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Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is
through the clustering of functionally related genes at discrete loci throughout the genome. This phe-
nomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene
families whose proteins participate in diverse molecular functions throughout the cell. Members of this
phylum include organisms that serve as model systems and those of interest medically, pharmaceuti-
cally, and for industrial and biotechnological applications. In this review, we discuss the prevalence of
functional clustering through a broad range of organisms within the phylum. Position effects on tran-
scription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures
contributing to the formation and maintenance of clusters are addressed, as are common methods to
identify and characterize clusters.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Transcriptional regulation is essential to ensure cellular and
organismal survival. Cellular cues, both intracellularly initiated
and extracellularly recognized, trigger comprehensive changes to
the transcriptome. Such changes establish cellular identity and
maintain homeostasis during stress [1–6]. Transcriptional changes
can also be much smaller in scope, allowing for fine-tuning expres-
sion of individual genes as needed. At the core of these transcrip-
tional changes is the production of a transient messenger RNA
(mRNA) that serves as a template for protein synthesis via the ribo-
some, commonly referred to as the Central Dogma of Molecular Biol-
ogy [7,8]. While the Central Dogma is a bit of an oversimplification,
it remains a foundation for an understanding of gene expression
[9,10]. Extensive study over the decades has yielded a wealth of
knowledge about the myriad processes that collaborate to regulate
proper gene expression in countless organisms – from the simplest
single celled to staggeringly complex [11–15]. Gene positioning
and arrangement throughout the genome can profoundly influence
transcription, with the cis regulatory ‘logic’ effecting expression
across a locus to silence or activate neighboring genes [16,17].
The influence of genomic arrangement on transcription has yielded
significant insights, with implications for all organisms.

One of the major clades of living organisms is fungi, with esti-
mates that there may be up to 1.5 million species within this
group. There is incredible diversity within the fungal kingdom
and throughout the phylum Ascomycota, with members exhibiting
vast differences in morphology and lifestyles [18,19]. Ascomycetes
form a characteristic sac-like structure called an ascus, that forms
around their meiotic spores and leads to their common name, sac
fungus (Fig. 1) [20]. Representative members are ideal as model
organisms for researchers, providing many insights into eukaryotic
biology – with multiple Nobel prizes awarded to researchers
studying the budding yeast and the fission yeast. It includes fila-
mentous fungi, bread molds, and the causative pathogens for pow-
dery mildew, black rot, and anthracnose [21–25]. There are also a
number of opportunistic human pathogenic Ascomycete organisms,
including several emerging pathogens [26].

Members of this phylum can have significant metabolic flexibil-
ity, which makes them useful for a variety of biotechnological
applications, including the production of fatty alcohols, fatty acids,
biofuels, reduction and degradation of chemicals and solvents [27].
This phylum includes a broad range of well-studied model organ-
isms, plant pathogens, animal pathogens, and a number of organ-
isms of interest to the pharmaceutical and biotechnology
industries (Table 1). Due to the many applications for Ascomycete
fungi in academia, industry, and medicine, a thorough understand-
ing of genomic organization and the potential implications on gene
Fig. 1. Penicillium visualized by light microscopy. At lower power (A, 400�magnificatio
higher magnifications (B, 1000� magnification) the ascus is visible with the individual
Kelley Healey.
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expression is vital. There have been many advances in the identifi-
cation and characterization of Ascomycetes on a genomic and tran-
scriptional level. In this paper, we review these advances, with a
focus on genomic organization and implications upon transcrip-
tional regulation.

2. Position effects due to the proximity of heterochromatin

One of the advantages for the usage of members of Ascomycota
for a wide range of applications is that they are amenable to
genetic manipulations [22,28]. Classical genetic approaches allow
for the characterization of molecular functions and frequently uti-
lize reporter genes, or selectable markers, typically utilizing nutri-
tional or drug resistance for selection. The telomere proximal effect
(TPE) is a phenomenon well characterized in the budding yeast,
Saccharomyces cerevisiae, initially identified during the integration
of the URA3, TRP1, and ADE2 reporter genes. Regardless of genomic
orientation, when integrated adjacent to certain telomeres tran-
scriptional repression of the reporter constructs is observed. The
TPE is distance dependent; as the region between the telomere
and a reporter increased, so does expression of the reporter gene
[29]. Transcriptional repression by the TPE is due, in part, to the
assembly of transcriptionally inactive heterochromatin that forms
at the telomeres and spreads outwards in a continuous fashion
mediated by the silent information regulator (SIR) histone deacety-
lase proteins and the structural maintenance of chromosome
(SMC) protein complexes [30,31].

