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Abstract: The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched
in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several
partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and
mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact
of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed
impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25

larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor
response. No deficit was observed in acoustic startle response. A critical role of S1R was shown
in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein
response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related
effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally,
S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked
and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new
zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It
will be a useful tool to further analyze the physiopathological roles of S1R.

Keywords: sigma-1 receptor; phenotyping; zebrafish; ER stress; mitochondria bioenergetics

1. Introduction

The σ1 receptor (S1R) is a transmembrane protein (25 kDa) of the endoplasmic reticu-
lum (ER), particularly enriched at the mitochondria-associated ER membrane (MAM) [1,2].
In physiological conditions, its primary function is to act as a signal modulator that chap-
erones different partner proteins including inositol 1,4,5-trisphosphate receptor (IP3R),
glucose-regulated protein (GRP-78; BiP), or inositol-requiring enzyme 1 (IRE1), among
others [1,3–5], leading to a modulation of several cellular responses and signaling path-
ways [6]. In cellular stress conditions, S1R dissociates from BiP, modulates cellular Ca2+

homeostasis from ER to mitochondria through different mechanisms, impacting a variety of
intracellular signal transduction systems [7–9]. Interestingly, S1R is expressed in different
tissues such as the central nervous system (hippocampus, frontal cortex and olfactory bulb),
heart, lungs, and kidneys, as well as endocrine, immune and reproductive tissues [10–12].

S1R activity can be triggered by small molecules acting as S1R agonists. These
molecules have shown therapeutic effects, which were reported to decrease pathological
phenotypes in neurodegenerative disorders (for reviews, see [13,14]) including Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis
(ALS) [15–17]. The curative effects were also measured in other diseases such as cardiac dis-
order [18,19], chronic pain [20,21], depression [22–24], addiction [25,26] and cancer [11,27].
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In addition, genetic alterations of the SIGMAR1 gene have been associated with se-
vere neurodegenerative disorders. Several truncations/deletions or point mutations in
SIGMAR1 generated distal hereditary motor neuropathy [28,29], while juvenile cases of
ALS were associated with a missense mutation (c.304G>C, p.E102Q) and a frameshift
mutation (c.283dupC, p.L95fs) in the SIGMAR1 gene sequence [30,31]. Moreover, in mouse
models, the absence of S1R induced mild developmental damages. Indeed, S1R knockout
(KO) mouse models presented a loss of retinal cells particularly in the ganglion cell layer,
axonal degeneration of the optic nerve head, an abnormal electroretinogram, decreased
concentration of mature brain-derived neurotrophic factor (BDNF), alterations in motor re-
sponse, alterations in hippocampal cells, abnormal heart-brain axis responses, basal ganglia
damages, progressive systolic cardiac dysfunction, oxidative stress in the liver, increased
somatosensitivity, muscle and motoneuron axons strength decrease at the neuromuscular
junction, alteration of BDNF retrograde transport velocity in motoneurons, cognitive and
psychiatric decrements, and increased cell death [32]. Collectively, these data strengthen
the importance of S1R in brain development and in the etiology of neurodegenerative
disorders. This also fosters the importance of developing complementary animal models
that will allow screening small molecules activating (such as PRE-084, ANAVEX2-73, Pri-
dopidine, Cutamesine) or inactivating (such as NE-100, S1RA) S1R and also to help better
understand its in vivo physiopathological role in many of these disorders.

The zebrafish has proven an efficient animal model for research on human diseases,
particularly for neurological and neurodegenerative disorders [33–36]. The zebrafish
presents numerous valuable advantages for pharmacological and toxicological research,
including the fact that 70% of human protein-coding genes are linked to genes found in fish
and 84% of genes known to be associated with human disease have homologous genes [37],
but also it benefits from simple husbandry and high fecundity, simplicity of generating
offspring, a small size and rapid development [38]. A zebrafish line with inactivated S1R
was recently created, named s1r+25/+25 [39]. We characterized the physiological impacts of
S1R invalidation in s1r+25/+25 zebrafish larvae, and different phenotypic parameters were
measured including neurosensory functions (vision, hearing), locomotion, morphologi-
cal alterations and metabolism. Mutant s1r+25/+25 zebrafish larvae presented a marked
locomotor alteration and, at the physiological level, alterations in ER stress response as
well as abnormal mitochondrial respiration. This study confirmed in a newly developed
S1R KO zebrafish model, the importance of S1R as a MAMs resident protein, importantly
modulating ER-mitochondrial communication.

