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Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson’s

disease (PD) etiology, but it is still unclear why overexpression or mutated forms of

this protein affect some neuronal populations more than others. Susceptible neuronal

populations in PD, dopaminergic neurons of the substantia nigra pars compacta

(SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic

concentrations of dopamine and calcium ions. Here we review the evidence for the

multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate

synergistic interactions between aSyn, calcium ions and dopamine that may lead to

imbalanced protein turnover and selective susceptibility of these neurons. We conclude

that decreasing the levels of any one of these toxicity mediators can be beneficial for

the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug

interventions aimed at modifying the course of PD.

Keywords: α-Synuclein, dopamine, calcium, Parkinson’s disease, substantia nigra pars compacta, locus

coeruleus, multiple hits

DIFFERENTIAL SUSCEPTIBILITY OF CATECHOLAMINERGIC
NEURONS IN PD

Parkinson’s disease (PD), the second most common neurodegenerative disorder (De Lau and
Breteler, 2006), is marked by slowness (bradykinesia), resting tremor, muscular rigidity, and
postural instability (Lang and Lozano, 1998). Although multiple brain regions are affected in
late-stage PD (Braak et al., 1995), two catecholaminergic neuronal populations degenerate early,
before the onset of the motor symptoms-dopaminergic (DA) neurons of the substantia nigra pars
compacta (SNpc) and noradrenergic (NE) neurons of the locus coeruleus (LC). DA restoration
through treatment with L-DOPA provides an effective symptomatic improvement, however,
tolerance to treatment increases over time, accompanied by the development of severe side effects
(L-DOPA-induced dyskinesia; Lewitt, 2015; Olanow, 2015). There is at the time no means available
for delaying the progress of the disease, which is a critical goal in the field.

Rational design of disease-modifying therapies is complicated by the lack of a clear
understanding of the pathophysiology of PD initiation and progression. The disease is
predominantly sporadic, with an estimated 10% prevalence of familial cases (Eriksen et al., 2005).
Alpha-synuclein (aSyn), encoded by the SNCA gene, plays a central role in both sporadic and
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familial PD. Mutations or multiplications of the SNCA cause
autosomal dominant PD (Eriksen et al., 2005). Levels of
phosphorylated aSyn are increased in post-mortem brains of PD
patients and in patient-derived dopaminergic neurons (Fujiwara
et al., 2002; Swirski et al., 2014). Genome-wide association studies
(GWASs) have reported a correlation between the SNCA locus
and the risk of developing sporadic PD (Simon-Sanchez et al.,
2009; Chang et al., 2017). Importantly, post-mortem PD brains
show proteinaceous aSyn-positive deposits called Lewy bodies
(Spillantini et al., 1997; Baba et al., 1998). Conversely, deletion
of aSyn is protective in mouse and cellular models of PD (Dauer
et al., 2002; Alvarez-Fischer et al., 2008). Similarly, a recent
study identified β2-adrenoreceptor (β2AR) agonists as negative
regulators of the aSyn gene expression, and an association was
found between the use of β2AR agonist salbutamol, a brain-
penetrant asthma medication, and a reduced risk of developing
PD (Mittal et al., 2017). Yet, Lewy body pathology occurs
throughout the nervous system in PD patients and does not
correlate well with cell death (Goedert et al., 2013; Surmeier et al.,
2017a), suggesting that aSyn may be necessary but not sufficient
for PD neurodegeneration.

Several cellular pathways are affected in PD, resulting in
endoplasmic reticulum (ER) stress and activation of the unfolded
protein response, disruption of lysosomal and proteasomal
protein degradation, and impaired Ca2+ homeostasis and
mitochondrial dysfunction (Rochet et al., 2004; Stefanis, 2012;
Duda et al., 2016; Michel et al., 2016). Although there does not
appear to be a unifying end-point toxicity pathway, inflammatory
response and both necrotic and apoptotic degeneration are often
observed in PD models (Perier et al., 2012). The central question
in PD neuropathology, however, is why some neurons are highly
susceptible to neurodegeneration while other, even closely related
populations, are much less affected. Specifically, SNpc and LC
catecholaminergic neurons degenerate in PD, whereas ventral
tegmental area (VTA) and tuberoinfundibular DA neurons are
relatively spared in both PD patients and laboratory models
of the disorder (Hirsch et al., 1988; Braak et al., 1995). Two
features of SNpc and LC neurons—the presence of elevated
catecholamine and Ca2+ concentration in the cytosol—have
consistently been suggested as modulators of their sensitivity to
neurodegeneration.

