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The main role of the human immune system is to eliminate cells presenting foreign

antigens and abnormal patterns, while maintaining self-tolerance. However, when facing

highly variable pathogens or antigens very similar to self-antigens, this system can

fail in completely eliminating the anomalies, leading to the establishment of chronic

pathologies. Prototypical examples of immune system defeat are cancer and Human

Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is

persistently exposed to antigens leading to systemic inflammation, lack of generation of

long-term memory and exhaustion of effector cells. This triggers a negative feedback

loop where effector cells are unable to resolve the pathology and cannot be replaced

due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition,

in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting

cells and myeloid components of the immune system activate systemic regulatory and

tolerogenic programs. Beside these homologies shared between cancer and HIV-1

infection, the immune system can be shaped differently depending on the type and

distribution of the eliciting antigens with ultimate consequences at the phenotypic

and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic

potential and proliferation reserve, immune-cell polarization, upregulation of negative

regulators (immune checkpoint molecules) are indeed directly linked to the quantitative

and qualitative differences in priming and recalling conditions. Better understanding of

distinct mechanisms and functional consequences underlying disease-specific immune

cell dysfunction will contribute to further improve and personalize immunotherapy. In

the present review, we describe relevant players of immune cell exhaustion in cancer

and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction.

Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell

activation to the best of current knowledge.

Keywords: HIV infection, cancer, lymphocytes, cellular immunity, exhaustion, senescence, anergy, immune

checkpoint

INTRODUCTION

The primary function of the human immune system is to protect the host by reacting upon the
encounter of foreign antigens, as well as to prevent autoimmunity through self-recognition. Two
arms orchestrate the activation of the immune system: the innate response triggered within the
first hours and the adaptive response mounted over the following days, able to recognize and target
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specific antigens and to generate memory. T cells are the major
component of the adaptive immune system consisting of CD4
and CD8T cells (1), being the latter key players in the physical
elimination of tumor and virus-infected cells.

Most naïve T cells encounter their targets, presented by
professional antigen presenting cells (i.e., dendritic cells, DCs),
in secondary lymphoid organs (2). Such priming is crucial for
determining the acquisition of functional attributes by T cells
(3, 4). DCs govern the nature of primed T cells via the provision
of processed antigens in the form of peptide/MHC complexes
(signal I) and other important signals, including costimulatory
interactions (signal II) and inflammatory cytokines (signal III)
(5). Once activated, T cells undergo massive clonal expansion,
differentiate into potent effectors, and express chemokines
and homing receptors necessary for migration into peripheral
tissues. Effector CD4T cells produce several cytokines depending
on the polarization determined by the cognate antigen and
the extracellular milieu, effector CD8T cells express cytotoxic
molecules, such as perforin and granzymes, and produce effector
cytokines. The production of cytotoxic molecules and cytokines
is needed to help contain the spread of pathogens and tumors.
The fate of naïve CD8T cell differentiation is also determined
by interdependent variables such as frequency of contact with
the immunological synapses, epitope antigenicity, T cell receptor
(TCR) affinity for cognate targets and the presence of CD4T cell
help (6). After CD8T cell expansion and antigen elimination,
any further immune activation is prevented by the upregulation
and engagement of co-inhibitory molecules such as Cytotoxic
T Lymphocyte Antigen-4 (CTLA-4) and Programmed Death-
1 (PD-1). Most effector T cells die by apoptosis (contraction
phase), but about 5–10% survive and differentiate into memory
T cells. Different theories for memory T cell development have
been suggested (7), but recent findings strongly suggest that long-
lived memory CD8T cells would arise from a subset of effector
T cells through a process of dedifferentiation (8). Memory T
cells are then maintained in the absence of antigens (homeostatic
expansion) and can exert rapid effector functions in response to
previously encountered antigens (1, 9).

Any disturbance of conventional activation signals may
drive T lymphocytes to alternative cell fates, i.e., anergy,
tolerance and exhaustion. This plasticity has evolved to
constrain autoimmunity and excessive immune responses
that would otherwise cause undesired tissue damage and
immune-pathological conditions. Whereas, anergy is established
during priming, due to the absence of costimulatory signals,
and senescence is defined as growth arrest after extensive
proliferation, exhausted T cells arise from cells which initially
gained effector functions but became gradually dysfunctional
due to continuous TCR stimulation by persistent antigens
(10). Overlapping and discriminating functional and molecular
features of these alternative cellular conditions have been
comprehensively investigated (11, 12). In the present review, we
describe the establishment and hallmarks of T cell exhaustion
in HIV-1 infection and cancer. In addition, we highlight the
parameters that allow the discrimination between functionally
distinct T cell states, which are exhausted, activated, and memory
T cells.

EMERGENCE OF T CELL EXHAUSTION

T cell exhaustion was initially described in the mouse model
of LCMV infection (13–16), where, initially functional (17)
and then transcriptional analyses led to the identification of
PD-1 as first and main molecule associated with this status
(15, 18, 19). Afterwards, high PD-1 levels have been observed
in Simian Immunodeficiency Virus (SIV) infected Rhesus
Macaques (15, 20–22) as well as in HIV-1 infected patients
(23–25) and this was related to T cell impaired function and
disease progression. In HIV-1 infection, T cell exhaustion is
caused by antigen persistency and impaired CD4T cell help
(26, 27). During the acute phase of the infection, CD8T cell
responses are generated, but they are incapable of mediating
complete virus clearance. HIV-1 is, indeed, endowed with a
high mutation rate capacity that leads to a quick and efficient
escape from immune cells (28, 29). Moreover, lymphoid follicles
have been shown to be enriched in HIV-1/SIV-infected CD4
cells, and poorly infiltrated by CD8T cells during early SIV
infection. Consistently, the frequency of SIV-specific CD8T cells
entering the lymphoid follicles is inversely associated with the
levels of infected cells, suggesting a new mechanism of viral
persistency (30). While infected cells are not eradicated, T
cells are continuously exposed to viral antigens, leading to a
permanent expression of negative receptors and consequently to
T cell dysfunction (15, 31–34). Of note, beside antigen escape,
HIV-1 preferentially infects HIV-1-specific CD4T cells (35),
leading to profound consequences in the immune-pathogenesis
of the disease (28). HIV-1-specific CD4T cells expand at high
frequency during the early phase of the infection. Later on,
their number decreases in blood and secondary lymphoid
organs (36), due to killing by HIV-1-specific CD8T cells, virus
cytopathic effects and pyroptosis triggered by abortive viral
infection (37). In an early stage, CD8T cell responses are
also quickly impaired (27, 38–40), nevertheless this loss of
function is partially restored in the presence of HIV-1 specific
CD4T cells (13, 27), highlighting the importance of CD4T cell
depletion in determining CD8T cell exhaustion. CD4T cells
indeed provide help for CD8T cells by producing supportive
cytokines including interleukin (IL)-2 and IL-21, which can
act directly on the responding CD8T cells (41–48). IL-2 has
a pivotal importance during priming of CD8T cell response,
in order to generate functional memory cells able to perform
homeostatic turnover and to mount potent secondary responses
(49). IL-21 instead has a major role in sustaining and expanding
memory CD8T cells (43, 44). In mice, CD4T cell help has been
recapitulated by CD27 agonism that enhanced specific CD8T
cell effector functions in response to vaccination or a viral
infection (50).

Induction of T cell exhaustion is a common trait between
HIV-1 infection and cancer (17), however key differences
distinguish antiviral from anti-tumor immunity due to the
pathogenesis of the two diseases (Figure 1 and Table 1). The
immunogenicity of the tumor is shaped by the immune system
through a process called “immunoediting,” as the pivotal
work of Bob Schreiber first showed 15 years ago (116). In
a first phase, the adaptive and the innate immune systems
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FIGURE 1 | CD8T cell exhaustion in HIV-1 and cancer. T cell exhaustion in HIV-1 infection and cancer presents common origins and hallmarks, but also different

features. The shared cause of T cell exhaustion is antigen persistency due to immune escape mechanisms. Moreover, in HIV-1 infection, the high viral mutational rate

contributes to the immune escape while the preferential tropism of the virus for HIV-1 specific CD4T cells leads to CD4T cell loss that is also a main contributor of

CD8T cell exhaustion. In cancer, immunoediting and TME immunosuppression are peculiar determinants of tumor-specific CD8T cell exhaustion. In both cancer and

HIV-1 infection TOX has been identified as a master regulator of the transcriptional and epigenetic reprogramming of exhausted T cells. In HIV-1, T-betdim/Eomeshigh

subset defines highly exhausted CD8T cells, however in CD8T cells from cancer patients T-bet and Eomes are expressed in T cells with different levels of exhaustion.