2. Results

2.1. Characterization of the s1r+25/+25 Mutant Zebrafish Line

S1R was firstly described as a protein with two putative transmembrane domains
and two hydrophobic domains [1,40,41]. Its N-ter and C-ter ends, the latter possessing
chaperone activity, were predicted to be expressed in the ER lumen. Nevertheless, other
groups have suggested a one transmembrane domain with a N-ter luminal and C-ter
cytoplasmic localization [42]. Mavlyutov et al. [43] and Zhemkov et al. [9] proposed a one
transmembrane domain with a N-ter cytosolic and C-ter luminal localization. As of today,
no consensus topology of the protein has been clearly established. The sequence drawn in
red shows the amino acids representing new, erroneous, residues predicted to occur after
the reading frame shift, followed by a premature stop codon in the C-ter region (Figure 1A).
Using CRISPR/Cas9-mediated mutagenesis, Rennekamp et al. [39] generated a zebrafish
line with a 25 bp insertion in exon 2 of the sigmar1 gene, leading to a shift of the reading
frame. The mutation was created just upstream of the gene sequence that encodes the most
conserved part of the S1R protein. PCR confirmed that the s1r mutants had additional
25 bp in the coding region, thus showing a single band of 237 nucleotides compared to
control larvae 212 nucleotides band (Figure 1B). Mutation was predicted to result in loss of
protein function due to the frameshift and the introduction of an early stop codon.
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Disruption of both gene and protein expressions were confirmed by quantitative PCR
and Western blot analyses. First, qPCR analysis showed that larvae carrying the mutation
had a decreased sigmar1 expression level compared to control larvae, confirming that the
mutation induced mRNA decay (Figure 1C). Second, Western blotting (Figure 1D) and its
quantification (Figure 1E) revealed a drastic decrease of S1R expression in s1r+25/+25 fish
compared to controls, validating this zebrafish line as a S1R KO model.
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Figure 1. Characterization of the CRISPR/cas9-induced s1r mutant zebrafish line. (A) Amino acids sequence of the S1R
protein with or without mutation. New inserted amino acids are depicted in red. (B) A targeted fragment was amplified
by PCR from the genomic DNA of adult zebrafish tail and analyzed after migration on agarose gel. (C) Relative sigmar1
mRNA level revealed by qPCR in s1r+25/+25 and s1rWT zebrafish larvae. Expression of sigmar1 was normalized using the
zef1α reference gene. (D) Representative Western blot of whole lysates from wild-type (s1rWT) or homozygous s1r+25/+25

mutant zebrafish. (E) Relative S1R protein level in the whole larvae at 5 dpf, normalized using total protein expression in
the samples (Stain-Free™). Data are shown as the mean ± SEM from n = 12 per group in (C) and n = 4 in (E). * p < 0.05,
*** p < 0.001 vs. s1rWT controls; Man n-Whitney’s test.

Mutant homozygous larvae did not show any overt morphological abnormalities
in terms of body size, eye diameter, ear area and anterior and posterior otoliths (Supple-
mentary Figure S1). They grew and became viable and fertile adults. These observations
incidentally confirmed that no gross morphological alterations would likely compromise
the subsequent behavioral analyses.

2.2. The s1r+25/+25 Larvae Exhibited Increased Locomotor Response

As S1R has been shown to have a role in locomotion [32,44], we first assessed the
impact of S1R invalidation on global locomotor activity of the mutant larvae using the visual
motor response (VMR) assay. Larvae were placed in individual wells of a 96-well plate and
their activity, following sudden changes in light intensity from 100% (ON) to 0% (OFF),
was recorded during the whole experiment (Figure 2A). The distance travelled during
the training phase did not differ between control and mutant fish (Figure 2B). However,
significant increases in locomotion were measured for the s1r+25/+25 larvae during both the
ON and OFF periods (Figure 2C,D).

The optokinetic response (OKR) assay allowed us to directly measure visual acuity
of the larva by immobilizing them in a methylcellulose solution placed at the center of a
cylinder on which black-and-white strips were rotating (Figure 2E). Analysis of the eye
movements showed no difference in the number of saccades between mutant and control
larvae at 5 dpf (Figure 2F). The touch-escape response, measuring a reflex-driven locomotor
response, was also measured (Figure 2G). The distance traveled during 5 s after the tactile
stimulation was similar between mutant and control larvae (Figure 2H). These observations,
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therefore, indicated that S1R KO zebrafish did present locomotor alteration in the VMR
test that is unrelated to visual deficit or spontaneous hyperactivity.
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Figure 2. Behavioral analyses of 5 dpf s1r mutant larvae. (A) Analysis of the distance traveled by the larvae during the
light/dark (intensity 100%/0%) cycle in the VMR test. The activity was measured for 70 min with a training phase of 30 min
in the dark (OFF 0%), then two cycles of light/dark (ON 100%/OFF 0%) of 10 min each. The graph shows the distance
traveled per min for s1rWT and s1r+25/+25 larvae. (B) Relative distance traveled during the training phase [blue dotted lines
in (C), between 21 and 29 min]; (A) during the ON phase [the averaged ON1 and ON2 phases]; (D) during the OFF phase
[the averaged OFF1 and OFF2 phases]. Relative distance was expressed as % of controls. (E) Illustration of the OKR test.
(F) Quantification of the number of saccades performed in 2 min. (G) Illustration of the touch escape test. The larva was
placed in a rail filled with E3 medium, the tail was touched with a tip and the distance was measured. (H) The distance
traveled was measured during 5 s, repeated three times per larva and averaged. Data show mean± SEM from three replicas.
The number of animals is indicated within the columns. * p < 0.05, ** p < 0.01; unpaired t-test.

We performed an immunohistochemical analysis of eye sections from both s1rWT and
s1r+25/+25 larvae and observed no grossly observable nor specific morphological abnor-
malities of ganglion cells (Figure 3A–C), and red and green cones labeled using Zpr-1
antibody (Figure 3D,E). Interestingly, the number of rods, labeled using Rho4d2 antibody,
decreased significantly in s1r+25/+25 larvae compare to controls (Figure 3F,G). The constitu-
tive invalidation of S1R in the s1r+25/+25 zebrafish resulted in an impairment of the retinal
development, especially in rod cells.