Due to the ability of DA to produce oxidative stress and
protein damage, it has long been speculated that a dysregulation
of cytosolic DA homeostasis plays a role in PD (Edwards,
1993; Gainetdinov et al., 1998; Uhl, 1998; Schmitz et al., 2001;
Lotharius and Brundin, 2002; Lohr et al., 2014; Pifl et al., 2014).
Spontaneous DA oxidation at neutral pH of the cytosol yields
DA-o-quinone and dopaminochrome (Graham, 1978; Sulzer and
Zecca, 2000), which can then react with free cysteine and exposed
cysteine residues of proteins and glutathione producing 5-S-
cystenyl-DA. The latter can undergo further oxidation and is
toxic to cultured cells (Spencer et al., 2002) or when injected
into the mouse brain (Zhang and Dryhurst, 1994). 5-S-cystenyl
adducts of DA and its metabolites are used as markers of
excess cytosolic DA and oxidative stress in vivo (Hastings and
Berman, 1999; Caudle et al., 2007) and are readily detected
in human SNpc and LC, consistent with DA-induced protein

damage in human PD (Fornstedt et al., 1989; Montine et al.,
1995; Hastings and Berman, 1999). Other mechanisms of DA-
mediated neurotoxicity include reactions of DA with nitric oxide
(Daveu et al., 1997), peroxynitrite (Daveu et al., 1997; Vauzour
et al., 2008) and aldehydes (Collins and Bigdeli, 1975; Deitrich
and Erwin, 1980; Naoi et al., 1993; Marchitti et al., 2007).
Accumulation of cytosolic DA is toxic to cells in vitro (Mytilineou
et al., 1993; Pardo et al., 1995; Sulzer et al., 2000; Xu et al., 2002;
Fuentes et al., 2007; Mosharov et al., 2009) and several reports
confirm that a buildup of cytosolic DA is indeed sufficient to
induce progressive nigrostriatal degeneration in rodents (Caudle
et al., 2007; Chen et al., 2008), although clinical studies of L-
DOPA toxicity produced controversial results (Fahn et al., 2004;
Olanow et al., 2004; Holford et al., 2006).

Dysregulation of Ca2+ homeostasis is likewise frequently
observed in models of both sporadic and familial PD (Goldberg
et al., 2012; Hurley and Dexter, 2012; Surmeier et al., 2017b). This
includes impairment of mitochondrial Ca2+ maintenance (Exner
et al., 2012), disrupted communication between mitochondrial
and ER Ca2+ stores (Ottolini et al., 2013; Guardia-Laguarta
et al., 2014), decreased store-operated Ca2+ entry (Zhou et al.,
2016), and additional mechanisms that may cause toxicity due to
abnormally high or low Ca2+ levels (Duda et al., 2016; Michel
et al., 2016; Surmeier et al., 2017b). SNpc and VTA neurons
express drastically different levels of calbindin-D28K (Fu et al.,
2012) and those expressing high levels of this Ca2+ buffering
protein—the majority of VTA neurons and a small percentage
of SNpc neurons—are spared from neurodegeneration in PD
(Yamada et al., 1990; Rcom-H’cheo-Gauthier et al., 2014).
Interestingly, at least some LC neurons appear to express Ca2+

buffering proteins calbindin-D28K, calretinin and parvalbumin
(Bhagwandin et al., 2013), although no comparison was made
with other brain areas, such as the VTA.