At the protein level, the co-expression of many ICs has been identified as hallmark of T cell exhaustion in both cancer and HIV-1 infection. Exhausted cells are also

characterized by functional and survival defects including reduced effector functions, expansion capacity and increased susceptibility to apoptosis. Metabolic rewiring

is also a key player of T cell exhaustion, however in HIV-1-infected patients little/no information is available so far.

synergize to recognize and eliminate malignant cells using
conventional mechanisms (elimination phase). These include:
the specific recognition of tumor-associated antigens and the
expression of effector molecules by T lymphocytes (type I
and II- interferon, perforin, Fas/FasL, tumor necrosis factor
(TNF)-related apoptosis-inducing ligand—TRAIL), analogously
to a viral infection, paralleled by the expression of recognition
molecules such as NKG2D or ligands on tumor cells (induced
by DNA damage and stress pathways) (117). Early infiltration of
tumors by immune cells such as pro-inflammatory macrophages,
both CD4 and CD8T lymphocytes, NK, and DCs is crucial for
tumor control (118–121). In the second phase, dormant tumor
cells survive in equilibrium with the immune system where
immunosuppressive and anti-tumor functions are balanced
(equilibrium phase). In this phase, the tumor microenvironment
(TME) is composed of several cell types that produce variable
amounts of immune-suppressing and immune-stimulating
molecules. In addition, tumors show a low proliferation

rate and progressively undergo editing, resulting in tumor
cell variants able to escape immune control (escape phase)
(122). Clinically detectable tumors belong to this last and
most studied phase with cancer cells proliferating with no
or limited constraints. Tumor cells directly induce T cell
exhaustion through the acquisition of somatic mutations, which
confer increased immune resistance and survival, altogether
contributing to prolonged antigen exposure. Ultimately, the
exhaustion state is the outcome of a transcriptional and
metabolic reprogramming induced by immunosuppressive
cytokines (i.e., TGF-β, IL-10) and metabolites (i.e., lactate,
kynurenine, adenosine, PGE2) produced by cancer cells (121,
123) and tumor infiltrating immunosuppressive cell subsets,
including regulatory T cells, myeloid-derived suppressor cells,
tumor-associated macrophages, cancer-associated fibroblasts,
adipocytes, and endothelial cells (124). Moreover, anti-tumor
T cells compete with cancer and immunosuppressive cells for
nutrient availability and immunostimulatory factors. Current
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TABLE 1 | Hallmarks of exhaustion.

IC expression

HIV-1/chronic infection Cancer

PD-1 (23–25) PD-1 (51–56)

CTLA-4 (57) CTLA-4 (53)

TIM-3 (34, 58–60) TIM-3 (52, 53)

LAG-3 (61) LAG-3 (53)

TIGIT (62, 63) TIGIT (64–66)

CD160 (33, 67, 68) CD160 (69)

2B4 (CD244) (67, 68) 2B4 (CD244) (70)

BTLA (60) BTLA (71)

CD6 (72) KLRG1 (73)

VISTA (74–76)

CD39 (77, 78)

CXCL13 (53, 79)

LAYN (80)

Sia-SAMP:Siglec-9 (81)

Transcription factors expressed by exhausted CD8T cells

HIV-1/chronic infection Cancer

Master regulators: TOX, TCF-1 (82–85)

EOMES 187 (85) STAT3 (86, 87)

BLIMP-1 (88–91) BLIMP1 (55, 92)

TOX (93) TOX (64, 93)

NOTCH (94) NR4A2 (95)

NFATc1 (96) NFAT (95)

BATF (97–100) BATF (55)

IRF4 (100) IRF4 (85)

VHL (101) VHL (101)

FOXO1 (102) FOXO1(102)

PBX3 (19) FOXP1 (103)

c-Myb (85) cMAF (104)

GATA-3 (105)

Zinc-dependent TFs (105)

Epigenetic of exhaustion

HIV-1/chronic infection Cancer

PD-1 locus demethylation was observed in models of chronic infections (106) and in

HIV-1 infected patients (107)

Tumor-reactive makers CD39 and CD103 are demethylated in tumor-reactive CD8T

cells (whole-genome methylation profiling) (108)

Increased accessibility to Pdcd, Havcr2, and Batf loci and to loci encoding genes

involved in negative regulation of T cell effector functions (109)

Recurrence after anti-PD-1 therapy was associated with the hypermethylation of the

PD-L1 promoter (110)

Recent studies show the stability of the PD-1 locus demethylation even after PD-1

blockade (111)

Two chromatin states have been identified in exhausted T cells: (i) plastic and

reversible, (ii) fixed dysfunctional state resistant to reprogramming (112)

Identification of exhaustion-specific enhancer that contains essential RAR, T-bet, and

Sox3 motifs (109)

HDAC6-selective inhibitors directed peripheral and infiltrating T cells toward a

Th1/effector phenotype (113)

Exhausted T cells acquire heritable de novo methylation programs able to restrict T cell expansion and clonal diversity during PD-1 blockade treatment. A

DNA-demethylating agent (Decitabine) improved T cell responses and tumor control during PD-1/PD-L1 blockade (114)

9–12 exhaustion clusters have been identified from epigenomic-guided mass cytometry profiling data (115)

data suggest that nutrient deprivation is inducing, per se, T cell
dysfunction (125–127).

CD8T cell responses are quickly impaired during both early
viral infection and tumor establishment.

Recently, terminally exhausted CD8T cells have been
characterized and distinguished from their progenitors

depending upon the expression of PD-1, TIM-3, CD44, Eomes,
T-bet, TCF-1, Slamf6, and CXCR5 (51, 67, 128–134). Exhausted
T cell progenitors were characterized in LCMVmodels as pool of
cells expressing TCF-1+/PD-1int/CXCR5+/Slamf6+, responding
to PD-1 blockade and differentiating into terminally exhausted
CD8T cells (TCF-1−/PD-1high/TIM-3+) (128–131). Their
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presence was also described among circulating tumor-reactive
CD8T cells in melanoma patients and within TILs in primary
melanomas (135) and non-small-cell lung cancer (NSCLC)
(132). Interestingly, recent studies have better characterized
a subset of CD8+/CXCR5+ T cells with proliferative capacity
and able to infiltrate B cell follicles and inflamed tissues in
the presence of chronic antigen exposure and inflammation
(129, 131, 136–143). This subset shows heterogeneous phenotype
and gene expression profile depending on the pathogenic
context, still it is distinct from the CXCR5− counterpart pool and
maintain cytotoxic properties (144). In addition of being part of
the TCF-1+/PD-1int progenitor pool (129, 145), these cells have
been described as having variable levels of exhaustion and being
similar to Tfh cells (20, 108, 129, 131, 141, 146–149). This is
reflected in their capacity to help in the control of viral infection
and of tumor growth, in the promotion of inflammation and
in the induction of B cell responses (108, 136, 137, 144). The
formation and maintenance of the TCF-1+/PD-1int progenitor
pool is orchestrated by the thymocyte selection-associated high
mobility group box protein TOX. While TOX is a key player
in the establishment of the exhausted state, its role is largely
dispensable for the generation of effector and memory T cells.
Antigen persistency is likely to be the cause of Tox induction
since its expression is dependent on calcineurin and NFAT2.
TOX is therefore the translator of persistent stimulation into
a distinct T cell transcriptional and epigenetic developmental
program leading to T cell exhaustion. TOX is also important for
the subsequent differentiation into terminally exhausted cells
that is counteracted and regulated by the phosphatase PTPN2
(82–84, 150–152). PTPN2 abrogation increases the number
of terminally differentiated cytotoxic CD8T cells promoting
effective immune response, tumor/viral clearance and improved
response to inhibitory molecules blockade (84). TOX induces
genes that are important for the exhaustion precursor formation,
including transcription factors (TFs) (e.g., Tcf7, Nr4a2, and Tox
itself) and co-inhibitory receptors (e.g., Pdcd1, Lag3, CD244,
and Havcr2). In conclusion, persistent activation and induction
of TOX are common drivers of T cell exhaustion in both viral
infection and tumor pathogenesis. However, specific players
such as CD4T cell loss and TME heterogeneity in infection and
cancer, respectively, contribute to define distinct and overlapping
traits of exhausted T cells in the two conditions.