Despite a lack of evidence for a role of S1R on auditory mechanisms, a study previously
suggested that the selective S1R agonist cutamesine protected mouse hearing from severe
noise trauma [45]. Consequently, to rule out any potential neurosensorial deficits, we tested
the hearing ability of s1r+25/+25 mutant larvae. Analysis of the quantity of movement of the
larvae in the acoustic startle response (ASR) assay was measured at 5 dpf (Supplementary
Figure S2A). Movement during training and baseline phases (Supplementary Figure S2B,C)
increased significantly in s1r+25/+25 larvae compared to the controls. In a coherent manner
but in a different assay, hyperlocomotion was observed in the ASR assay. However, S1R
invalidation had no impact on quantity of movement after the different stimulations, which
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suggests that the invalidation of S1R did not result in an impairment of ear development
(Supplementary Figure S2D).
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Figure 3. Morphological analysis of the neurons in the zebrafish retina. (A) Quantification of the number of ganglion
cells, (B) quantification of the thickness of the associated layer, and (C) typical micrographs of the retina. Confocal images
were obtained from section from s1rWT and s1r+25/+25 zebrafish retina, showing cell nuclei labeled with 4′,6-diamidino-2-
phenylindole (DAPI, blue). (D) Quantification of photoreceptor cells (red and green cones) labelled with Zpr-1 antibody
and (E) typical micrographs of the cones (green). (F) Quantification of rods labelled with Rho4d2 antibody and (G) typical
micrographs of the rods (red). Abbreviations: GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
Scale bars in (C,E,G) = 30 µm. The number of animals is indicated in the columns. * p < 0.05, *** p < 0.001; unpaired t-test.

2.3. S1R Invalidation Modulated the Expression of ER Stress Genes, in Resting and
Tunicamycin-Induced Pathological Conditions

S1R is a key player in the ER stress response, acting as a modulator for the induction
of ER stress pathways [4,9,46–48]. To investigate if S1R impacts ER stress modulation,
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we analyzed the mRNA expression levels of ER stress factor genes in the basal condition
(Figure 4) and after a tunicamycin challenge (Figure 5A) in the whole zebrafish larvae.
Variations are summarized in Figure 5B.
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In the control condition, the expression levels of the unfolded protein response (UPR)
inducers, bip and hsp90b1, were unaffected in mutant larvae compared to controls. However,
the expression levels of a large number of the UPR primary effectors related to the IRE1
and PERK pathways were consistently down-regulated in mutant larvae compared to
controls. First, ire1 and its secondary effectors, xbp1s and xbp1us, were highly significantly
down-expressed (Figure 4A). Second, perk and its secondary effectors eif2s1 and atf4β
were also significantly down-regulated. Third, atf6 was unchanged and chop mildly but
significantly over-expressed (Figure 4A). At the protein level, Western blot analyses were
done using the few specific antibodies available in zebrafish and showed that the level
of Bip and p-Eif2α/Eif2α were significantly decreased in s1r+25/+25 larvae compared to
controls, while Chop level was unchanged (Figure 4B,C).

These results suggested that S1R invalidation in zebrafish could lead to a deregulation
of the ER stress response as it impacted the expression level of numerous effectors in basal
condition particularly related to the IRE1 and PERK pathways. Tunicamycin, by provoking
the accumulation of unfolded proteins, is a strong ER stress inducer and is commonly
used as a cellular stressor [49]. When s1rWT or s1r+25/+25 larvae were treated at 4 dpf with
2 µg/mL of tunicamycin for 24 h, a strong ER stress was monitored (Figure 5A). The mRNA
levels of the different markers were drastically increased in mutant and control larvae.
First, s1r was moderately but significantly increased after tunicamycin in s1rWT larvae and,
as expected, absent in s1r+25/+25 larvae (Figure 5A). Second, the levels of the UPR inductors
bip and hsp90b1 were highly significantly increased. Third, all three UPR pathways were
also mobilized with significant increases of ire1 and its effectors xbp1s and xbp1us, perk and
its effectors atf4α and atf4β, and atf6 (Figure 5A). Finally, chop level was highly significantly
increased (Figure 5A) as well.

Interestingly, the genotype had a major impact on the ER stress response to tuni-
camycin treatment, with increased over-expression of bip, ire1, xbp1s, xbp1us, atf4β, and
atf6, in s1r+25/+25 larvae as compared to s1rWT larvae (Figure 5A,B). These observations, de-
creased levels of IRE1 and PERK effectors in basal condition and increased over-expression
of not only IRE1 and PERK effectors but also ATF6 in the ER stress condition, suggests that
S1R invalidation altered the UPR response and regulation of ER stress. Interestingly, the
alteration is coherent with a compensatory over-reaction of the pathways, resulting in a
mild impact on Chop level.
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Figure 5. (A) Effect of the Tunicamycin (2 µg/mL, 24 h) challenge on ER stress gene expression levels in s1r+25/+25 zebrafish
larvae at 5 dpf. The selected genes were analyzed using cDNA prepared from whole zebrafish larvae and relative mRNA
expression were expressed as percentage of s1rWT + 0.1% DMSO controls. The fold change from 0.1% DMSO treatment
is indicated. Data are expressed in mean ± SEM of n = 5 determination in each group. * p < 0.05, ** p < 0.01, *** p < 0.001
vs. DMSO treatment; ◦ p < 0.05, ◦◦ p < 0.01, ◦◦◦ p < 0.001 vs. s1rWT line; two-way ANOVA followed by unpaired t-test.
(B) Schematic summary of ER stress pathway alterations observed in basal condition or after tunicamycin treatment in
s1r+25/+25 zebrafish line.