SNpc neurons have long axons that extend into the striatum
and arborize extensively, with many DA release sites (Matsuda
et al., 2009). Physiologically, these neurons display broad
action potential spikes and an autonomous tonic firing pattern
governed by the activity of the L-type Cav1.3 channels (LTCCs)
(Hetzenauer et al., 2006; Surmeier et al., 2010). This drives a feed-
forward stimulation of mitochondrial oxidative phosphorylation
that maintains ATP production during increased neuronal
activity (Chan et al., 2007; Surmeier et al., 2017b). Chronically
increased cytoplasmic and mitochondrial Ca2+ levels may
however drive the production of reactive oxygen and nitrogen
species (ROS and RNS), leading to mitochondrial dysfunction.
While Cav1.3 channels are expressed at similar levels in
SNpc and neighboring VTA dopaminergic neurons (Dragicevic
et al., 2014), they do not drive pacemaking in VTA neurons
(Chan et al., 2007; Duda et al., 2016) (although, this remains
controversial Liu et al., 2014), suggesting post-translational
regulation of their activity. Pharmacological blockade of LTCCs
with dihydropyridines alleviatesmitochondrial oxidative stress in
SNpc neurons in ex vivo mouse brain slices (Chan et al., 2007),
and protects them in neurotoxin-basedmodels of PD (Chan et al.,
2007). Similarly, LC neurons display broad action potential spikes
and autonomous pacemaking that is dependent on Cav1.2 and
Cav1.3 L-type channels (Sanchez-Padilla et al., 2014) as well as the
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T-type channels (Matschke et al., 2015). Dihydropyridines also
prevent mitochondrial oxidative stress in LC neurons in ex vivo
brain slices (Sanchez-Padilla et al., 2014). Although LC neurons
are selectively targeted by parkinsonian neurotoxins (Masilamoni
et al., 2011), the effect of LTCC blockers on the survival of LC
neurons in thesemodels has not been studied. However, an LTCC
inhibitor nimodipine was shown to protect both SNpc and LC
neurons in a model of chronic neuroinflammation (Hopp et al.,
2015).

Overall, SNpc and LC appear to share many of the same
characteristics—a proteomic analysis identified similar changes
in 61 PD-associated proteins in SNpc and LC neurons (Van
Dijk et al., 2012)—and are uniquely situated with high levels of
cytosolic catecholamines and Ca2+, which in the presence of aSyn
may underlie their higher susceptibility to neurodegeneration.
Below, we focus on the interactions between these three
chemicals, highlighting recent developments in their role toward
cell-selective PD pathogenesis.

aSyn AND Ca2+

aSyn is a protein widely expressed in the nervous system, with a
subcellular localization at the presynaptic terminal. The protein
is 140 amino acids in length (Figure 1), occurs as a helically
folded tetramer under physiological conditions (Bartels et al.,
2011) and is able to form oligomers, fibrils and more complex
aggregates, eventually leading to Lewy bodies. The N-terminus is
lysine-rich and is the site of the vesicle binding, with four lipid-
binding KTKmotif repeats in that region. Importantly, all known
SNCA familial PDmutations to date—A30P, E46K, H50Q, G51D,
A53E, and A53T—are found in this domain (Rcom-H’cheo-
Gauthier et al., 2014). The central region of aSyn is known
as the non-amyloid-β component (NAC) of amyloid plaques
found in Alzheimer’s disease patients and is responsible for aSyn
aggregation and Lewy body formation (Li et al., 2002). The
C-terminus is comprised of an EF-hand-like sequence that is
capable of binding Ca2+; however, overexpression of truncated
aSyn that lacks the C-terminus is sufficient to elicit a PD-like
phenotype in mice (Tofaris et al., 2006). Normally, aSyn is
involved in regulation of synaptic vesicles exocytosis, although its
exact function is still debated (Imaizumi et al., 2005; Larsen et al.,
2006; Burre et al., 2010; Nemani et al., 2010; Bendor et al., 2013).
Although gain-of-function mechanisms of aSyn toxicity due to
its post-translational modifications or oligomerization have been
widely reported, recent data suggest that the loss-of-function
mechanisms may also play a role (Collier et al., 2016).

Effects of aSyn on Ca2+

Intracellular Ca2+ is a potent second-messenger that triggers
many cellular events, and its concentration is tightly regulated by
the activities of transporters and channels of the plasma, ER, and
mitochondrial membranes, as well as calcium-binding proteins
such as calbindin, parvalbumin, and calretinin (Zaichick et al.,
2017). Various mechanisms by which aSyn is able to interfere
with Ca2+ homeostasis in different cellular compartments have
been reviewed in more detail elsewhere (Duda et al., 2016; Michel

et al., 2016; Ottolini et al., 2017; Surmeier et al., 2017b), but are
described here briefly.