Further study demonstrated that silencing was not universal at
all native yeast telomeres equally, while there are a number of
telomeric sites where integration of a reporter gene is heavily
silenced there are other sites with little silencing observed [32].
The major indicator of silencing at telomeres appears to be the
proximity of the telomere to an autonomously replicating
sequence contained within one of the telomeric repetitive ele-
ments (the core X element) [32]. A recent study provides the most
definitive understanding of TPE via global characterization of tran-
scription utilizing a highly sensitive RNA sequencing approach.
There is widely seen transcription at many endogenous yeast
telomeres, although at lower absolute levels of transcription com-
pared to non-telomeric regions. Likewise, the SIR proteins play a
role in silencing genes at telomeric regions adjacent to known
SIR protein binding sites. The majority of telomeric genes are un-
effected by the loss of SIR protein function, indicating other mech-
anisms limiting their expression [33].

The overwhelming majority of eukaryotic organisms maintain
heterochromatin at the telomeres. This is true for many Ascomy-
cetes, including Schizosaccharomyces pombe, Aspergillus fumigatus,
and Candida species [34,35]. Heterochromatin is a feature of repet-
n) the ascocarp (a completely closed fruit body called a cleistothecium) is visible. At
ascospores (three of the spores are highlighted with an arrow). Images courtesy of



Table 1
Representative members of the phylum Ascomycota Table 1: Representative members of the phylum Ascomycota.

Species name Note about species

Model Organisms Aspergillus nidulans Filamentous fungus
Neurospora crassa Bread mold
Saccharomyces cerevisiae Budding yeast
Schizzosaccharomyces japonicas Fission yeast
Schizzosaccharomyces pombe Fission yeast
Sordaria macrospora Model of fruiting body development

Pathogenic and Medically Relevent Aspergillus fumigatus Aspergillosis
Aspergillus terreus Potato bilight
Aspergillus viridinutans Aspergillosis
Blastomyces dermatitidis Blastomycosis
Botrytis cinerea Necrotrophic fungus of grapes
Candida albicans Candidiasis
Candida auris Candidiasis, high incidence of drug resistance
Candida glabrata Candidiasis
Candida krusei Oportunistic pathogen
Candida lusitaniae Fungemia
Candida parapsilosis Sepsis
Candida rugosa Emerging human fungal pathogen
Candida tropicalis Candidiasis
Cladophialphora bantianum Cerebral pheohyphomycosis
Claviceps purpurea Ergot fungus tthat infects rye and cereal and forage plants
Coccidioides immitis Valley fever (coccidioidomycosis)
Coccidioides posadasii Valley fever (coccidioidomycosis)
Cordyceps militaris Entomopathogenic fungus
Cryphonectria parasitica Chestnut blight (Stajich et al 2009)
Dothistroma septosporum Red band needle blight
Exophiala dermatitidis Phaeohyphomycosis
Exophiala jeanselmei Skin infections
Fusarium fujikuroi Bakanae disease
Fusarium oxysporum Animal and plant pathogen
Fusarium oxysporum Plant and animal pathogen
Fusarium solanum Onychomycosis, keratomycosis, plant pathogen
Gibberella moniliformis Maize ear and stalk rot
Histoplasma capsulatum Pulmonary mycosis
Lacazia loboi Lobo’s disease
Leptosphaeria maculans Blackleg disease
Ochroconis gallopava Pathogen to fowls, turkeys, poults, and humans
Ophiostoma ulmi Dutch elm disease (Stajich et al 2009)
Paecilomyces variotii Common environmental mold
Paracoccidioides brasiliensis Paracoccidioidomycosis
Paracoccidioides lutzii Paracoccidioidomycosis
Penicillium expansum Psychrophilic blue mold, infects apples
Pneumocystis jiroveci Pneumocystis pneumonia (PCP)
Pseudoallescheria boydii Eumycetoma; maduromycosis; pseudallescheriasis
Ramichloridium musae Banana pathogen
Sporothrix schenckii Sporotrichosis
Talaromyces marneffei Talaromycosis (penicilliosis)

Biotechnological and Pharmaceutical Applications Aureobasidium pullulans Reductase
Candida boidinii Phenylalanine dehydrogenase
Candida cylindracea Lipases (Lip) hydrolyze triglycerides into fatty acids and glycerol
Candida maltosa Resolving D- and L-racemic mixtures of amino acids
Candida sorbophila x-oxidizing yeast
Debaryomyces hansenii Oleaginous yeast; osmotolerant
Geotrichum candidum Dehydrogenase
Kluyveromyces lactis Assimilate lactose and convert it into lactic acid
Kluyveromyces marxianus Aerobic yeast capable of respiro-fermentative metabolism
Komagataella pastoris Glycolate oxidase; Phytase
Ogataea polymorpha Protein expression; use methanol consumption
Pichia pastoris Methanol metabolism
Podospora anserina Pentaketides
Saccharomyces boulardii Treatment of intestinal diseases
Scheffersomyces stipitis Ferment xylose, converting it to ethanol
Schwanniomyces occidentalis Mylolytic enzymes, including a-amylase and glucoamylase
Trichoderma reesei Cellulolytic enzymes (cellulases and hemicellulases)
Trigonopsis variabilis D-amino acid oxidase
Yarrowia lipolytica Specialty lipids; lipolytic enzymes
Zygosaccharomyces rouxii L-Glutaminase