2.4. S1R Invalidation Altered Mitochondrial Bioenergetics

S1R is enriched in MAMs [1] and facilitates Ca2+ flux from the ER to the mitochon-
dria [1,3]. Recent studies have shown that an alteration in the cross-talk between these two
organelles affects the bioenergetics of the cells [46,50–52]. Moreover, S1R activity directly
impacts mitochondrial oxidative respiration [53]. We hypothesized that the absence of S1R
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would disturb the mitochondrial activity in the mutant larvae. We therefore measured the
oxygen consumption rate (OCR) before and after addition of complex inhibitors or decou-
pling agents of the respiratory chain, namely oligomycin, FCCP, antimycin A and rotenone,
and analyzed several parameters of the mitochondrial respiration (Figure 6A). Basal res-
piratory rate, ATP production-related and non-mitochondrial respiration (Figure 6B,C,F)
were significantly decreased in s1r+25/+25 mutant larvae at 5 dpf, compared to control larvae,
while the maximal respiration rate and proton leak remained unchanged (Figure 6D,E).
These results confirmed in the zebrafish line a specific role of S1R on bioenergetics and
particularly ATP production-related mitochondrial oxidative respiration.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW  9  of  20 
 

 

 

Figure 6. Analysis of mitochondrial respiration by the zebrafish larvae at 5 dpf analyzed using the Seahorse XF mito stress 

test. (A) Seahorse diagram depicting profile of oxygen consumption rate (OCR) during the assay. Letters B‐F indicate the 

OCR components detailed in panels B‐F. (B) Basal respiration, (C) ATP production, (D) maximal respiration, (E) proton 

leak, (F) non‐mitochondrial respiration. Data are shown as mean ± SEM from the number of larvae indicated in (B). Ab‐

breviations: Oligom, oligomycin (25 μM); FCCP, carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone (8 μM); Rot/Anti 

A, rotenone + antimycin A (15 μM). * p < 0.05, ** p < 0.01; unpaired t‐test. 

When s1rWT or s1r+25/+25 larvae were treated at 4 dpf with 2 μg/mL of tunicamycin for 

24 h, mitochondrial metabolism was affected (Figure 7A). Basal respiration, ATP produc‐

tion and proton leak were highly decreased in s1rWT (Figure 7B,C,E), showing an impact 

of ER stress on mitochondrial respiration. Non‐mitochondrial respiration was increased 

while maximal respiratory capacity was unchanged by tunicamycin in s1rWT (Figure 7D,F). 

Interestingly,  the ER stressor  failed  to decrease basal  respiration and ATP production‐

related respiration in s1r+25/+25 larvae below the level measured in V‐treated controls (Fig‐

ure  7B,C). Maximal  respiration,  proton  leak  and  non‐mitochondrial  respiration  levels 

were equally affected in s1rWT and s1r+25/+25 lines (Figure 7D–F), showing a S1R‐dependent 

impact of ER stress on mitochondrial energetics.   

Figure 6. Analysis of mitochondrial respiration by the zebrafish larvae at 5 dpf analyzed using the Seahorse XF mito stress
test. (A) Seahorse diagram depicting profile of oxygen consumption rate (OCR) during the assay. Letters (B–F) indicate the
OCR components detailed in panels (B–F). (B) Basal respiration, (C) ATP production, (D) maximal respiration, (E) proton
leak, (F) non-mitochondrial respiration. Data are shown as mean ± SEM from the number of larvae indicated in (B).
Abbreviations: Oligom, oligomycin (25 µM); FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (8 µM); Rot/Anti
A, rotenone + antimycin A (15 µM). * p < 0.05, ** p < 0.01; unpaired t-test.

When s1rWT or s1r+25/+25 larvae were treated at 4 dpf with 2 µg/mL of tunicamycin for
24 h, mitochondrial metabolism was affected (Figure 7A). Basal respiration, ATP production
and proton leak were highly decreased in s1rWT (Figure 7B,C,E), showing an impact of
ER stress on mitochondrial respiration. Non-mitochondrial respiration was increased
while maximal respiratory capacity was unchanged by tunicamycin in s1rWT (Figure 7D,F).
Interestingly, the ER stressor failed to decrease basal respiration and ATP production-
related respiration in s1r+25/+25 larvae below the level measured in V-treated controls
(Figure 7B,C). Maximal respiration, proton leak and non-mitochondrial respiration levels
were equally affected in s1rWT and s1r+25/+25 lines (Figure 7D–F), showing a S1R-dependent
impact of ER stress on mitochondrial energetics.
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5 dpf analyzed using the Seahorse XF mito stress test. (A) Profiles of oxygen consumption rate (OCR) during the assay.
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3. Discussion