HALLMARKS OF T CELL EXHAUSTION IN
HIV-1 INFECTION

Many studies have indicated HIV-1-induced T cell exhaustion
as main hallmark of the disease. Of note, HIV-1-specific CD8T
cells selectively show features of exhaustion as compared to
bulk CD8T cell populations and unrelated virus-specific T cells
circulating in the same subject, as described in human and animal
studies (153–155).

Expression of Multiple ICs
A complex network of stimulatory and inhibitory surface
molecules orchestrates the functionality of CD8T cells (156, 157).

A cardinal feature of exhausted T cells in HIV-1 infection is the
sustained expression of multiple inhibitory immune checkpoints
(ICs) (Table 1).

The first and, to date, the most important IC involved in
CD8T cell exhaustion in chronic infections (15, 23–25, 52, 158)
is PD-1. During chronic stimulation, PD-1 expression on virus-
specific CD8T cells is high and sustained (23–25, 68) because
of mechanisms involving both TFs [i.e., T-bet (159), Blimp-1
(88, 160)] and soluble factors [i.e., IFN-α (161) and RANTES
(156)]. In turn, PD-1 signaling affects the function, proliferation,
survival and chemotaxis of CD8T cells (23–25, 156, 162). In vivo,
PD-1high SIV-specific CD8T cells are characterized by a higher
turnover (163).

The interaction of PD-1 with its two ligands PD-L1 and
PD-L2 on hematopoietic and non-hematopoietic cells triggers
the phosphorylation of two cytoplasmic domains and the
subsequent recruitment of cytosolic tyrosine phosphatases
Shp2 and Shp1, the TCR-phosphorylating kinase Lck, and
the inhibitory tyrosine kinase Csk (164, 165). These effectors
mainly act by antagonizing the CD28 costimulatory signaling
(166–168) and the TCR signaling via dephosphorylation of
SLP76 and ZAP70 (164, 166). Moreover, signaling molecules
including ERK, Vav, PLCγ, PI3K, and Ras have been described
as downstream targets of PD-1 signaling in T cells, leading to
an impairment in metabolism, survival and cell growth (10,
165, 168, 169). PD-1 is also expressed by CXCR5+ CD8T cells
(20, 170), a population particularly interesting for therapeutic
purposes.

In addition, landmark studies in LCMV (67) and then
SIV/HIV-1 infection (33, 34, 62, 171, 172) highlighted the
relevance of multiple ICs co-expression (i.e., CD160, 2B4, TIM-
3, T cell immunoreceptor with Ig and ITIM domains-TIGIT,
CTLA-4 and LAG-3) to define deeply exhausted virus-specific
CD8T cells. The co-expression of multiple ICs may be due to
their transcriptional co-regulation and non-redundant roles in
the physiological control of CD8T cell responses (130, 173–
176). Increased disease progression, viral replication and lower
CD4T cell counts were directly associated with PD-1 (23),
CTLA-4 (171), TIM-3 (58, 59), LAG-3 (61), and TIGIT (62,
63) expression. In addition, the superior proliferative capacity
and the maintenance of cytotoxic functions by CXCR5+ CD8T
cells concur with a lower surface expression of ICs and a
higher expression of co-stimulatory receptors (CD28 and ICOS)
as opposed to the CXCR5− counterpart (129, 131, 148). Of
importance, SIV and HIV-1 specific CD8T cell proliferation
in vitro improves when distinct ICs (i.e. CD160, 2B4, TIGIT,
BTLA, TIM-3) are blocked (24, 33, 60, 62) and administration
of anti-PD-1 in SIV infected macaques (177–181) and HIV-
1-infected patients (182) increases T cell immune responses,
however clinical efficacy remains controversial (181, 183–
190).

More recently, in SIV-infected macaques, the expression of
CD6 by PD-1+ CD8T cells was associated with a reduced
proliferation, cytokine secretion and cytotoxic capacity when
compared to their CD6− counterpart. The frequency of
CD6+PD-1+ CD8T cells positively correlated with SIV viral load
and combined targeting of CD6 and PD-1 effectively restored the
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CD8T cell proliferation capacity in vitro, suggesting that CD6
may be a new immunotherapeutic target (72).

Recently, the combination of transcriptomic and proteomic
data allowed the identification of multiple cell clusters that
were evolving with HIV-1 disease progression or initiation
of ART (64). These data may lead to the understanding of
new specific features of disease evolution and drive novel
therapeutic approaches.

Alteration in TFs Expression and
Epigenetic Regulation
Genomic approaches were recently applied to investigate the
transcriptional profile of virus-specific exhausted CD8T cells,
revealing their unique molecular signature as compared to non-
exhausted cells (Table 1) (19, 109, 111, 112, 115). Transcriptional
analyses showed that exhaustion results from centrally connected
pathways (19, 115, 191), having TOX as a master regulator.
Indeed, TOX expression correlates with the presence of an
exhausted phenotype during chronic infections in mice (LCMV)
and humans (HCV) (82). In addition to TOX, several TFs
coordinate gene expression networks, including PBX3, EOMES,
BLIMP1 (Prdm1) (88–91), NOTCH (94), NFATc1 (96), basic
leucine zipper transcription factor, ATF-like (BATF) (97–99),
IRF-4, von Hippel–Lindau disease tumor suppressor (VHL),
FOXO1, and FOXP1 (99–102, 130, 159, 192–198). At the
molecular level, TCR stimulation leads to the induction of
Tox expression (83) and induces the recruitment of TFs, like
Notch (94), NFATc-1 (96), IRF-4 and BATF (100), at the
promoter of different inhibitory receptors, ultimately driving
their upregulation. Among the genes induced by TOX, Tcf7
(encoding TCF-1) promotes the generation of exhaustion
precursors through the induction of Eomes and c-Myb in early
chronic infection, whereas PD-1 is needed to stabilize this pool
(85, 199). IRF4 was also shown to favor CD8T cell exhaustion
while limiting memory T cell differentiation (100). Importantly,
PD-1high/Eomeshigh and PD-1low/T-bethigh T cells are both
necessary to contain chronic LCMV infection (130). However,
CD8T cells presenting a T-betdim/Eomeshigh profile represent a
highly exhausted state with elevated levels of multiple inhibitory
receptors (i.e., PD-1, CD160, and 2B4) (200, 201). In turn, PD-
1 signaling reduces the expression of Bcl-xl (168), favoring the
apoptosis of activated T cells (162, 202), and induces BATF
leading to a decreased cytokine production, cytotoxic potential
and proliferation rate of virus-specific CD8T cells (97, 99). BATF
induces the expression of T-bet and BLIMP-1 and correlates with
PD-1 expression in murine models of chronic viral infection.
BLIMP-1 is upregulated in patients with progressive, as opposed
to non-progressive, HIV-1 infection (194, 203, 204) and is also
associated with reduced T cell proliferation and effector-cytokine
secretion capacity; however, these functions are restored by
knocking down BATF or BLIMP-1 (88, 99). BLIMP-1 can also be
induced in T cells upon priming with HIV-1 pulsed DCs together
with other inhibitory molecules, including PD-1, TIM-3, LAG-3,
and CTLA-4 (205).

The characterization of the epigenetic landscape of exhausted
T cells gives novel and key insights to decipher the function

of TFs. Comprehensive whole-genome analysis of chromatin
accessibility (ATAC-seq) (206), has shown that exhausted CD8T
cells have a distinct epigenetic signature (95, 109, 111, 112, 207,
208). For instance, exhausted CD8T cells have several chromatin
regions with reduced accessibility (e.g., the Ifng, Ccr7, Il7r, Nt5e,
Tcf7, and Lef1 loci), while presenting open chromatin regions
in loci that govern the expression of IC molecules (e.g., Pdcd1,
Tigit, Ctla4), of ectoenzymes implicated in metabolic regulation
(e.g., Cd38, Entpd1), of chemokines and cytokines (e.g., Xcl1)
and of TFs (e.g., Eomes, Ikzf2, Tox) (64, 109, 111). The deletion
of chromatin accessible regions including TF binding motif for
RAR-retinoic acid receptor, T-bet, and Sox3 cause a dramatic
reduction in PD-1 expression, demonstrating their important
role in shaping exhausted T cell transcriptional profiling (64, 109,
208). Moreover, during chronic LCMV infection, the Pdcd1 locus
become completely demethylated (106), while the histone H3 is
less diacetylated in CD8T cells, indicating a loss in epigenetically
active genes (209). In parallel, the transcriptional regulatory
region of the PD-1 promoter is unmethylated in PD-1hi HIV-1-
specific CD8T cells but not in donor-matched naive cells (PD-
1−) (107). Thus, in chronic LCMV (106) and HIV-1 infection
(107), PD-1 expression in virus-specific CD8T cells is controlled
by the chromatin accessibility of the gene itself (epigenetic
control) and by TF governing its expression (Figure 2).