First, aSyn localizes at the mitochondria-associated
membranes of the ER (MAMs) where it can regulate IP3
receptor-mediated transfer of calcium (Cali et al., 2012; Guardia-
Laguarta et al., 2014). Pathogenic PD mutations in aSyn result
in reduced association with MAM accompanied by increased
mitochondrial fragmentation and augmented autophagy
(Guardia-Laguarta et al., 2014). Additionally, post-translationally
modified aSyn interacts with TOM20, a translocase of the outer
mitochondrial membrane, and impairs mitochondrial import
of proteins required for oxidative phosphorylation both in vitro
and in postmortem brain tissue from PD patients (Di Maio
et al., 2016). Second, aSyn overexpression induces lysosomal
permeability, allowing lysosomal calcium and protons to
leak to the cytosol and induce cell death (Bourdenx et al.,
2014). Third, aSyn can increase ion permeability of the plasma
membrane or interfere with the activity of its channels resulting
in dysregulated neuronal firing and Ca2+ dynamics patterns that
precede neurodegeneration (Subramaniam et al., 2014; Angelova
et al., 2016). Consistently, aSyn is required for cytosolic Ca2+

influx through the plasma membrane following exposure to the
parkinsonian neurotoxin MPP+ via a putative interaction with
LTCCs (Lieberman et al., 2017), although the exact mechanism
of this interaction needs further investigation. Fourth, a recent
study showed that extracellularly added aSyn increased the
activity of the Cav2.2 channel, thus increasing cytoplasmic Ca2+

sufficiently to induce exocytotic DA release (Ronzitti et al.,
2014). Interestingly, aSyn did not increase Cav2.2 expression,
but rather caused a relocation of Cav2.2 from lipid rafts to
cholesterol-poor domains, providing a novel mechanism by
which aSyn may change the activity of Ca2+ channels via
the reorganization of membrane microdomains indicating an
indirect interaction between aSyn and Ca2+-channels. Finally, a
study of the proximal aSyn intracellular partners using APEX2-
based labeling found that aSyn might interact with calcineurin,
a calmodulin dependent serine/threonine protein phosphatase
that has ubiquitous intracellular substrates (Chung et al., 2017).
This finding buttresses previous reports from the same group
that demonstrated a functional relationship between aSyn levels
and calcineurin activity (Caraveo et al., 2014).

Effects of Ca2+ on aSyn
Ca2+ binding seems to promote aSyn annular oligomer
formation. These ring-like oligomers have been shown to insert
in the membrane forming a pore, perhaps allowing more Ca2+

to enter the cell (Mironov, 2015). This oligomer formation is
dependent on the C-terminus and is eliminated in truncated
forms of aSyn (Lowe et al., 2004). Increasing internal Ca2+

concentration via thapsigargin or Ca2+ ionophore treatment
causes an increase in aggregate formation, while Ca2+-chelators
or Ca2+ channel inhibitors have the opposite effect (Danzer
et al., 2007; Nath et al., 2011; Follett et al., 2013). The effect of
Ca2+ on aSyn aggregation is mediated by the Ca2+-activated
protease, calpain, which cleaves the C-terminus of aSyn (Dufty
et al., 2007; Nath et al., 2011). This has been confirmed in
vivo by the overexpression of the calpain inhibitor, calpastatin,

Frontiers in Neuroscience | www.frontiersin.org 3 March 2018 | Volume 12 | Article 161

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Post et al. α-Synuclein, Dopamine and Calcium

FIGURE 1 | aSyn sequence map. An annotated structure of human micelle-bound aSyn solved by solution NMR (PDB 1XQ8) (Ulmer et al., 2005) and corresponding

sequence have been color coded to highlight the lipid binding N-terminal domain and associated KTK motifs (cyan), common familial PD mutations (green), acidic

residues in the C-terminal Ca2+-binding EF-hand-like motif (pink), and the dopamine-binding residues (yellow).

which reduces PD-like symptoms and pathology in a mouse
model of A30P aSyn overexpression (Diepenbroek et al., 2014).
Additionally, an indirect effect of Ca2+ on aSyn aggregation can
be mediated by disruptions in autophagy. As elevated Ca2+ leads
to increased mitochondrial stress, it has been suggested that this
adds demand to proteostasis systems by necessitating increased
mitochondrial turnover. This process then reduces cell’s capacity
to degrade aSyn, leading to aSyn aggregation (Surmeier and
Schumacker, 2013).