Information from the table compiled and adapted [22,25–28,126].
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itive genomic regions, which include the telomeres, centromeres,
and mating loci [36]. While oftentimes heterochromatin conjures
images of a static, silent structure, it can be dynamic, exhibiting
plasticity under specific growth conditions. S. pombe and C. albicans
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alters heterochromatin at the telomere during elevated tempera-
tures in a SIR dependent manner, indicating that this is dynamic
– undergoing significant changes depending on the growth condi-
tions [37,38]. This could result in the clustering of specific genes at
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specific telomeric regions that require activation under specific
stimuli, such as limiting the co-factor necessary for SIR functioning,
while maintaining low levels of expression under normal growth
conditions [33]. This is particularly relevant for gene members of
the toxin response regulon, which is upregulated in response to
specific cellular toxins to facilitate cell survival. This family of
genes exhibits a non-random distribution throughout the genome,
including a number of members localized to the telomeric regions
in S. cerevisiae [39].

3. Functional clustering of genes within complex biosynthetic
pathways

Many prokaryotic organisms contain a streamlined genome,
with functionally related, co-regulated genes organized in a linear
arrangement under the transcriptional regulation of a single pro-
moter region. This organization, called an operon, represents an
efficient mechanism to balance production of multiple compo-
nents within a metabolic process, playing a critical role in gene
expression and organismal survival [40–43]. Operon-like gene
clusters are present in at least one eukaryote, although the canon-
ical operon structure is largely absent in eukaryotes on the whole
[44].

One characteristic feature of eukaryotic chromosomes is that
they exhibit domains, or neighborhoods, of correlated gene expres-
sion throughout the genome [45–48]. In S. cerevisiae, there is a
broad incidence of locally correlated gene expression, which is dis-
tance dependent (the closer any two genes are located the higher
their average transcriptional correlation throughout the genome)
[49]. This, coupled with the fact that many functionally related
genes cluster together non-randomly across the genome, supports
the hypothesis that functional clustering represents fundamental
layer of transcriptional regulation for many of these genes [39,45].

Approximately 25% of functionally related gene families are
organized into such clusters, and this arrangement increases the
transcriptional similarity (as quantified by the Pearson’s correla-
tion coefficient) of these clusters compared to the non-clustered
members within the same co-regulated gene family [39]. This phe-
nomenon is not unique to S. cerevisiae – clustering of gene families
occurs throughout this phylum for gene families participating in a
variety of different molecular processes. In this section, we discuss
the types and the incidence of these clusters identified in and
observed across Ascomycetes species.

3.1. Secondary metabolite gene clusters

Fungi produce a number of bioactive compounds collectively
called secondary metabolites (SMs), molecules that are not
required during normal growth. These molecules typically confer
a survival advantage exhibiting properties that are antibiotic,
anti-proliferative, and catabolic [50]. Many different Ascomycetes
produce SMs that are mycotoxins, phytotoxins, and compounds
that enhance virulence and pathogenesis [51,52]. The production
of SMs by pathogenic fungi can facilitate fungal cooption of a host’s
cells, triggering apoptosis and the absorption of host nutrients [52].
Due to the bioactive effects of many SMs, these molecules are of
broad interest pharmaceutically and medically for their potentially
therapeutic effects [53,54].

3.1.1. Pathogenic toxins and defense
Aspergillus species are non-specific pathogens that infect plants,

animals, insects, and immunocompromised people. They cause dis-
eases that cause significant economic impacts in the agricultural
industry and produce the potent carcinogen aflatoxin [55]. In A.
nidulans the pathway for production of sterigmatocystin, a highly
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toxic metabolite and a precursor to the aflatoxins, is located as a
23-gene cluster that spans a 54 kilobase genomic region. In A. fumi-
gatus the six genes which are necessary conidial pigment biosyn-
thesis – known to increase the virulence in this species – form a
cluster spanning 19 kb (Fig. 2A) [56]. The biosynthetic pathway
for the synthesis of the meroterpenoids austinol and dehydroausti-
nol in A. nidulans are found as a split cluster of four and 10-genes
[57].