In the present study we characterized a novel zebrafish line carrying a mutated
S1R protein. The mutation resulted in the loss of the protein C-terminal tail, known
to be carrying the activity [1]. The s1r+25/+25 zebrafish line is therefore constitutively
devoid of the S1R chaperone activity that allows a pleiotropic modulatory action on
several intracellular pathways and interorganelle dialogs [4,49]. Our first observation was
that the s1r+25/+25 zebrafish developed from the larval to the adult stage with no grossly
observable morphologic or functional defects. Moreover, the fish reproduced well under
homozygous breeding, confirming an absence of major neuroendocrine or physiological
alteration. A similar observation was made in murine KO models. Both the Sigmar1tm1Lmon

mouse line developed by Esteve [44] and the Sigmar1Gt(IRESBetageo)33Lex line developed
by Lexicon [54,55] did not show developmental defects and reproduced normally. The
availability of a S1R KO zebrafish line will be of major use for future research, particularly
since: (i) zebrafish embryos are nearly transparent which allows easy examination of the
development of internal structures; (ii) the model is particularly prone to in vivo imaging
and electrophysiological approaches; and (iii) eggs are fertilized and developed outside
the mother’s body, which makes zebrafish an ideal model organism for studying early
development [56]. Indeed, S1R may play a major yet underexplored role during early
development of many organs, including the brain. For instance, S1R was shown to regulate
the formation of dendritic spines in hippocampal neurons and the knockdown of S1R by
siRNAs provoked a deficit in the formation of dendritic spines [57,58]. Moreover, S1R
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regulates proper tau phosphorylation and axon extension that are primary events required
for neuroplasticity and neurodevelopment [59]. The use of the s1r+25/+25 zebrafish line will
now foster in vivo studies on the developmental role of S1R in an integrated vertebrate
organism.

The behavioral analyses of the s1r+25/+25 larvae first revealed a hyperlocomotor re-
sponse in the VMR test that appeared likely unrelated to visual or other neurosensorial
modification. This phenotype trait is not shared by S1R KO mouse lines, since WT or KO
mice failed to show basal hyperlocomotion compared to WT littermates, particularly when
tested from 8 to 48-weeks of age and in different open-field or maze tests [44,55,56,60].
Locomotor behaviors, including walking in mice or swimming in zebrafish, are generated
by networks of neurons known as central pattern generators located in the spinal cord
of vertebrates. Morphological and physiological considerations on locomotor behaviors
in zebrafish have been recently remarkably reviewed by Berg et al. [61]. In particular, it
appears that central pattern generators involve: (i) motoneurons that activate muscle; (ii) ip-
silateral excitatory interneurons that provide excitatory drive; (iii) inhibitory commissural
interneurons that ensure left-right alternation; and (iv) ipsilateral inhibitory interneurons
that contribute to burst termination [61]. S1R is highly expressed in motoneurons [62],
and S1R activity has been shown to protect motoneurons from insults or neurodegenera-
tion [15,63–65]. Furthermore, S1R is expressed in interneurons [66] and alteration of S1R
activity directly impacts interneurons activity. For instance, in a mouse model of ALS
shown to provoke a loss of S1R in lumbar motoneurons [63], choline acetyltransferase
expression accumulated in the soma of motoneurons with a drastic diminution of efferences
toward Renshaw interneurons [63]. It is therefore not surprising that a constitutive loss of
S1R activity during zebrafish development rapidly led to locomotor alterations in larva.

Interestingly, the observation that the touch-escape response was unaltered in the
s1r+25/+25 larva, as compared to s1rWT control larva, suggested that the hyperlocomotor
response was restricted to the spinal swim neuronal network, but did not affect more
complex integrated networks. This was unexpected, as the touch-escape behavior was
one of the first behavioral responses that allowed monitoring in vivo in zebrafish of the
Ca2+ rise associated with single action potentials in the dendrites, soma and nucleus [67].
A massive activation of the motoneuron pool, and a differential activation of populations
of hindbrain neurons, were elicited by the escape response and, as S1R activity has been
shown to be an important physiological modulator of intracellular Ca2+ mobilization [3],
a behavioral impact could be measured. However, the touch-escape behavior involves
a relay of sensory information to populations of reticulospinal neurons, including the
command-like Mauthner neuron, which in turn excites target neurons in the spinal cord.
This connectivity implements a dynamic behavioral response that transiently interrupts
ongoing swimming, directing the fish away from the threat [61]. Considering the major
ethological importance of the behavior, it is likely that the neuronal network adapted to the
developmental absence of the S1R intracellular modulatory effect in either motoneurons or
interneurons.

Since S1R has been shown to be expressed in RGCs, PRs, RPE cells and surrounding the
soma of cells in the inner nuclear layer [68], we analyzed the effect of the loss of S1R in the
presence of RGCs and PRs. Notably, in s1r+25/+25 larva, a significant decrease of the number
of RGCs and in the size of the rods outer segments was observed. This data confirms the
important role of S1R in retinal physiology. Nevertheless, our VMR experiment failed
to detect any deficit, suggesting that the loss of retinal cells is not sufficient to induce
physiological alteration. In order to determine if lack of S1R leads to retinal deficit, a more
precise investigation measuring ERG [69] in our model would be useful.