aSyn AND DA

Due to the toxic potential of DA, it is not surprising that multiple
cellular mechanisms exist to regulate its cytosolic concentration.
It has been suggested that neuromelanin biosynthesis acts as
one of the mechanisms for regulating toxic DA by-products by
sequestering them into autophagic vacuoles (Sulzer and Zecca,
2000). Similarly, oxidized derivatives of both DA and NE are
found in LC-derived neuromelanin (Wakamatsu et al., 2015).
Other mechanisms include feedback inhibition of DA synthesis,
catabolic DA cleavage and synaptic vesicle sequestration.

Catecholamines are synthesized from the non-essential amino
acid tyrosine by a series of enzymatic reactions. In the first,
rate-limiting step, tyrosine hydroxylase (TH) attaches a hydroxyl
group to the aromatic ring of tyrosine, forming L-DOPA. TH
activity is regulated on transcriptional, translational and post-
translational levels (Goldstein and Lieberman, 1992; Kumer and
Vrana, 1996; Fitzpatrick, 2000; Daubner et al., 2011), including
phosphorylation-dependent activation of TH by various kinases
and its inhibition by DA, which limits DA production when
its cytosolic concentration increases. The second enzyme in
DA biosynthesis, aromatic L-amino acid decarboxylaze (AADC),

converts L-DOPA to DA. AADC activity can also be regulated
by second messenger systems to decrease DA production when
its extracellular concentration increases (Hadjiconstantinou and
Neff, 2008). aSyn has been shown to co-immunoprecipitate with
both TH (Perez et al., 2002) and AADC (Tehranian et al., 2006),
and this interaction leads to decreased phosphorylation and
activity of both enzymes. Decreased TH activity in the presence
of aSyn overexpression depended on aSyn phosphorylation at
Ser129 residue (Lou et al., 2010), which was modulated by the
activity of protein phosphatase 2A (Peng et al., 2005). These data
suggest that a loss of soluble aSyn due to reduced expression or
aggregation may increase catecholamine synthesis.

Intracellular catecholamine catabolism starts with the cleavage
by monoamine oxidase (MAO), which is localized at the
outer mitochondrial membrane (Schnaitman et al., 1967),
and produces two highly reactive compounds, hydrogen
peroxide and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (or
3,4-dihydroxyphenylglycolaldehyde for NE) (Richter, 1937).
This is followed by the oxidation by aldehyde dehydrogenase
(ALDH) to 3,4-dihydroxyphenylacetate (DOPAC) and 3,4-
dihydroxyphenylglycol (DHPG), correspondingly. Although
ALDH activity—there are both cytosolic and mitochondrial
isoforms of this enzyme (Marchitti et al., 2007; Chen et al., 2014;
Doorn et al., 2014) - is very high, possible neurotoxicity of the
aldehyde metabolites of amines was predicted 60 years ago due
to their extremely reactive nature (Blaschko, 1952). Indeed, the
presence of DOPAL and its metabolites has been demonstrated
both in vitro and in vivo (Burke et al., 2004; Goldstein et al., 2014).
Additionally, a line of mice that are deficient for ALDH1a1 and
ALDH2, the cytosolic and the mitochondrial isoforms expressed
in SNpc DA neurons (Mccaffery and Drager, 1994; Galter et al.,
2003), showed age-dependent, L-DOPA-responsive deficits in
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motor performance, significant increases in biogenic aldehydes
and a loss of SNpcDA neurons (Wey et al., 2012), confirming that
impaired detoxification of biogenic aldehydes may cause PD-like
degeneration.

Finally, sequestration and compartmentalization of DA inside
secretory vesicles is achieved via the activity of vesicular
monoamine transporters (VMAT). The enzyme responsible
for the conversion of DA to NE in noradrenergic neurons,
dopamine beta-hydroxylase, is located in the lumen and the
membrane of synaptic vesicles. Moreover, the acidic pH of
vesicles prevents auto-oxidation of DA and NE, allowing high
vesicular neurotransmitter concentrations without the formation
of reactive species. Importantly, synaptic vesicle membrane is
“leaky” and in vitro and in vivo studies have demonstrated that
leakage of catecholamines from storage vesicles is the primary
source of their catabolism in the cytosol (Goldstein et al., 1988;
Halbrugge et al., 1989; Tyce et al., 1995).