Gliotoxin is an ETP (epipolythiodioxopiperazine)-type fungal
toxin produced by A. fumigatus that controls the immune response
and induces apoptosis in specific cell types [58]. The biosynthesis
of gliotoxin arises from a 16 gene cluster – which includes the syn-
thetic enzymes and the proteins to detoxify and protect A. fugima-
tus from the effects of gliotoxin [59,60]. This ETP cluster is
conserved in many Aspergillus lineages. Although there are differ-
ences in the clusters between species, this cluster was most likely
the result of an ancestral relationship. The current model is that
following assembly of this gene cluster they diverged and diversi-
fied during the course of evolution of Ascomycetes [61].

The clustering of functionally related genes across the genome
is widespread within this phylum for genes that are necessary
for virulence. The fungal pine pathogen, Dothistroma septosporum,
produces the potent phytotoxin dothistromin – which is chemi-
cally similar to aflatoxin. Biosynthesis of dothistromin requires
19 genes, found in six distinct clusters along the same chromosome
[62]. This clustering appears to be the result of a dispersal of an
ancestral cluster that exhibited a tighter clustering organizational
relationship [62]. Gibberella moniliformis, a plant pathogen that
causes ‘bakanae’ disease in rice, contains a cluster of 18 putative
genes spanning a 75 kB region for the production of the toxin
fumonisin [63].

The rye and grass pathogen, Claviceps purpurea, produces ergot
alkaloids – potent bioactive mycotoxins – from a four-gene cluster
[64]. The antibiotic viriditoxin exhibits anti-proliferative effects in
bacteria (via interactions with FtsZ during division) and in cancer
cells [65,66]. This toxin is produced in Paecilomyces variotii and
Aspergillus viridinutans via a nine- and eight- gene cluster respec-
tively [67]. Penicillium expansum is a blue mold that causes apple
decay and produces the cytotoxic SM patulin, which can be
immunosuppressive and carcinogenic [68]. This biosynthetic path-
way is encoded by a 15-gene cluster that includes the biosynthetic
enzymes and detoxification proteins [69]. Aspergillus terreus has a
gene cluster for lovastatin biosynthesis, which is used medically
to treat high cholesterol and triglyceride levels in patients [70].
Bikaverin is a reddish pigment produced by Fusarium fungi with
reported antibiotic and antitumoral properties. This molecule
depends, in part, on a six-gene cluster as seen in Fusarium fujikuroi,
where the genes for biosynthesis, regulation, and transport are
found in a contiguous stretch [71].

Horizontal gene transfer (HGT) refers to the passage of genes
between organisms by means other than parent to offspring trans-
mission. While HGT is quite frequent in prokaryotic organisms, it is
significantly less common in eukaryotic organisms. The production
of toxins confers a growth and a survival advantage, making SM
pathways excellent candidates for HGT in eukaryotes. The 23-
gene cluster necessary for sterigmatocystin production in A. nidu-
lans, was adopted by the filamentous fungus, Podospora anserine,
via horizontal gene transfer from Aspergillus [72]. Likewise, the
biosynthetic clusters for gliotoxin production were acquired by
horizontal gene transfer in several species [61]. Interestingly, five
of the clustered genes involved in the synthesis of bikaverin in
Fusarium fungi are identified in the distantly related Botrytis
cinerea. Although the regulatory genes maintained their function-
ality, the others did not. This presents an example of horizontal
gene transfer of the entire cluster and suggests this mechanism



Fig. 2. Genomic arrangement of representative functional clustered biosynthetic genes. (A) The six-gene cluster in A. fumigatus for conidial pigment synthesis, (B) the
three-gene cluster in A. nidulans for biotin synthesis, and (C) the four-gene supercluster in C. militaris. Genomic loci are to approximate scale and each gene is connected to the
enzyme that it produces. Data is a compilation from [56,84,95]
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might contribute to the incorporation of novel regulators in addi-
tion to metabolic pathways [73].

3.1.2. Detoxification clusters
Arsenic is a naturally occurring element found in a variety of

compounds, many of which can be toxic. In budding yeast, S. cere-
visiae, the three genes that confer resistance to arsenic containing
compounds, ARR1, ARR2, and ARR3, are clustered together with a
4.2 kilobase region on chromosome XVI [74]. The expression of
these genes results in the production of a basic helix-turn-helix
transcription factor, arsenate reductase, and a metalloid-proton
antiporter that collaborate to protect the cell from the toxin. Fusar-
ium oxysporum contains a two-gene cluster that allows for the
detoxification of cyanate (CNO–), a defense compound that is pro-
duced by a wide range of organisms that inhibits oxidative phos-
phorylation through the interference with cytochrome C function
[75,76].

