m5C-related signature is based on five 
m5C-related genes (GPC2, RNF182, DUSP9, TMEM176B, and GLIS1). Of these, GLIS1 is the most widely studied gene, which is a novel 
hypoxia-inducible transcription factor and has critical roles in the regulation of multiple physiological processes and diseases [56]. For 
malignant tumors, GLIS1 can activate the WNT5A to promote breast cancer cell motility [57]. In addition, GLIS1 has been implicated in 
the regulation of several other features associated with malignancy, including the risk of relapse and epithelial-mesenchymal transition 
(EMT) [58]. Therefore, targeting upstream signaling pathways that regulate GLIS1 signaling might offer new therapeutic strategies in 
the management of cancer [58]. DUSP9 is a member of the protein tyrosine phosphatases family important for controlling cell growth 
and cell survival in tumorigenesis [59]. DUSP9 showed an anticancer effect in clear cell renal cell carcinoma [60], squamous cell 
carcinoma [61], and hepatocellular carcinoma [62]. The gene appears to play a different role in different tumors. Therefore, we believe 
that further study on the mechanism of DUSP9 action in STS will provide better ideas for the further development of targeted ther-
apeutic drugs. The other three genes, GPC2, RNF182, and TMEM176B, are rarely studied. However, our bioinformatics analysis 
pointed out a promising direction. By performing a further study of effects on STS and even other tumors, we believe that it can 
promote the research of oncology. 

Nevertheless, the present study has some limitations. First, the RNA-seq transcriptome data and corresponding clinical information 
in this study were obtained from the retrospective cohort (TCGA, GTEx, and GEO databases). Second, we identified the vital regulation 
roles of mRNA m5C modification and established an m5C-related signature, which needs further validation in other cohorts with a 
larger number of patients and patients from different races. Finally, this study provided novel strategies for improving the STS patients’ 
response to immunotherapy by changing the m5C modification patterns, but further biological experiments and clinical trials are 
needed to confirm our results. 

5. Conclusion 

In this study, we identified the comprehensive regulation mechanisms of RNA m5C modification on the TME and prognosis of STS, 
and established an m5C-related signature based on the five key DEGs. RNA m5C plays a vital role in shaping individual TME; and 
targeting the five m5C-related genes or specific m5C regulators for changing the m5C modification patterns is the potential strategies to 
improve personalized immunotherapy in the future. 
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