S1R activity is crucial at MAMs, where it simultaneously modulates the induction of
ER stress pathways by releasing Bip [1] and chaperoning IRE1 [5], and (ii) mitochondrial
homeostasis, as previously detailed. Koshenov et al. [46] recently provided an elegant
demonstration in human neuroblastoma SH-SY5Y cells that ER stress is a physiological
signal promoting S1R-induced increase in mitochondrial ATP production. The authors
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propose that S1R activity orchestrates Ca2+ leak from the ER to promote mitochondrial
bioenergetics and maintain a balanced metabolism of reactive oxygen species during
early stress event. The latter was induced by a limited 2-h exposure of the cells to Tu-
nicamycin [46]. Indeed, we observed a marked deregulation of ER stress response in
s1r+25/+25 zebrafish line, with very decreased expression of the genes associated with the
IRE1 and PERK pathways, namely, ire1 and perk, but also of their effectors xbp1s/us and
eif2s1/atf4β, respectively. These decreased levels were related to increased responses to
the Tunicamycin challenge. Indeed, exaggerated increases following the stressor treatment
were observed for ire1, xbp1s/us, atf4β and even for atf6, suggesting that the ATF6 pathway
is mobilized to compensate for IRE1 and PERK. S1R activity has repeatedly been shown to
be related to IRE1 and PERK pathways in physiopathological conditions [5,70,71]. These
deregulations are coherent with a major role of S1R in the ER stress response, and more
generally in the regulation between the ER stress response and mitochondrial bioenergetics.
The s1r+25/+25 zebrafish line will, therefore, be a valuable tool for the in vivo validation
of these mechanistical hypotheses, and to better apprehend the crucial role of S1R in
ER-mitochondrial communication as suggested by recent studies [46,53,71]. Finally, we
demonstrated that S1R is able to modulate the expression level of BiP without affecting its
mRNA. This interesting observation suggests that S1R controls the expression level of BiP
at a post-translational level, highlighting a novel mode of regulation of the first orchestrator
of the UPR, BiP. Other experiments are needed to decipher how the lack of S1R leads to the
BiP protein deregulation and its fundamental role in the control of the UPR in basal and
stressed conditions.

Analyses of the mitochondrial oxidative respiration of s1r+25/+25 zebrafish line showed
significant decreases, particularly in basal respiration capacity and in the respiration
linked to the production of ATP. Basal respiration is the respiration used to meet the
endogenous ATP demand of the cell and drive the proton leak pathway. ATP-linked
respiration estimates the respiration that is used to drive mitochondrial ATP synthesis.
The latter is the sum of the ATP utilization, ATP synthesis and substrate supply and
oxidation. By facilitating Ca2+ transfer into the mitochondria, S1R activity contributes to
the proper functioning of the tricarboxylic acid (TCA) cycle through facilitation of pyruvate
dehydrogenase activity. The TCA cycle provides NADH cofactor to the complexes of
the respiratory chain. In turn, S1R activity was shown to facilitate oxidative respiration
in basal physiological conditions in brain cells [47] as well as in cardiac cells [68]. S1R
activity particularly increased complex I activity, which is a NADH-dependent ubiquinone
oxidoreductase, the activity of which is also Ca2+-dependent and directly modulated by
mitochondrial calcium uniporter (MCU) activity [53,70,72]. Therefore, in zebrafish, the
data confirmed that S1R activity is not a requisite to mitochondria physiology but appears
necessary, as S1R invalidation resulted in a −26% decrease in basal respiration and −34%
in the respiration related to the formation of ATP. Induction of ER stress by Tunicamycin
resulted in significant alterations of the different parameters related to oxidative respiration,
as previously observed [46,73,74] that were progressive and observed at shorter exposure
times (2 h, 4 h, data not shown). Interestingly, loss of S1R abolished the decrease of basal
and ATP-linked OCR after Tunicamycin treatment, suggesting that S1R was necessary for
the adaptation of mitochondrial physiology to ER stress. However, how S1R interferes
with the modulation of basal and ATP-linked respiration requires further investigation.
Our data confirmed that S1R activity plays an important role in the physiopathological
regulation of mitochondrial bioenergetics [46,53] and confirmed the potentialities of the
zebrafish model for the in vivo studies of these aspects.

4. Materials and Methods
4.1. Zebrafish and Maintenance

The present study followed the recommendations of the ARRRIVE guidelines [75] and
the European Union Directive 2010/63. The zebrafish s1r+25/+25 line was a gift from Drs Jing-
Ruey Joanna Yeh and Randall T. Peterson (Cardiovascular Research Center, Massachusetts



Int. J. Mol. Sci. 2021, 22, 11049 12 of 19

General Hospital, Charlestown, MA, USA) [39]. Briefly, the fish were generated using
CRISPR-cas9, creating a 25bp insertion into exon 2 of the sigmar1 gene. Adult zebrafish
were bred and maintained under standard conditions in an automated fish tank system
(ZebTEC, Tecniplast, West Chester, PA, USA) at 28 ◦C, pH 7, conductivity around 500 mS
and with a 14 h:10 h light:dark cycle. Eggs were obtained by natural spawning and
maintained in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4,
0.05% methylene blue) at 28 ◦C. Unfertilized embryos were discarded and the water was
changed only the first day. Larvae were euthanized by an extended immersion in an
ice bath for biochemical experiments. Each experimental procedure was carried out in
triplicate and larvae originated from three different crosses.

4.2. Genotyping

For isolated homozygous s1rWT and s1r+25/+25 zebrafish, genomic DNA was extracted
from the tail fins at 2 months of age and the tissue was lysed in 50 mM NaOH at 95 ◦C
for 1 h. A 237 bp region of sigmar1 gene, encompassing the 25 bp insertion, was am-
plified by PCR using GoTaq Green Master Mix (Promega, Madison, WI, USA). The
primers were as follows: sigmar1, 5′-ATAGGTCAGGATCATGAGCAGG-3′ (forward);
5′-TTATGACCTGAATGTCCACCGG-3′ (reverse). The DNA fragments were separated
by electrophoresis on a 3% agarose gel and the genotype analyzed. The control amplicon
should give one band of 237 bp while the mutant should give one band of 212 bp. The
mutation was confirmed by Sanger sequencing.