In addition to protection from exogenous toxins, there is an
inherent risk to produce SMs that are nonspecific toxins. A form
of protection for the host cell can involve a gene (or genes) that
offers protection from the toxin, termed the ‘resistance hypothe-
sis’. This can include efflux pumps for export and modification or
detoxification enzymes [77]. Leptosphaeria maculans contains a sir-
odesmin biosynthesis gene cluster, which is a nonspecific myco-
toxin. This gene cluster is predicted to contain 18 genes,
including several genes that code for P450 cytochrome proteins
that serve to detoxify this compound [78]. The necrotrophic fun-
gus, Botrytis cinerea, contains the five-gene cluster for the synthesis
of the phytotoxin sequesterterpine and several members of the
p450 monooxygenase gene family [79]. It also produces the plant
hormone abscisic acid (ABA), coded by a cluster of four genes that
include two members of the p450 monooxygenase gene family
[80].
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3.2. Primary metabolite gene clusters

Primary metabolite (PM) biosynthetic genes are those whose
products participate in basic metabolic processes that are wide-
spread in many organisms, whereas SMs biosynthetic pathways
occur in a limited number of organisms. One of the best character-
ized functional clustering of a gene family are those of the galac-
tose metabolism genes, which have been extensively
characterized in S. cerevisiae. Three of the genes are co-localized
together on chromosome II: GAL7-GAL10-GAL1 which encode the
enzymes galactose-1-phosphate uridyl transferase, UDP-glucose-
4-epimerase, and galactokinase, respectively [81]. Clustering of
the galactose metabolism genes in the Saccharomycotina and Can-
dida ancestors, with the S. pombe and S. japonicas acquiring the
cluster via HGT from a common ancestor from the Candida cluster
[82].

Proline catabolism depends on the activity of a permease, an
oxidase, and a P5C (pyrroline-5-carboxylate) dehydrogenase to
produce glutamate. In A. nidulans, proline metabolism is dependent
on a four-gene cluster not conserved in S. cerevisiae. The biosynthe-
sis of biotin is dependent on a three-gene cluster (Fig. 2B) [83–85].
Nicotinate metabolism is the result of a six-gene cluster that occurs
over a 14.4kB region along chromosome VI in A. nidulans [86]. The
utilization of alcohol as a carbon source depends on a five-gene
cluster found on chromosome VII [87]. Interestingly, there are
two additional genes seen in this cluster when compared to the
cluster as seen in A. fumigatus, representing a species specific
expansion of this cluster [87].

Pichia stipites contains the genes to catabolize the sugar L-
rhamnose, of which four of the five genes are clustered [88]. There
at least partial conservation of this grouping in members of the
subphyla Pezizomycotina and Saccharomycotina [88]. Sulfate assim-
ilation depends on the function of an ATP-sulfurase and PAPS (3-
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phosphoadenoine-50phosphosulfate) reductase, which are found as
a gene pair in A. terreus [89].

C. albicans catabolize phenolic compounds into acetyl coA via
the 3-oxoadipate pathway. The genes involved in this are localized
into two distinct clusters and are conserved in the Candida and
‘CTG’ lineages (species that translate CUG as serine), although with
significant evolutionary divergence [90]. The three genes responsi-
ble for GlcNAc metabolism into fructose-6-phosphate are found
clustered in C. albicans. This arrangement is conserved in Tricho-
derma reesei, along with the transcription factor, RON1 that regu-
lates expression of the cluster [91].

In the case of PMs, there is an advantage to the clustering of
genes; however, it is not a ubiquitous phenomenon. The produc-
tion of SMs demonstrate an advantage to the maintenance of clus-
ters to maintain integrity of the product and to deal with the
potential ramifications of toxicity. This selection does not appear
to be the case for PMs which exhibit more variation between
species.
3.3. Superclusters