High cytosolic DA levels following L-DOPA treatment have
been shown to induce selective SNpc neuron degeneration and
the formation of neuromelanin (Sulzer et al., 2000), whereas
increased loading of DA from cytosol to vesicles following
overexpression of vesicular monoamine transporter 2 (VMAT2)
provides neuroprotection from L-DOPA (Mosharov et al., 2009).
Consistent with this, higher levels of neuromelanin are found
in SNpc neurons that degenerate in PD (Zucca et al., 2014).
Striatal DA synaptic vesicles from PD patients were also found to
have lower levels of VMAT2 (Pifl et al., 2014), although as these
patients were almost certainly treated with L-DOPA, a decrease
in VMAT expression could be a compensatory response rather
than a cause of PD.

Oxidized DA and other catecholamines are able to interact
with aSyn, producing DA-modified aSyn, which is less likely to
fibrilize and instead forms soluble oligomers (Conway et al., 2001;
Rochet et al., 2004). This interaction is non-covalent, reversible
and occurs at the Y125EMPS129 pentapeptide in the C-terminal
region of α-Syn with an additional long-range electrostatic
interaction with E83 in the nAC region (Figure 1, in yellow)
(Mazzulli et al., 2007; Herrera et al., 2008). Using fluorescence-
lifetime imaging microscopy to monitor the relative position of
the N- and C- terminals of aSyn, it was shown that DA induces
a conformation where the termini are closer together, which
may inhibit fibril formation (Outeiro et al., 2009). Additionally,
DOPAL may cross-link aSyn lysine residues, also facilitating
its aggregation (Werner-Allen et al., 2016). Intracellular aSyn
oligomeric species can be cytotoxic by a variety of mechanisms,
including permeabilization of vesicular and plasma membranes
by pore-forming fibrils (Ding et al., 2002; Gosavi et al., 2002;
Lashuel et al., 2002; Mosharov et al., 2006), disruption of
proteasomal protein clearance, chronic ER stress, mitochondrial
dysfunction and inhibition of SNARE complex formation and
neurotransmitter release (Rochet et al., 2004; Ebrahimi-Fakhari
et al., 2011; Choi et al., 2013; Kalia et al., 2013; Zaltieri et al., 2015).

Monomeric DA-aSyn, however, may also be toxic by
interfering with protein degradation via a lysosomal pathway
called chaperone-mediated autophagy (CMA) (Cuervo et al.,
2004, 2010). CMA cytosolic substrates contain a KFERQ-like

motif that can be recognized by the chaperone protein cyt-
Hsc70 that delivers them to a lysosomal associated membrane
protein (LAMP2A). LAMP2A forms a translocation complex
once bound to a substrate and the unfolded protein crosses into
the lysosomal lumen where it can be degraded. While aSyn,
oxidized aSyn, and a phosphomimetic S129E aSyn mutant show
similar LAMP2A binding levels, lysosomal uptake of the latter is
significantly diminished. DA-aSyn demonstrates a similar CMA
profile when compared to phosphorylated aSyn in that it binds
to the lysosome without evidence of translocation. Furthermore,
unlike phosphorylated aSyn, DA-aSyn blocks both the binding
and uptake of a CMA substrate GAPDH, suggesting stronger
binding to LAMP2A. A mutation in the DA-interacting region of
aSyn (Y125EMPS129 to F125AAFA129) nullifies the effect, further
demonstrating that the interaction of DA and oxidized forms
of DA with aSyn leads to this change in CMA. In primary
neuronal cultures, the same CMA blockade was demonstrated
after exposure to a high dose of L-DOPA, but not in neurons
derived from aSyn null animals (Martinez-Vicente et al., 2008).