Loss of Functions
Exhaustion in chronic viral infections has been described in both
mice and humans as the progressive decrease in the capacity of
virus-specific CD8T cells to secrete cytokines, proliferate and
exert cytotoxicity (23, 68, 210–213) as a consequence of persisting
virus and antigen load (214). Loss of function characterizing
exhaustion is hierarchical: IL-2 production is one of the first
function to be extinguished, followed by TNF-α production,
whereas the ability to produce interferon-γ (IFN-γ) is more
resistant to inactivation (155, 213, 215–218).

Consistently with the hierarchical loss of effector functions
by exhausted T cells, Riley et al. (219) demonstrated that such
effector functions depend on the strength of PD-1 signaling, thus
on PD-1 expression levels.

HALLMARKS OF T CELL EXHAUSTION IN
CANCER

The identification of exhausted T cells in the cancer setting
was inspired by previous knowledge gained in chronic viral
infections. In human melanoma metastasis, T cells sharing
many features of the exhaustion signature identified in LCMV
infection were found (53). However, as discussed above, the
establishment of exhaustion occurs differently in viral infection
and cancer, the latter involving a complex network of players
and mediators. The repertoire of tumor-specific T lymphocytes
is generally devoid of highly avid autoreactive cells due to
central and peripheral tolerance mechanisms, and priming may
be inefficient due to the lack of co-stimulation, an inflammatory
milieu and/or the presence of immunoregulatory cellular subsets
(220). Therefore, a more heterogeneous pool of cells, fully
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FIGURE 2 | Epigenetic imprinting of T cell exhaustion. Shortly after antigen exposure, naïve T cells generate effector T cells that are armed to eliminate foreigner

antigens. Activated T cells demethlyate loci dedicated to the expression of effector functions and activation genes. Activated genes include also ICs (i.e., PD-1)

needed for starting the contraction phase once the antigen is cleared. After the contraction phase, memory T cells survive and present a specific transcriptional profile,

while PD-1 expression is reduced. If the antigen persists, memory T cells cannot be generated and effector functions are progressively lost. In addition, some genes of

the demethylated loci remain transcriptionally active sustaining the expression of ICs and leading to T cell functional exhaustion. In the context of a therapeutic

intervention or physiological immune control of chronic antigen exposure (i.e., ART, Anti-PD-1, Elite controllers), exhausted T cells can restore, at least partially, their

effector functions and reduce the expression of ICs such as PD-1. However, implicated loci remain demethylated, potentially causing a rapid restoration of the

exhausted state after treatment interruption and the failure of the immune system to completely eradicate the antigens.

activated or not, may undergo the dysfunctional program.
Consistently with their virus-specific counterparts, these cells
are characterized by increased expression of ICs (19, 64,
221), impaired homeostatic response to cytokines (222) and
altered epigenetic and transcriptional programs (10, 191, 223).
In contrast to HIV-1 infection where little/no information is
available to date, the rewiring of the T cell metabolism in
cancer immunopathogenesis is a well-characterized hallmark of
exhaustion (224, 225). Of note, PD-L1 engaged by PD-1 acts
as an anti-apoptotic molecule and increases chemoresistance
on cancer cells through phosphorylation and activation of the
PI3K/AKT pathway, as opposed to inactivation in T cells (226–
228). Notwithstanding the recent burst of investigations on T cell
exhaustion in cancer, studies in human remain challenging and
animal models should be tuned to better reflect the slow course
of natural cancer progression and its antigenic contexts (high/low
mutational load).

Expression of Multiple ICs
In line with what is described for HIV-1 infection, a high
and sustained expression of ICs is consensually considered as
the main hallmark of T cell exhaustion in the cancer setting
(Table 1). Tumor-specific CD8 TILs express high levels of PD-
1 associated to impaired function (54). PD-1 is expressed
upon TCR engagement and NFAT nuclear translocation (96)
and may drive exhaustion of T cells undergoing persistent

antigen exposure (18, 229). Exhausted T cells can co-express
PD-1 together with different ICs, including, LAG-3, CTLA-
4, BTLA, TIGIT, 2B4 (CD244), VISTA, KLRG1 (53, 73, 230)
and TIM-3 (52, 131, 199). Inhibitory receptors signal through
non-overlapping pathways and use different mechanisms to
regulate T cell function ultimately inducing exhaustion: they
sequester target receptors and ligands involved in activation
pathways (ectodomain competition), they dampen the signals
from activating receptors and they mediate transcription of
inhibitory genes (10). Importantly, the hierarchical co-expression
of multiple inhibitory receptors has been associated with a more
severe grade of cellular dysfunction (231). Additional, recently
identified markers of CD8T cell exhaustion in cancer include:
CD39 (77, 78), LAYN, whose expression is mutually exclusive
with LAG-3 in hepatocellular carcinoma patients (80), and
CXCL13 (53, 79). Moreover, Stanczak et al. (81) described the
Sia-SAMP:Siglec-9 as an inhibitory pathway in NSCLC, where
high frequencies of Siglec9+CD8+ TILs inversely correlate with
survival (81). Finally, CD160+ CD8T cells have been shown
to express higher PD-1 levels than the CD160− counterpart, to
have less proliferative and cytotoxic potential and to be enriched
among CD8 TILs in pancreatic cancer patients (69). Recently, a
CXCR5+ CD8T cell population has been observed to expand in
diffuse large B cell lymphoma (232), follicular lymphoma (144)
and HBV-related hepatocellular carcinoma (137, 139, 141, 149).
Circulating, tumor infiltrating, and lymphoid CXCR5+ CD8T
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cells were shown to co-express PD-1 and, in contrast with chronic
viral infection (129, 131, 134, 148), TIM-3 (134, 140), however
they were functionally less exhausted than the CXCR5− CD8T
cell population and expressed genes related to stem-like plasticity
and cytotoxicity (140, 141, 149). The frequency of this subset was
correlated with a better prognosis in follicular lymphoma (144),
pancreatic (139), colorectal (137, 141), and lung (140) cancer,
suggesting its anti-tumor activity. However, combined blockade
of TIM-3, PD-1 or IL-10R pathways could increase the cytotoxic
activity of CXCR5+ CD8T cells indicating their limited lytic
potential (139, 149).

Alteration in TFs Expression and
Epigenetic Regulation
Tumor cells, together with immune and non-immune
populations of the TME, contribute to a well-defined gene
expression profile of dysfunctional anti-tumor T cells (Table 1),
partially overlapping with that of exhausted T cells in chronic
infections, by releasing molecules and establishing inhibitory
contacts. In addition, recent studies in murine and human cancer
suggest that TILs display a broad spectrum of dysfunctional states
shaped by the multifaceted suppressive signals that occur within
the TME (64, 130, 135). Several signaling pathways through the
TCR, suppressive cytokines (TGF-ß, IL-6), inhibitory receptors,
metabolites (adenosine, prostaglandins, lactate), enzymes (e.g.,
nitric oxide synthase, reactive oxygen species, indoleamine-2,3
dioxygenase), low pH, hypoxia and nutrient deprivation, lead
to the final transactivation of TFs controlling the expression of
different gene sets (101, 104, 173, 233, 234). As described for
chronic infections, a complex pattern of TFs drives the initial
triggering of differentiation toward the exhausted phenotype,
including TOX, NFAT, Blimp-1, BATF, FoxO1, VHL, IRF4
(93, 234), Bcl-6, cMAF, and STAT3 (86, 87, 104, 235, 236).
These factors exert distinct roles in T cells at different stages
of differentiation and they do not exclusively govern gene
expression in exhausted T cells. The epigenomes of different
T cell subsets contribute to the context-specific functions of
shared TFs. For instance, STAT3 dependent transcriptional
regulation limits both TILs recruitment and cytotoxic function
by downregulating IFN-γ, CXCR3, and CXCL10 expression
and inducing ROR-γt (87, 236). Of note, EOMES and T-bet
are expressed during the whole course of tumor progression
and, in contrast to chronic viral infections, they do not help in
distinguishing an exhausted-progenitor subset from terminally
differentiated exhausted T cells (Figure 1) (10, 55). More
recently, new technological advances (i.e., mass cytometry
and single cell sequencing) are allowing a deeper examination
of the molecular properties of dysfunctional T cells at the
single cell level. These studies represent milestones for the
comprehension of T cell biology in the context of complex
TME, dominated by a high heterogeneity of cellular subsets.
Recently, Bengsch et al. (64, 115) identified 9 distinct T cell
clusters among exhausted CD8T cells in HIV-1 infection and
human lung cancer by using transcriptomic- and epigenetic-
guided mass cytometry. This study also assigned an exhaustion
score to each of the subsets based on functional features

(64, 115), those providing relevant insight for the design of IC
blockade therapies.