The descriptor of superclusters refers to the functional cluster-
ing of genes that code for the production of multiple SMs or PMs
that have a complex relationship. COR (cordycepin, or
30-deoxyadenosine) is produced by Cordyceps militaris from a
four-gene cluster that also includes the enzyme to produce PTN
(pentostatin, or 20-deoxycoformycin), an inhibitor of adenosine
deaminases (Fig. 2C). Both of these are bioactive molecules –
COR has antibiotic and anti-inflammatory properties and PTN has
chemotherapeutic effects [92,93]. Interestingly, PTN production
prevents the deamination of COR to 30-deoxyinosine by endoge-
nous enzymes in C. militaris [94]. COR and PTN biosynthesis is
mediated by a single gene cluster and PTN prevents COR deamina-
tion, potentially through enzyme inhibition of endogenous adeno-
sine deaminases present in C. militaris. Another example of a
supercluster is seen in A. fumigatus, where the genes for the pro-
duction of fumagillin and pseurotin are localized to the subtelom-
eric region of chromosome VIII. There are fifteen genes localized to
this cluster, presenting a complex intertwined relationship for
these two seemingly unrelated chemicals [95]. This genomic
arrangement is conserved, albeit with significant rearrangements
in related species [95].
Fig. 3. Representative clustering arrangements observed in S. cerevisiae at three
RRB paired loci. (A) The GCD10-NOP2 locus, (B) the RRP15-NOC4 locus, and (C) the
RPF1-GAR1 locus are shown relative to the PAC and RRPE cis- regulatory promoter
motifs shown in purple and red, respectively. All loci are to approximate scale,
although the relative size of the promoter motifs has been exaggerated to highlight
their location and arrangement. Image is . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
adapted from [97]
3.4. Regulons

While operons are primarily a prokaryotic phenomenon,
eukaryotic organisms contain regulons; functionally related gene
families that are co-regulated and spread throughout the genome.
Canonical examples include the genes involved with the biogenesis
of the ribosome – both the ribosomal protein (RP) gene family and
the rRNA and ribosome biosynthesis (RRB, or Ribi) gene family –
are found clustered together throughout the genome in S. cerevisiae
[96]. This distribution is non-random and highly unlikely to occur
by chance [96,97]. This distribution is not limited to budding yeast,
the clustering of both gene families is conserved in both C. albicans,
and the distantly related S. pombe. The identity of the individual
paired genes differed among species, however the absolute num-
bers of clustered genes (e.g. the overall number of pairings that
exist) is similar [96,98]. Systematic analysis revealed that approx-
imately 25% of all functionally related gene families exhibit a non-
random genomic distribution as clustered pairings in S. cerevisiae.
This genomic distribution results in a tighter transcriptional
response during cellular changes when compared to the singleton
(non-clustered) members within the same family [39].
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4. Transcriptional co-regulation within a neighborhood may
drive functional clustering

In addition to the repressive effects that can occur based on
proximity to heterochromatic regions, certain genomic regions
are more susceptible to transcriptional disruption during the
course of genomic manipulations. The advent of genomic libraries
allows for high throughput genetic screening in many organisms,
and a wealth of resources exist for S. cerevisiae. Genetic manipula-
tion alters expression of genes surrounding the site of manipula-
tion at 7–15% of targeted regions. This led to the misannotation
of over nine-thousand genetic interactions in systematic screens
[99,100]. Furthermore, genomic integration sites are responsible
for 13-fold variation in protein levels [101]. The disruption of gene
expression via the integration of highly expressed reporters may
lead to this phenomena through transcriptional interference and
repression of the adjacent gene(s) [102,103].

Aside from transcriptional interference, there is evidence that
the non-random genomic distribution of functionally related genes
is essential to their proper transcriptional regulation via shared
promoter elements. Using a RRB gene pair as a test, functional dis-
section of the MPP10-MRX12 pairing identified both genes share a
common promoter region. What is notable about this pairing is
that the genes are oriented in a convergent manner (? ), mean-
ing that the canonical promoter elements, termed PAC and RRPE,
exerts influence across a 4.0kB genomic region [104]. Both pro-
moter elements are localized upstream of MPP10, there are no
identifiable motifs in the promoter region of MRX12, and their
mutation uncouples transcription of this pair from the rest of the
regulon. Transcription of the pair is disrupted by their separation,
and proper expression depends on chromatin remodeling and tran-
scription factor binding to the promoter of MPP10 [105]. This phe-
nomenon is termed ‘adjacent gene co-regulation’ (AGcoR).

There are several conformations for functionally related gene
clusters, including a divergent orientation (Fig. 3A). This confirma-
tion results in cis regulatory elements between the pair of genes,
where it can act as a bidirectional promoter, which is quite com-
mon in yeast [106]. Much less common are the tandem (? ?)
and convergent orientations (Fig. 3B and C). In these arrangements



Fig. 4. Functionally clustered genes localize to genomic loci that are more conducive to regulation at a distance. The pairwise Spearman’s correlation coefficient was
determined for the nitrogen metabolism, ribosomal protein, and toxin response genes in S. cerevisiae as described [108]. SCC versus genomic distance is plotted for (A) the
non-clustered, singleton members of each set and (B) the clustered members of each set and the data was fit to a logarithmic decay. For clarity and ease of comparison, the
decay curves are overlaid in (C).
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co-expression and transcriptional regulation must occur across a
larger distance – which is not as common in budding yeast [107].
Interestingly, the convergent gene pair RRP15-NOC4 have the PAC
and RRPE elements localized upstream of one member of the pair,
as in the case with MPP10-MRX12. The pairing RPF1-GAR1 have the
two elements split, with each gene containing either the PAC or the
RRPE promoter motif. Though not functionally dissected, it would
be quite interesting to observe the transcriptional regulation across
a broad genomic distance once it is completed.