4.3. Chemical Treatment

To induce ER stress, larvae were incubated at 4 dpf for 24 h with 2 µg/mL of Tuni-
camycin (sc-3606, Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted in 0.1% DMSO.
Control larvae were treated with 0.1% DMSO diluted in E3 medium.

4.4. RT-PCR and Quantitative Real-Time PCR (qPCR)

Total RNA from 20 pooled whole s1rWT or s1r+25/+25 larvae at 5 dpf were extracted
using a Nucleospin® RNA kit (Macherey-Nagel, Hoerdt, France) according to the manufac-
turer’s instructions. Concentration and purity were evaluated using the Agilent RNA 6000
Nano® Kit (Agilent Technologies, Santa Clara, CA, USA). RNA samples (1 µg/µL) were
denatured 5 min at 70 ◦C and reverse transcribed into cDNA, 1 h at 37 ◦C, using M-MLV
reverse transcriptase (Promega). Primer sequences are detailed in the Supplementary Table
S1. Control reactions were performed with sterile water to determine signal background
and DNA contamination. The standard curve of each gene was confirmed to be in a linear
range, while zef1α gene was used as a reference.

4.5. Visual Motor Response (VMR) Assay

The VMR assay quantifies the locomotor activity of the zebrafish larvae to light
intensity changes. The protocol was previously described (Crouzier et al., 2021). In brief,
5 dpf larvae were transferred in a 96-well plate (#7701-1651, Whatman, Maidstone, UK)
with 300 µL E3 medium and placed in a Zebrabox® (ViewPoint, Lissieu, France). The
locomotor behavior was monitored using an automated video-tracking device equipped
with an infra-red (IR) camera under IR light illumination (Zebralab®, Viewpoint). The light
protocol was as follow: 30 min of acclimatization in the dark (0% light intensity), then two
cycles of 10-min duration light ON and 10-min duration light OFF periods. The brightness
changes were immediate (<<1 s). The activity was measured in mm/s. For each larva, the
mean (OFF-ON) values were calculated to account for inter and intragroup variability in
locomotor response.

4.6. Acoustic Startle Response (ASR) Assay

The ASR assay quantifies the locomotor activity of zebrafish larvae to a sound stimulus.
The ASR test was also performed in the ZebraBox®. Experimental conditions were similar
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as those used for the VMR. The protocol consisted first in acclimating larvae during 30 min
in silence (35 dB ambient), followed by a 1-s stimulation with a white noise at 90 dB
repeated three times with an intertrial time interval of 5 min. The amount of movement
was measured for each larva. To normalize the values, baseline activity, i.e., the activity
recorded during 2 min before each stimulation, was subtracted from the post stimulation
activity levels.

4.7. Optokinetic Response (OKR) Assay

The zebrafish larvae were immersed per group of four in a Petri dish (35 mm diameter)
containing 2.5% methylcellulose (#9004-65-3, Sigma Aldrich, St. Louis, MO, USA). Larvae
were placed dorsal up and in a X shape, to avoid touching and interfering with each other.
All measurements were done between 2:00 and 6:00 p.m. The room temperature was 28 ◦C
and the light was off. Visual system performance of larval zebrafish was assessed using a
videotracking device (VisioBox®, ViewPoint). Forty-six mm wide black-and-white strips
were projected at 2 rpm for 1 min clockwise and then 1 min counterclockwise. Eye saccades
were recorded for 2 min at 25 frames/s using a FL3-U3-32S2M 1/2.8-inch monochrome IR
camera (FLEA3, FLIR). The number of eye saccades was recorded (PHIVisualize software)
and data expressed as number of saccades per 2 min.

4.8. Touch Response

Larvae were individually placed at one extremity of a rail (18 cm × 0.4 cm) filled with
200 µL of E3 medium. The room temperature was 28 ◦C and the light was on. The larva
tail was briefly touched with a tip and the escape distance measured during 5 s. The same
procedure was repeated three times with an intertrial time interval of 1 min to reduce stress.
Data was expressed as the averaged distance swam per larva.

4.9. Morphological Analyses

After prolonged exposure to ice, larvae were completely immobilized in a 2.5% methyl-
cellulose solution contained in a petri dish. Larvae size and eye area were measured with
ImageJ software v1.46 (NIH, Bethesda, MD, USA) on an image taken with a stereo mi-
croscope (Olympus, Tokyo, Japan), at ×3.2 magnification. Ear and otoliths area were
measured at ×6.3 magnification.