Loss of Functions
As in chronic viral infections, exhausted T cells found in
different tumor types have reduced effector functions as shown
in terms of cytokine production and cytotoxicity (53, 237).
Nevertheless, the hierarchy by which T cells progressively lose
their functions is less clear (53, 54, 231, 237–239). TILs are
not functionally inert and, to some extent, contribute to tumor
control (231, 240). The efficacy of IC inhibitors and IL-2-driven
ex vivo expansion of functional TILs is an indirect proof of
this impaired yet present anti-tumor activity. Furthermore, TILs
can be highly heterogeneous among distinct cancer types as
evidenced by their different capacity to respond to IC blockade.
For instance, in small-cell lung cancer patients, subsets of PD-
1high TILs are enriched in tumor-specific T cells and their
presence is a predictor of clinical response to anti-PD-1 therapy
(132, 241–243). On the contrary, T cells infiltrating breast tumor
retain robust cytokine production and degranulation capacity
(244) notwithstanding the expression of PD-1. In breast cancer
patients, PD-1 expression is therefore less predictive of TILs
dysfunction and this may explain the modest clinical responses
to anti-PD-1 or anti-PDL therapies.

The proliferative potential of exhausted T cells is considered
limited due to unresponsiveness to homeostatic cytokines such
as IL-7, IL-15 and IL-21 (211, 245, 246). However, the previously
mentioned TCF-1+/ PD-1int progenitor pool of exhausted
T cells has a residual proliferative potential that allows the
replenishment of the pool of exhausted antigen-specific CD8T
cells by expanding and differentiating into the numerically
larger population of TCF-1−/PD-1hi/TIM-3+ terminal progeny,
characterized by a higher co-expression of other ICs and limited
proliferative capacity (135, 199).

In a work by Li H. and co-workers, the intra-tumoral
immune infiltrates of 25 melanoma patients differing for
staging and treatments were analyzed by scRNA-seq for a
deep characterization of dysfunctional T cells both in terms
of transcriptional states and TCR clonality (238). Exhausted T
cells expressing previously reported ICs (i.e., PD-1 and LAG-
3) were observed in many patients. Importantly, intra-tumoral
CD8T cells could cluster in two distinct subpools. T cells
belonging to the first pool spanned a wide range of transcriptional
states, from transitioning to highly dysfunctional, expressed a
gradient of inhibitory molecules and were specifically observed
in tumor tissue. Some of the expressed regulatory molecules
(CSF1, ZBED2) were also shared with regulatory T cells. A second
subpool included T cells with cytotoxic potential, but limited
proliferative capacity. This second pool of T cells could represent
bystander T cells, likely from the circulation. Tumor-specific T
cells were enriched in the exhausted pool, as previously observed
for NSCLC (132). Strikingly, T cells with an initial buildup of
the dysfunctional programmaintained a clear proliferative signal
with a doubling time of few days and rapid turnover. This
dynamic and active T cell state fits previously suggested models
of establishment of exhaustion at the tumor site (238). Common
mechanisms of the emergence of exhaustion are present among
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tumor types, but differences in the relative abundance of the
subsets can be due to different TME, i.e., availability of antigens
and exposure to inhibitory factors as well-shown for TILs in
breast cancer (244). This is then reflected in the different capacity
to respond to IC blokade that is not only heterogeneous among
tumor types but also among individuals (244), as reviewed
elsewhere (247).

In conclusion, in both HIV-1 infection and established
tumors, T cell exhaustion is likely driven by TOX and the
subsequent coordinated expression of several TFs. Exhausted
T cells are characterized by loss of effector functions, high
expression of multiple ICs, reduced homeostatic expansion,
altered TFs expression, and remodeled chromatin. However,
while in HIV-1 infection T-bet and EOMES allow the distinction
between progenitors and fully exhausted T cells, in cancer
patients TCF-1 and STAT3 may instead be the key TFs. The
avidity and the hierarchy of the loss of function of exhausted
T cells in cancer patients is less well-described than in chronic
infections. Exhausted cells present in the TME may be highly
heterogeneous and not include only the antigen-specific ones;
new insights will explain how these aspects could affect the
response to IC blockade.

EXHAUSTED VS. ACTIVATED/MEMORY
CD8T CELLS

Given the high heterogeneity and dynamicity of the memory
CD8T cell compartment (64, 238, 248), novel immunotherapies,
aiming at rescuing the functionality of exhausted T cells, would
require the ability to selectively distinguish exhausted from
memory and activated effector T cells.

Expression of Surface Molecules
The solely qualitative evaluation of ICs expression by CD8T
cells, per se, does not discriminate between exhausted and
activated T cells. As previously mentioned, inhibitory receptors
that are transiently expressed on activated effector T cells show
a higher and sustained upregulation on exhausted T cells,
triggered by a persistent antigen stimulation. For instance,
PD-1 is rapidly upregulated upon T cell activation (249)
and persists at moderate levels in healthy subjects with a
preferential expression on effector memory T cells (162, 250–
253). During chronic infections, PD-1 expression on viral-
specific T cells increases (23, 38, 128, 254, 255) and does not
always reverse upon antigen removal (175, 256). HIV-1-infected
patients responding to ART show reduced expression levels
of PD-1 on virus-specific CD8T cells after antigen clearance
(257), still these levels are maintained above the physiological
threshold observed in healthy individuals. This may be due to
a broad systemic immune activation, to the effects of common
gamma-delta chain cytokines sustaining PD-1 expression on bulk
CD8T cells (258, 259) or to the irreversible transcriptional and
epigenetic alteration affecting highly exhausted T cells (106, 260)
(Figure 2).

As previously mentioned, the degree of exhaustion is directly
associated with the pattern of co-expression of different co-
inhibitory receptors (67). First, this is mechanistically relevant,
as simultaneous blocking of multiple ICs results in a synergistic
reversal of T cell exhaustion in both cancer and chronic
infections (171, 239, 261–263). Second, the identification of
co-expression subsets may lead to a better discrimination
between exhausted and activated T cells, reducing the risk for
off-targets effects.

Many studies have shown that chronic antigen stimulation
of T cells drives an IC expression pattern. For instance, TIM-3
and PD-1 cooperate for the induction of CD8T cell exhaustion
in cancer (52, 264–266) and chronic viral infections (34). In
LCMV infection, PD-1 and TIM-3 identify a population of T
cells strongly enriched in gene signatures of terminal exhaustion
and harboring reduced proliferative capacity, longevity and
cytokine production (64). In HIV-1 infected patients, ART
significantly suppresses TIM-3 expression on HIV-1 specific
CD8T cells (267) indicating that, like PD-1, it is dependent
on chronic TCR stimulation. Moreover, the expression profile
of CD56 and TIM-3 can discriminate between individuals that
naturally control HIV-1 replication (elite patients) and ART-
treated patients (268). After virus-clearance and CD4T cell
recovery, patients receiving ART show a quantitative loss of
CD56+ CD8T cells coupled to an exhausted phenotype, as shown
by TIM-3 upregulation. Elite patients maintain a pool of cytolytic
CD56+ CD8T cells comparable to healthy individuals. Similarly,
CD160 expression also allows the distinction between exhausted
and activated (PD-1+) HIV-1 specific CD8T cells (33). Indeed,
only cells co-expressing CD160 and PD-1 (PD-1highCD160high)
are functionally impaired in HIV-1 infected patients (33).