Transcriptional regulation at a distance depends, in part, on
alterations to the chromatin underlying a genomic neighborhood
extending across a broad region [108]. The constraints that these
could impose would result in certain portions of the genome being
more permissive to local influencing regulators. This is a particu-
larly attractive model based on the diverse nature of gene families
that are clustered and do not necessarily share the same promoter
motifs. In support of this model, the ribosomal proteins, the nitro-
gen metabolism, and the toxin response gene families, cluster into
genomic regions that are more susceptible to transcription at a dis-
tance during induction of the stress response [108]. Data was
extracted and the pairwise Spearman’s correlation coefficient
was plotted as a function of genomic distance (between the tran-
scription start sites for each gene) for every member of each family.
The members of each family were divided into plots for the single-
ton members (Fig. 4A) and the clustered members (Fig. 4B). Both
plots reveal a positive correlation in expression regardless of geno-
mic confirmation across the stress response. These data fit a loga-
rithmic decay curve, which was overlaid as a separate plot
(Fig. 4C). The transcriptional similarity is greater and spreads
across a longer genomic distance in the clustered gene members
– indicating that regardless of function, clusters are localizing to
transcriptionally permissive regions of the genome (at least for
these gene families). This would potentially explain how there
are similar numbers of clusters within the RP and RRB gene fami-
lies throughout Ascomycota, though the identities of the pairings
differ greatly [96].
5. Computational approaches to identify and characterize
clusters

The identification and characterization of co-regulated func-
tional clusters as described throughout this work is currently an
active area of research. This primarily involves two interrelated
components – the first is the identification of co-expressed genes
and the second is the characterization of the co-localization of
two genes to the same genomic locus. In this section, we describe
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several tools employed to identify correlated expression from gene
expression datasets.

5.1. Identification of functional clustering relationships using
Euclidean distance from gene expression datasets

Identification of the complete membership of co-regulated gene
families is a fundamental challenge for researchers, but can yield
rewarding applications. One approach that successfully identified
the membership of the ribosome biogenesis regulon is through
the utilization of the function daisy from the S library [109].
Through the analysis of the budding yeast stress-response datasets,
the Euclidean distance for all budding yeast genes (from the com-
posite average gene expression response of the RRB gene family)
was determined. This resulted in the expansion of the gene family
to 188 members – many of which were clustered throughout the
genome and had yet to be annotated [97]. The metric utilized is
defined as:

dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼0
ðxik� xjkÞ2

vuut

where xik and xjk denote the expression levels of genes i and j at
time point k [97]. This approach represents a straightforward
method to mine gene expression data when the transcriptional
behavior of a gene family is known beforehand.

5.2. Pearson’s correlation coefficient analysis of gene expression data

The transcriptional similarity between two genes can be calcu-
lated by the Pearson’s correlation coefficient (PCC). This approach
is straightforward and represents a standard analysis that can be
applied to gene expression data to identify linear relationships
among genes, yet powerful enough determine correlated networks
and similarities [39]. To calculate the PCC between two genes, X
and Y, across a series of N conditions:

SðX;YÞ ¼ 1
N

XN
i¼1

Xi� Xoffset
UX

� �
Yi� Yoffset

UY

� �

where:

UG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Gi� Goffsetð Þ2
N

vuut

where Goffset is set to the reference state in each data set.
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5.3. Spearman’s correlation coefficient analysis of genomic
neighborhoods

The Spearman’s correlation coefficient (SCC) is similar to the
PCC, although without the magnitude component utilized in the
PCC. The use of the SCC is ideal for characterizing gene expression
throughout a broad region and uncovering more subtle transcrip-
tional effects within a genomic locus or neighborhood [49]. The
SCC is computed utilizing the formula:

q ¼ covðg1; g2Þ
rg1rg2

where g1 and g2 are the corresponding genes for comparison, cov is
their covariance, andr is the standard deviation of expression. Such
analysis can also give an accurate representation of the transcrip-
tional effects that ripple outward as the result of transcriptional
activation and that may be indirect as a function of proximity
[16,49]

5.4. The multivariate copula model for analysis of gene expression data

An addition to the computational toolkit that allows for mod-
elling the directional dependence of two genes is through the
application of a multivariate copula model (MCM) [110]. This rep-
resents a powerful computational approach that can help to con-
struct the gene interaction networks and identify co-regulated
gene families. This approach, when applied to gene expression
datasets, allows for the reconstruction of regulatory relationships
even when the data are non-linear [111]. The MCM is an enhance-
ment over the use of the Pearson’s and Spearman’s correlation
coefficients that can allow of the characterization of complex net-
works and relationships – as evidenced by the identification of net-
work of chromosomal maintenance and cell-cycle regulating genes
[112].