A hypothesis that decreased uptake of DA into synaptic
vesicles should lead to PD-like nigrostriatal neurodegeneration
due to increased cytosolic transmitter levels was examined in
mice that displayed a 95% reduction of VMAT2 expression
due to a hypomorphic allele (Caudle et al., 2007). Surprisingly,
the first generation of these mice (VMAT2-deficient KA1 line
Mooslehner et al., 2001) did not show any PD phenotype, despite
an ∼85% reduction in brain levels of DA, NE and serotonin
and their increased turnover. It was subsequently discovered,
however, that this mouse line had a spontaneous deletion of
the SNCA gene (Specht and Schoepfer, 2001; Colebrooke et al.,
2006). After further breeding to reintroduce the wild-type aSyn
gene, the resulting VMAT2-LO mice showed signs of PD-like
progressive neurodegeneration, including L-DOPA-responsive
motor deficits, oxidative stress and protein damage, decreased
DA, DAT, and TH levels in the striatum, and pathological
accumulations of aSyn and a reduced number of DA neurons in
the SNpc (Caudle et al., 2007; Taylor et al., 2011). Overall, the
VMAT2-LO mouse model not only demonstrated that a reduced
capacity of cells to sequester cytosolic DA is sufficient to cause
PD-like degeneration of neurons and their axonal projections,
but also that this effect requires the presence of aSyn.

Another recent study investigated the toxic interaction
between aSyn and DA in vivo by combining a common familial
PD aSyn mutation with elevated cytosolic DA (Mor et al., 2017).
Mice that overexpress PD mutant A53T aSyn were injected
with a lentivirus containing TH with an R37R38 to E37E38
mutation. This mutation leads to a loss of feedback inhibition of
TH by DA, resulting in increased neurotransmitter production
in the cytosol (Nakashima et al., 2002). Elevation of cellular
DA levels induced progressive motor impairment accompanied
by nigrostriatal degeneration and increased formation of aSyn
oligomers in A53T aSyn overexpressing mice but not in WT.
Furthermore, in Caenorhabditis elegans overexpressing A53T
aSyn, DA toxicity was prevented if DA-interacting residues of
aSyn were mutated (Mor et al., 2017). Overall, both in vitro and
in vivo data suggest that DA and aSyn have a synergetic effect on
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toxicity and that decreasing the levels of either of the compounds
is neuroprotective.

aSyn, DA AND Ca2+

Ca2+ levels positively regulate the activity of both TH andAADC,
providing a direct connection between synaptic activity and DA
synthesis. However, because of Ca2+-driven pacemaking in SNpc
and LC neurons, elevated levels of Ca2+ also lead to chronically
increased cytosolic catecholamine levels. In agreement with this,
L-DOPA treatment produces higher concentration of cytosolic
catecholamines in cultured SNpc (Mosharov et al., 2009) and
LC (unpublished data) compared to VTA neurons, which
translated into higher susceptibility of these neurons to L-
DOPA-induced degeneration. The difference between these cell
types was normalized by pharmacological or genetic blockade
of the LTCCs, confirming their role in selective PD-like
neurodegeneration. Importantly, deletion of aSyn also protected
SNpc neurons from L-DOPA-induced toxicity without changing
cytosolic DA concentration, demonstrated that the levels of Ca2+,
DA and aSyn are equally important for toxicity.

Using the same model system, we recently investigated
metabolic changes in neurons exposed to the parkinsonian
neurotoxin MPP+ (Lieberman et al., 2017). Similar to the
difference observed in vivo described above, a significantly
higher level of toxicity was observed in cultured SNpc
than VTA neurons. In MPP+-treated SNpc, but not VTA

neurons, neurotoxicity was caused by a transient increase
in cytosolic Ca2+ that required the activity of LTCCs and
ryanodine receptors. Combined with MPP+-mediated
inhibition of DA cleavage by MAO (Choi et al., 2015),
this caused upregulation of cytosolic DA and nitric oxide
levels, mitochondria oxidation, and ER stress. As with L-
DOPA toxicity, SNpc neurons from aSyn deficient mice were
significantly more resistant to MPP+. Thus, in two different
toxicity models we found that selective death of SNpc neurons
results from a combination of “multiple hits,” including the
activity of the LTCCs that create high basal cytoplasmic Ca2+

levels, an upregulation of DA synthesis and the presence of
aSyn. Similar upregulation of Ca2+/NO with concomitant
mitochondria oxidative stress was demonstrated in LC neurons
(Sanchez-Padilla et al., 2014) and SN neurons exposed to
preformed aSyn fibrils (Dryanovski et al., 2013), indicating
that this pathway may be commonly activated under stress
conditions.