In cancer, the activation of ICs other than PD-1/PD-L1
and CTLA-4 can be induced by adaptive resistance to IC
therapies. The treatment of such tumors could benefit from the
combination of anti-PD-1 with different immune checkpoint
molecules (e.g., LAG-3, TIM-3, TIGIT), activation markers
and cytokines/chemokines (269). On the other hand, T cell
dysfunction is characterized by decreased levels of co-stimulatory
molecules, of their ligands and of adaptor molecules impairing
the co-stimulatory signaling. Among these, CD44, LY6C, killer
cell lectin-like receptor subfamily G member 1 (KLRG1), CD122
(IL-2Rβ), and CD127 (IL-7R), tumor necrosis factor receptor
(TNFR)- associated factor 1 (TRAF1), CD28, and 41BBL have
been described (67, 175, 246, 258, 259). In particular, exhausted
T cells display the same profile of effector T cells with reduced
telomere length and low levels of CD62L, CD127, and CD122
expression (1, 40, 153, 215, 258, 270–273). Their incapacity to
respond to IL-7 and IL-15 (88, 128, 159, 245) lead to the lack
of homeostatic expansion in the absence of antigens (1, 88, 128,
130, 159) and, ultimately, to death (14, 154, 215, 256, 274–276).
T cell dysfunction is also characterized by the downregulation of
the signaling adaptor TNFR-associated factor 1 (TRAF1) both in
HIV-1 infected patients with progressive disease and in LCMV
chronically-infected mice (259). In HIV-1 infected patients,
TRAF1 expression negatively correlates with PD-1 expression
and viral load and knockdown of TRAF1 in CD8T cells from
viral controllers results in decreased HIV-1 suppression ex
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vivo. TGF-β is responsible for the post-translational loss of
TRAF1, while IL-7 signaling is able to restore TRAF1 levels.
Transfer of TRAF1+ memory T cells or a combination treatment
with IL-7 and agonist anti-4-1BB antibody in chronic LCMV
infection improve T cell expansion and viral control in a
TRAF1-dependent manner (259). Patient samples of renal cell
carcinoma also show reduced expression of TRAF1 compared
with normal kidney. This confers resistance to apoptosis and
higher proliferative capacity to renal cancer cells (277). These
findings identify TRAF1 as a potential biomarker of T cell
dysfunction and therapeutic target. Moreover, combining PD-
1 blockade with an agonistic antibody to 4-1BB dramatically
improved T cell function and LCMV control in vivo (278).
Still, the role of positive co-stimulatory molecules in rescuing
exhausted T cells remains poorly described.

Transcriptional and Epigenetic Regulation
Another key difference between exhausted and activated T cells
resides in the TFs (18, 19, 191, 279). Both the quality of
the expressed TFs and the genes they can target, distinguish
exhausted T cells from activated and memory CD8T cells (191,
280, 281).

Transcriptional profiling analysis demonstrated that CD8T
cell memory and exhaustion reflect distinct states defined by
coordinated sets of modules. Specific genes and pathways
differentially implicated in exhaustion vs. memory include genes
involved in epigenetics, DNA damage, and WNT signaling, such
as Rtp4, Foxp1, Ikzf2, Zeb2, Lass6, Tox, and Eomes (191). The
study by Bengsch et al. (64, 115) associates effector and exhausted
T cells to a higher expression of CD39, LAG-3, TCF-1, Helios,
CTLA-4 and PD-1, Eomes, TOX, 2B4, TIGIT, respectively.

During acute infection, T-bet and EOMES play pivotal roles in
the generation of terminally-differentiated (2, 282) and central-
memory (283–285) CD8T cells respectively, while CD8 effector
T cells co-express T-bet and EOMES (286). In contrast, during
chronic infection, exhausted T cell subsets express either T-
bet or EOMES in a somehow mutually exclusive pattern and
they identify pools of non-terminal progenitor and terminally-
differentiated exhausted CD8T cells, respectively (Figure 1)
(130). Of note, anti-PDL1 therapy only improves the function
of the T-bethi subset, while having little impact on EOMEShi

cells (128, 130), indicating an important aspect of population
dynamics in IC blockade-mediated reversal of T cell exhaustion.
A similar population of CD8T cells responding to IC blockade,
(PD1int/TCF-1+), has been recently described as precursors
of terminally exhausted cells (PD1high/TCF-1−/TIM-3+) to be
distinguished from memory precursors cells (PD1−/TCF-1+) on
the basis of several epigenetic and transcriptional alterations such
as higher expression of CXCR5 and Slamf6 (199).

By using a combined experimental and computational
approach, Singer et al. (105) described mutually exclusive gene
modules to distinguish dysfunctional from activated T cells in a
murine colon carcinoma model. In particular, metallothionins,
responsible for regulating the intracellular zinc metabolism,
and zinc-dependent TFs were found to be highly enriched in
dysfunctional CD8 TILs. GATA-3, a zinc-finger TF, consistently
emerged as a driver of T cell dysfunction. Moreover, the
expression of the co-inhibitory receptors PD-1 and TIM-3 was

maintained upon metallothion-deletion, being uncoupled from
the gene dysfunctional module (105).

Epigenetic studies also helped in identifying patterns
distinguishing T cell exhaustion from T cell activation/memory
profile. Recent epigenetic studies in mice and humans indicate
that exhausted T cells represent a unique T cell lineage, compared
to effector and memory T cells and are a stable, distinct and
disease-relevant cell type (109, 111, 112).

HIV-1- and HCV-specific CD8T cell genomes present a
high accessibility to exhaustion-associated nucleotide regions.
On the opposite, the genome of CMV-specific CD8T cells
is characterized by a higher accessibility to memory-specific
nucleotide regions (109). Interestingly, the accessibility to
exhaustion-specific regions is reduced in CD8T cells specific
for HCV epitopes that undergo viral escape (109), indicating
that chronic exposure is needed to shape exhaustion-associated
epigenetic imprinting.

Studies focusing on Pdcd1 locus revealed that during the
effector phase of an acute LCMV infection, the promoter
regions were largely demethylated to become remethylated as
the infection solved and CD8T cell memory formed (106, 287).
In the context of a chronic LCMV infection, the demethylation
observed in the Pdcd1 locus during chronic LCMV infection
was instead stable and no remethylation was observed, even
when viral titers and PD-1 protein expression by exhausted
CD8T cells decreased (106) or after transfer in recipient mice
(260). Along the same lines, the unmethylated state of the Pdcd1
locus did not change in T cells from subjects with a viral load
controlled by ART for several years or from elite controllers
(107). This suggests that the epigenetic program of the PD-
1 locus is stabilized after prolonged exposure to HIV-1 virus
despite different levels of PD-1 surface expression. Consistently,
the transcriptome and the epigenome of terminally exhausted
CD8T cells (PD-1high/TCF-1−/TIM-3+) are stably rewired and
resistant to remodeling after PD-1 blockade (111, 114) (Figure 2).

These data strongly suggest that epigenetic remodelingmay be
required to further improve strength and breadth of the efficacy
of immune checkpoint blockade.

In conclusion, exhausted T cells can be distinguished from
activated T cells by the higher and sustained co-expression of
IC molecules, as well as by a phenotype skewed toward effector
memory cells with reduced co-stimulatory molecules expression.
Moreover, the systemically induced immune activation and
the stable transcriptional and epigenetic imprinting established
during T cell exhaustion do not allow the restoration of
IC molecules expression to the levels measured in healthy
donors even after antigen removal/reduction. Among the TFs
analyzed, T-bet, and EOMES allow the distinction between
activated and exhausted CD8T cells in HIV-1 infection,
while metallothionins and GATA-3 have been suggested as
discriminators in cancer patients.

CONCLUSIONS

Recent major advances in immunotherapy ultimately
demonstrated the potentiality of the immune system in disease
control. However, they also proved that existing strategies are
hampered by the immune tolerance established by IC expression
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on T cells. In addition, despite the significant difference in the
availability of clinical information concerning immunotherapy
efficacy in cancer and HIV-1 infection, there is still a long way
to go for the scientific community to decipher the mechanisms
of immunosuppression in different indications. Recently, new
technological advances (such as mass cytometry, single cell
sequencing, ATAseq, metabolomics) are allowing a deeper
examination of the molecular properties of dysfunctional T cells
at the single cell level. These studies represent milestones for
the comprehension of T cell biology in the context of complex
TME, dominated by a high heterogeneity of cellular subsets
and in HIV-1 infection where current immunotherapy may not
improve T cell responses (64, 115). These data may lead to the
understanding of new specific features of disease evolution and
drive novel immunotherapeutic approaches.

AUTHOR CONTRIBUTIONS

SV and SB wrote the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the Swiss National Science
Foundation (Grant 310030_182384).