4.10. Immunohistochemistry

Whole larvae were fixed in paraformaldehyde at 4 ◦C for 48 h, cryoprotected in 30%
sucrose and mounted in O.C.T.TM medium (Sakura, Tissue-Tek, Alphen aan den Rijn, The
Netherlands). They were transversely sectioned in 10-µm thick slices using a cryostat
(Leica, Wetzlar, Germany) at −20 ◦C and mounted on a glass slide. Cryosections were
blocked with a solution containing 0.1% PBS/Triton X-100 and 5% horse serum for 30 min at
room temperature. They were subsequently incubated overnight at 4 ◦C with the following
primary antibodies: mouse anti-Rho4d2 (1:7000; ab98887, Abcam, Cambridge, UK), mouse
anti-ZPR-1 (1:500; ab174435, Abcam) or rabbit anti-cleaved caspase-3 (Asp175) (1:500,
#9661, Cell Signaling Technology, Danvers, MA, USA). After several washes, sections
were incubated with the following conjugated secondary antibodies: Cy3 anti-mouse
(dilution 1:800; #715-165-150, Jackson ImmunoResearch Europe Ltd., Ely, UK), Cy3 anti-
rabbit (1:1000; #711-166-152, Jackson ImmunoResearch) or Alexa Fluor 488 anti-mouse
(1:1000; #715-545-150, Jackson ImmunoResearch). Nuclei were counterstained with 40,6-
diamidino-2 phenylendole (DAPI; 1:5000; Sigma Aldrich). The emitted fluorescence was
measured using a confocal microscope (LSM880 Fastairyscan, Zeiss, Germany).

4.11. Cell Counting

Cone cells, immunolabeled with Zpr-1 antibody were quantified individually and the
total area of rod outer segments, immunolabeled with Rho4d2 antibody, was evaluated.
Both measures were normalized to the length of the associated retina. The number of
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apoptotic cells was assessed by directly counting cells labeled with the anti-cleaved caspase-
3 antibody per entire retina section. Ganglion cells, highlighted by DAPI counterstaining,
were counted in three specific regions of the retina, consistent from one sample to another.
The total number of ganglion cells from all regions was averaged per larva. The thickness
of the ganglion cells layer was also quantified for each distinct region of the retina.

4.12. Seahorse XF Cell Mito Stress Test

The oxygen consumption rate (OCR) of 5 dpf larvae was measured with a Seahorse
XFe24 extracellular flux analyzer (Agilent), according to [76]. The Seahorse temperature
space was maintained at 28 ◦C. The larvae were placed individually in a well of a Seahorse
XFe24 spheroid microplate, in 500 µL of E3 medium. A grid was placed on the larvae
to maintain them at the bottom of the wells throughout the experiment. Two wells were
kept empty per experiment and were considered as the “blank” condition. At 4 dpf,
the larvae were treated for 24 h with tunicamycin (2 µg/mL) diluted in E3 medium and
placed at 5 dpf in the measurement plate without treatment. Control larvae were treated
with 0.1% DMSO. Measurements of total zebrafish OCR were performed according to the
manufacturer’s instructions. Four basal analysis cycles were recorded, then five cycles
recorded after administration of oligomycin (25 µM), five cycles after administration of
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (8 µM) and nine cycles
after rotenone + antimycin A (15 µM). Calculations of the different OCR parameters
(nonmitochondrial respiration; basal respiration; maximal respiration; proton leak; ATP
production) were done according to the Seahorse XF Cell Mito Stress Test Kit user guide
(Agilent).

4.13. Western Blot Analyses

Twenty 5 dpf larvae were pooled and homogenized on ice for 15 s in 100 µL of ly-
sis buffer (Dulbecco’s Phosphate Buffered Saline, 1% NP40, 0.5% sodium deoxycholate,
0.1% sodium dodecyl sulfate, sodium orthovanadate, phenylmethylsulfonyl fluoride,
PhosSTOPTM (Roche, Basel, Switzerland), CompleteTM (Roche)). Between 20 and 40 µg of
total proteins were separated on a 1.5 mm 12% running gel and 4% acrylamide stacking gel
at 100 V. Proteins were transferred into a nitrocellulose membrane at 100 V for 1 h in transfer
buffer and blocked with 5% nonfat milk solution for 1 h. Immunoblotting was performed
in 0.1% TBS/Triton X-100 buffer pH 7.4, overnight at 4 ◦C, with the following primary
antibodies: rabbit anti-S1R antibody (1:500, 15168-1-AP; Proteintech, Rosemont, IL, USA);
rabbit anti-Chop antibody (1:1000, G6916, Sigma Aldrich); rabbit anti-Bip (1:700, SPC-180,
Biosciences); rabbit anti-Eif2α (D9G8) (1:500, #3398, Cell Signaling); rabbit anti-p-Eif2α
(D9G8) (1:500, #9722, Cell Signaling). After several washes, membranes were incubated
with horseradish peroxidase (HRP) conjugated goat anti-rabbit secondary antibody (1:2000;
ab6721, Abcam) or goat anti-mouse secondary antibody (1:2000; ab6789, Abcam) for 1 h
at room temperature. The membranes were incubated with the indicated HRP detection
reagent (10776189, Merck, Germany) and the bands were visualized using the Bio-Rad
imaging system. Relative intensities of each band were quantified using Image Lab v6.1
software (Bio-Rad, Hercules, CA, USA) and normalized to the total protein quantity (Stain-
FreeTM, Bio-Rad). The original blots used in the Figures are presented in Supplementary
Figure S3.

4.14. Statistical Analyses

Data were expressed as mean ± SEM. Statistical significance between groups was
determined by a two-way ANOVA, with zebrafish genotype and treatment as independent
factors, and/or an unpaired Student’s t-test (for parametric data) or a Mann-Whitney’s test
(for nonparametric data). All two-way ANOVA results are detailed in the Supplementary
Table S2. The levels of statistical significance considered were p < 0.05, p < 0.01 and p < 0.001.
Statistical analyses were performed using the GraphPad Prism v7.0 software.
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