A recent study of DA- and aSyn-mediated toxicity in human
idiopathic and familial iPSC-derived DA neurons from patients
with a DJ-1 mutation (PARK7) provided more evidence for
the involvement of multiple factors in mediating PD-like
neurotoxicity (Burbulla et al., 2017). The authors identified
a DA- and Ca2+-dependent toxic cascade that started with
mitochondrial oxidative stress leading to lysosomal dysfunction
and aSyn accumulation. Interestingly, this toxicity pathway was
not present in DJ-1 deficient mice or mouse iPSC-derived

FIGURE 2 | Model of cell-selective PD pathogenesis. (1) A physiological function of aSyn may be to bind synaptic vesicles in a reversible manner to inhibit exocytosis.

(2) aSyn is degraded by CMA following LAMP-2A-mediated transport into the lysosomes. (3) In SN and LC neurons, high Ca2+ levels upregulate TH and AADC,

leading to increased DA concentrations and (4) associated oxyradical stress, which induces various cell defense mechanisms, including (5) CMA. (6) DA-modified

aSyn (7) blocks LAMP-2A-mediated uptake of CMA substrates, including aSyn itself. (8) aSyn may oligomerize to toxic protofibrils, which can (9) bind to and (10)

permeabilize synaptic vesicles, leading to further increase in cytosolic DA. (11) DA stabilizes aSyn protofibrils, inhibiting the formation of larger polymers of aSyn (12).

Overall, the presence of such interactions where DA and aSyn act as independent stressors that converge to produce neurotoxicity may explain why

catecholaminergic neurons with Ca+2 channel- mediated pacemaking are more prone to produce neuromelanin and Lewy bodies, and are particularly vulnerable in

PD and parkinsonian animal models. Only a few aSyn-DA-Ca2+ interactions discussed in the text are shown.
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DA neurons generated from DJ-1 KO fibroblasts unless either
DA production or aSyn expression was increased. Underlying
species-specific differences may therefore explain the difficulties
of creating an appropriate mouse model of PD.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

At the center of PD pathology is aSyn, which tends to form
soluble oligomers and insoluble fibrils. Oligomerization is
increased with increased Ca2+ or DA levels, while aSyn
oligomers are able to increase internal Ca2+ and DA
concentrations, forming a potential positive feedback cycle.
Furthermore, DA-modified aSyn blocks CMA-mediated protein
degradation, potentially causing a buildup of monomeric aSyn
that then aggregates into more oligomers (Figure 2). These
interactions demonstrate the precarious nature of SNpc and
LC neuron health as, if one aspect of the homeostatic processes
goes awry, the feedback loops activate and neurotoxicity
ensues. Importantly, in this model it is possible to initiate the
pathological sequence of events that lead to neurodegeneration
by diverse insults, including elevation of Ca2+ levels, increased
cytosolic DA unrelated to Ca2+-dependent regulation,
mutation or overexpression of α-Syn, inhibition of CMA
activity due to aging (Schneider et al., 2014, 2015), the
presence of other parkinsonian mutations or other possible
mechanisms.

Therapeutically, this hypothesis provides several avenues to
pursue the disease-modifying opportunities as decreasing the
levels of any one of these key toxicity mediators should be
beneficial for the survival of SNpc and LC neurons. Previous
work has demonstrated the utility of immunotherapy to reduce
aSyn levels in the CNS (Masliah et al., 2005) and prevent

possible trans-synaptic spread of toxic aSyn species (Bae et al.,
2012). A retrospective analysis demonstrated that the use
of dihydropyridines correlates with decreased probability of
developing PD (Pasternak et al., 2012), and an LTCC antagonist
isradipine is currently in phase III clinical trials as a disease-
modifying therapy for PD (Swart and Hurley, 2016). Combining
these approaches with drugs that reduce toxic DA species might
provide additional benefits. One important future focus will be
the development of diagnostic tools to enable earlier disease-
modifying treatments and stratification of patient populations
to enhance beneficial outcomes. The level of aSyn peripherally
and in the CNS (Malek et al., 2014) as well as the status of
DA homeostasis (Niethammer et al., 2012) are currently the
focus of studies aimed at developing bioassays and imaging
approaches to identify pre-symptomatic PD cases with defined
patho-physiologies to give “personalized” treatments.
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