ACKNOWLEDGMENTS

The authors acknowledge Mr. Samuel Cooper for his valuable
proofreading of the manuscript.

REFERENCES

1. Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral

infection. J Virol. (2004) 78:5535–45. doi: 10.1128/JVI.78.11.5535-554

5.2004

2. Kaech SM, Cui W. Transcriptional control of effector and memory

CD8+ T cell differentiation. Nat Rev Immunol. (2012) 12:749–61.

doi: 10.1038/nri3307

3. Badovinac VP, Porter BB, Harty JT. CD8+ T cell contraction is controlled by

early inflammation. Nat Immunol. (2004) 5:809–17. doi: 10.1038/ni1098

4. Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG. Early

programming of T cell populations responding to bacterial infection. J

Immunol. (2000) 165:6833–9. doi: 10.4049/jimmunol.165.12.6833

5. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck

CD, et al. Signals required for programming effector and memory

development by CD8+ T cells. Immunol Rev. (2006) 211:81–92.

doi: 10.1111/j.0105-2896.2006.00382.x

6. Eisenbarth SC. Dendritic cell subsets in T cell programming:

location dictates function. Nat Rev Immunol. (2019) 19:89–103.

doi: 10.1038/s41577-018-0088-1

7. Omilusik KD, Goldrath AW. The origins of memory T cells. Nature. (2017)

552:337–9. doi: 10.1038/d41586-017-08280-8

8. Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, et al. Effector

CD8T cells dedifferentiate into long-lived memory cells. Nature. (2017)

552:404–9. doi: 10.1038/nature25144

9. Williams MA, Bevan MJ. Effector and memory CTL

differentiation. Annu Rev Immunol. (2007) 25:171–92.

doi: 10.1146/annurev.immunol.25.022106.141548

10. Wherry EJ, KurachiM.Molecular and cellular insights into T cell exhaustion.

Nat Rev Immunol. (2015) 15:486–99. doi: 10.1038/nri3862

11. Delgoffe GM, Powell JD. Feeding an army: the metabolism of T cells in

activation, anergy, and exhaustion. Mol Immunol. (2015) 68(2 Pt C):492–6.

doi: 10.1016/j.molimm.2015.07.026

12. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining

mechanisms of T cell dysfunction. Trends Immunol. (2014) 35:51–60.

doi: 10.1016/j.it.2013.10.001

13. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M,

Altman JD, et al. Viral immune evasion due to persistence of activated

T cells without effector function. J Exp Med. (1998) 188:2205–13.

doi: 10.1084/jem.188.12.2205

14. Moskophidis D, Laine E, Zinkernagel RM. Peripheral clonal deletion of

antiviral memory CD8+ T cells. Eur J Immunol. (1993) 23:3306–11.

doi: 10.1002/eji.1830231237

15. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al.

Restoring function in exhausted CD8T cells during chronic viral infection.

Nature. (2006) 439:682–7. doi: 10.1038/nature04444

16. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in

acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic

effector T cells. Nature. (1993) 362:758–61. doi: 10.1038/362758a0

17. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8T Cell exhaustion during

chronic viral infection and cancer. Annu Rev Immunol. (2019) 37:457–95.

doi: 10.1146/annurev-immunol-041015-055318

18. Wherry EJ. T cell exhaustion. Nat Immunol. (2011) 12:492–9.

doi: 10.1038/ni.2035

19. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al.

Molecular signature of CD8+ T cell exhaustion during chronic viral

infection. Immunity. (2007) 27:670–84. doi: 10.1016/j.immuni.2007.09.006

20. Petrovas C, Ferrando-Martinez S, GernerMY, Casazza JP, Pegu A, Deleage C,

et al. Follicular CD8T cells accumulate in HIV infection and can kill infected

cells in vitro via bispecific antibodies. Sci Transl Med. (2017) 9:eaag2285.

doi: 10.1126/scitranslmed.aag2285

21. Velu V, Kannanganat S, Ibegbu C, Chennareddi L, Villinger F, Freeman

GJ, et al. Elevated expression levels of inhibitory receptor programmed

death 1 on simian immunodeficiency virus-specific CD8T cells during

chronic infection but not after vaccination. J Virol. (2007) 81:5819–28.

doi: 10.1128/JVI.00024-07

22. Hong JJ, Amancha PK, Rogers K, Ansari AA, Villinger F. Re-evaluation of

PD-1 expression by T cells as a marker for immune exhaustion during SIV

infection. PLoS ONE. (2013) 8:e60186. doi: 10.1371/journal.pone.0060186

23. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al.

PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion

and disease progression. Nature. (2006) 443:350–4. doi: 10.1038/nature05115

24. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette

B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells

leads to reversible immune dysfunction. Nat Med. (2006) 12:1198–202.

doi: 10.1038/nm1482

25. Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, AdamsWC, et al.

PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J

Exp Med. (2006) 203:2281–92. doi: 10.1084/jem.20061496

26. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA,

et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control

of viremia. Science. (1997) 278:1447–50. doi: 10.1126/science.278.5342.1447

27. Lichterfeld M, Kaufmann DE, Yu XG, Mui SK, Addo MM, Johnston MN,

et al. Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1

infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J

Exp Med. (2004) 200:701–12. doi: 10.1084/jem.20041270

28. Pantaleo G, Fauci AS. Immunopathogenesis of HIV infection. Annu Rev

Microbiol. (1996) 50:825–54. doi: 10.1146/annurev.micro.50.1.825

29. Hoffmann M, Pantazis N, Martin GE, Hickling S, Hurst J, Meyerowitz J,

et al. Exhaustion of activated CD8T cells predicts disease progression

in primary HIV-1 infection. PLoS Pathog. (2016) 12:e1005661.

doi: 10.1371/journal.ppat.1005661

Frontiers in Immunology | www.frontiersin.org 11 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1128/JVI.78.11.5535-5545.2004
https://doi.org/10.1038/nri3307
https://doi.org/10.1038/ni1098
https://doi.org/10.4049/jimmunol.165.12.6833
https://doi.org/10.1111/j.0105-2896.2006.00382.x
https://doi.org/10.1038/s41577-018-0088-1
https://doi.org/10.1038/d41586-017-08280-8
https://doi.org/10.1038/nature25144
https://doi.org/10.1146/annurev.immunol.25.022106.141548
https://doi.org/10.1038/nri3862
https://doi.org/10.1016/j.molimm.2015.07.026
https://doi.org/10.1016/j.it.2013.10.001
https://doi.org/10.1084/jem.188.12.2205
https://doi.org/10.1002/eji.1830231237
https://doi.org/10.1038/nature04444
https://doi.org/10.1038/362758a0
https://doi.org/10.1146/annurev-immunol-041015-055318
https://doi.org/10.1038/ni.2035
https://doi.org/10.1016/j.immuni.2007.09.006
https://doi.org/10.1126/scitranslmed.aag2285
https://doi.org/10.1128/JVI.00024-07
https://doi.org/10.1371/journal.pone.0060186
https://doi.org/10.1038/nature05115
https://doi.org/10.1038/nm1482
https://doi.org/10.1084/jem.20061496
https://doi.org/10.1126/science.278.5342.1447
https://doi.org/10.1084/jem.20041270
https://doi.org/10.1146/annurev.micro.50.1.825
https://doi.org/10.1371/journal.ppat.1005661
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

30. Li S, Folkvord JM, Kovacs KJ, Wagstaff RK, Mwakalundwa G, Rendahl

AK, et al. Low levels of SIV-specific CD8+ T cells in germinal centers

characterizes acute SIV infection. PLoS Pathog. (2019) 15:e1007311.

doi: 10.1371/journal.ppat.1007311

31. Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and

epigenetic regulation of effector and memory CD8T cell differentiation.

Front Immunol. (2018) 9:2826. doi: 10.3389/fimmu.2018.02826

32. Kuchroo VK, Anderson AC, Petrovas C. Coinhibitory receptors and CD8T

cell exhaustion in chronic infections. Curr Opin HIV AIDS. (2014) 9:439–45.

doi: 10.1097/COH.0000000000000088

33. Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, et al.

CD160 and PD-1 co-expression on HIV-specific CD8T cells defines

a subset with advanced dysfunction. PLoS Pathog. (2012) 8:e1002840.

doi: 10.1371/journal.ppat.1002840

34. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, et al. Cooperation

of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection.