5.5. Determining the statistical significance of genomic arrangement
through the with a hypergeometric distribution

Characterization of functional clustering observed in co-
expressed gene families has been primarily done via manual cura-
tion. While this can be laborious at time, the systematic nomencla-
ture adopted by many organisms allow for rapid searching and
querying for identification of clusters. Once the genomic distribu-
tion of a gene set has been characterized, the probability of this
distribution can be calculated. The statistical significance for the
genomic distribution of a functionally related gene family is deter-
mined by calculating the binomial probability for the arrangement.
The chance probability that there would be j adjacent genes within
a regulon of size M genes is:

1�
Xj

k¼0

M!

k! M � kð Þ!
� �

Pk 1� Pð ÞM�k
� �

where N is the total number of genes present within S. cerevisiae
(total number of genes after deduction of dubious open reading
frames).

6. Summary and outlook

The physical linkage of genes into functional clusters through-
out the genome can buffer the effects of stochastic noise in gene
expression. Even in isogenic, clonal populations of cells there can
be considerable variation in the levels of expression from similar
genetic constructs [113,114]. One model for selective pressures
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that favor clustering is that this arrangement would minimize
the effects of stochastic noise. This is advantageous when dealing
with biological pathways that produce potentially toxic intermedi-
ates, as seen with the galactose metabolism and the tyrosine
biosynthetic pathways. The clustering of the genes within those
pathways can limit variations in the levels of component enzymes
– minimizing the risk of toxin buildup [115]. The risk of toxin pro-
duction is significant, when the GAL genes are not clustered in S.
cerevisiae there is significantly higher levels of the toxic
galactose-1-phosphate and reduced cell viability [116]. Gene link-
age via functional clustering would also minimize copy number
variations that would occur during DNA replication, synchronizing
the timing together.

A clustering arrangement would also be advantageous when
dealing the production of large macromolecular complexes where
stoichiometric levels of proteins are necessary. Some of these com-
plexes, such as the ribosome, consume significant energetic
reserves [117]. Transcription of the component genes to balance
the production and abundance of mRNA as needed, allocates the
limited cellular resources to minimize waste [118]. In addition to
efficient energetic expenditures, the unbalanced production of
the components to produce a ribosome results in orphan ribosomal
proteins (RPs). The presence of these extra-ribosomal RPs perturbs
cellular proteostasis, activates the expression of the heat shock
activated transcription factor, HSF1, and reduces cellular fitness
[119,120].

There are thousands of species in the fungal kingdom – and
in the phylum Ascomycota – yet to be discovered and are still
being characterized. There will undoubtedly be many novel
SMs identified. Characterization of biosynthetic gene clusters
that produce these SMs will provide valuable insight to the tar-
get and mechanisms of these SMs, and the defense and protec-
tive genes present to ensure secondary metabolites do not harm
the host. [121]. This could offer therapeutic targets for emerging
pathogens, provide genetic modifications for the protection of
food crops, and offer novel pathways for industrial and pharma-
ceutical biosynthesis. The farther the levels of transcription
deviate from the optimal expression level for a gene, the more
advantageous the tolerance for transcriptional noise [122]. This
is particularly germane for researchers modifying organisms to
recreate biosynthetic pathways in organisms that are easier to
cultivate, including S. cerevisiae. The site of manipulation and
modification should be chosen carefully in order to maximize
organismal fitness, biosynthetic output, and metabolite yield
[123].

The functional clustering of co-regulated genes – and the effects
of positional expression – are not limited to Ascomycetes or to
fungi. It has long been known that the effects of heterochromatin,
as in the TPE, are conserved in more complex eukaryotic organ-
isms, including humans [124]. There is conservation of the molec-
ular mechanisms as well [125]. In addition to these repressive
effects, there is a global correlation between proximity of two
genes and transcriptional similarity [49]. Transcriptional activation
of a gene can alter transcription across genomic ‘neighborhoods’,
activating expression of the neighboring genes across a large dis-
tance [16]. Comprehensive analysis and further elucidation of the
mechanisms underlying this phenomena are essential to fully
understanding the relationship between the clustering of related
genes and co-regulation – and a systems level understanding of
transcription within the cell.
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