Proc Natl Acad Sci USA. (2010) 107:14733–8. doi: 10.1073/pnas.1009731107

35. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y,

et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature. (2002)

417:95–8. doi: 10.1038/417095a

36. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ,

et al. CD4+ T cell depletion during all stages of HIV disease occurs

predominantly in the gastrointestinal tract. J Exp Med. (2004) 200:749–59.

doi: 10.1084/jem.20040874

37. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell

death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature.

(2014) 505:509–14. doi: 10.1038/nature12940

38. Petrovas C, Price DA, Mattapallil J, Ambrozak DR, Geldmacher C,

Cecchinato V, et al. SIV-specific CD8+ T cells express high levels

of PD1 and cytokines but have impaired proliferative capacity in

acute and chronic SIVmac251 infection. Blood. (2007) 110:928–36.

doi: 10.1182/blood-2007-01-069112

39. Petrovas C, Mueller YM, Yang G, Altork SR, Jacobson JM, Pitsakis

PG, et al. Actin integrity is indispensable for CD95/Fas-induced

apoptosis of HIV-specific CD8+ T cells. Apoptosis. (2007) 12:2175–86.

doi: 10.1007/s10495-007-0128-y

40. Angelosanto JM, Blackburn SD, Crawford A, Wherry EJ. Progressive loss of

memory T cell potential and commitment to exhaustion during chronic viral

infection. J Virol. (2012) 86:8161–70. doi: 10.1128/JVI.00889-12

41. Bachmann MF, Wolint P, Walton S, Schwarz K, Oxenius A. Differential role

of IL-2R signaling for CD8+ T cell responses in acute and chronic viral

infections. Eur J Immunol. (2007) 37:1502–12. doi: 10.1002/eji.200637023

42. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain

RN. Chemokines enhance immunity by guiding naive CD8+ T cells to

sites of CD4+ T cell-dendritic cell interaction. Nature. (2006) 440:890–5.

doi: 10.1038/nature04651

43. Elsaesser H, Sauer K, Brooks DG. IL-21 is required to control chronic viral

infection. Science. (2009) 324:1569–72. doi: 10.1126/science.1174182

44. Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J, et al.

IL-21R on T cells is critical for sustained functionality and control of chronic

viral infection. Science. (2009) 324:1576–80. doi: 10.1126/science.1172815

45. Nakanishi Y, Lu B, Gerard C, Iwasaki A. CD8+ T lymphocyte mobilization

to virus-infected tissue requires CD4+ T-cell help. Nature. (2009) 462:510–3.

doi: 10.1038/nature08511

46. Williams MA, Holmes BJ, Sun JC, Bevan MJ. Developing and maintaining

protective CD8+ memory T cells. Immunol Rev. (2006) 211:146–53.

doi: 10.1111/j.0105-2896.2006.00389.x

47. WilliamsMA, Tyznik AJ, BevanMJ. Interleukin-2 signals during priming are

required for secondary expansion of CD8+ memory T cells. Nature. (2006)

441:890–3. doi: 10.1038/nature04790

48. Yi JS, Du M, Zajac AJ. A vital role for interleukin-21 in the

control of a chronic viral infection. Science. (2009) 324:1572–6.

doi: 10.1126/science.1175194

49. Bevan MJ. Helping the CD8+ T-cell response. Nat Rev Immunol. (2004)

4:595–602. doi: 10.1038/nri1413

50. Ahrends T, Spanjaard A, Pilzecker B, Babala N, Bovens A, Xiao Y, et al.

CD4+ T cell help confers a cytotoxic T cell effector program including

coinhibitory receptor downregulation and increased tissue invasiveness.

Immunity. (2017) 47:848–61.e5. doi: 10.1016/j.immuni.2017.10.009

51. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al.

Subsets of exhausted CD8+ T cells differentially mediate tumor control

and respond to checkpoint blockade. Nat Immunol. (2019) 20:326–36.

doi: 10.1038/s41590-019-0312-6

52. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson

AC. Targeting tim-3 and PD-1 pathways to reverse T cell exhaustion

and restore anti-tumor immunity. J Exp Med. (2010) 207:2187–94.

doi: 10.1084/jem.20100643

53. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, et al.

Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma

patients. J Clin Invest. (2011) 121:2350–60. doi: 10.1172/JCI46102

54. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME,

White DE, et al. Tumor antigen-specific CD8T cells infiltrating the tumor

express high levels of PD-1 and are functionally impaired. Blood. (2009)

114:1537–44. doi: 10.1182/blood-2008-12-195792

55. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, Basom

RS, et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven

differentiation program initiated early during tumorigenesis. Immunity.

(2016) 45:389–401. doi: 10.1016/j.immuni.2016.07.011

56. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-

cell invigoration to tumour burden ratio associated with anti-PD-1 response.

Nature. (2017) 545:60–5. doi: 10.1038/nature22079

57. Kaufmann DE, Walker BD. Programmed death-1 as a factor in immune

exhaustion and activation in HIV infection. Curr Opin HIV AIDS. (2008)

3:362–7. doi: 10.1097/COH.0b013e3282f9ae8b

58. Fujita T, Burwitz BJ, Chew GM, Reed JS, Pathak R, Seger E, et al. Expansion

of dysfunctional Tim-3-expressing effector memory CD8+ T cells during

simian immunodeficiency virus infection in rhesus macaques. J Immunol.

(2014) 193:5576–83. doi: 10.4049/jimmunol.1400961

59. Amancha PK, Hong JJ, Ansari AA, Villinger F. Up-regulation of

Tim-3 on T cells during acute simian immunodeficiency virus

infection and on antigen specific responders. AIDS. (2015) 29:531–6.

doi: 10.1097/QAD.0000000000000589

60. Grabmeier-Pfistershammer K, Stecher C, Zettl M, Rosskopf S, Rieger A,

Zlabinger GJ, et al. Antibodies targeting BTLA or TIM-3 enhance HIV-1

specific T cell responses in combination with PD-1 blockade. Clin Immunol.

(2017) 183:167–73. doi: 10.1016/j.clim.2017.09.002

61. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation

of LAG-3 on T cells defines a subpopulation with functional exhaustion

and correlates with disease progression in HIV-infected subjects. J Immunol.

(2015) 194:3873–82. doi: 10.4049/jimmunol.1402176

62. Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. TIGIT

marks exhausted T cells, correlates with disease progression, and serves as a

target for immune restoration in HIV and SIV infection. PLoS Pathog. (2016)

12:e1005349. doi: 10.1371/journal.ppat.1005349

63. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren HG, Sonnerborg A,

et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation

of antiretroviral treatment in HIV infected individuals. Sci Rep. (2017)

7:40354. doi: 10.1038/srep40354

64. Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, et al.

Epigenomic-guided mass cytometry profiling reveals disease-specific

features of exhausted CD8T cells. Immunity. (2018) 48:1029–45.e5.

doi: 10.1016/j.immuni.2018.04.026

65. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y,

et al. The immunoreceptor TIGIT regulates antitumor and antiviral

CD8+ T cell effector function. Cancer Cell. (2014) 26:923–37.

doi: 10.1016/j.ccell.2014.10.018

66. Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, et al. Blockade of

TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor

capability in head and neck squamous cell carcinoma. Cancer Immunol Res.

(2019) 7:1700–13. doi: 10.1158/2326-6066.CIR-18-0725

67. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A,

et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory

receptors during chronic viral infection. Nat Immunol. (2009) 10:29–37.

doi: 10.1038/ni.1679

Frontiers in Immunology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1371/journal.ppat.1007311
https://doi.org/10.3389/fimmu.2018.02826
https://doi.org/10.1097/COH.0000000000000088
https://doi.org/10.1371/journal.ppat.1002840
https://doi.org/10.1073/pnas.1009731107
https://doi.org/10.1038/417095a
https://doi.org/10.1084/jem.20040874
https://doi.org/10.1038/nature12940
https://doi.org/10.1182/blood-2007-01-069112
https://doi.org/10.1007/s10495-007-0128-y
https://doi.org/10.1128/JVI.00889-12
https://doi.org/10.1002/eji.200637023
https://doi.org/10.1038/nature04651
https://doi.org/10.1126/science.1174182
https://doi.org/10.1126/science.1172815
https://doi.org/10.1038/nature08511
https://doi.org/10.1111/j.0105-2896.2006.00389.x
https://doi.org/10.1038/nature04790
https://doi.org/10.1126/science.1175194
https://doi.org/10.1038/nri1413
https://doi.org/10.1016/j.immuni.2017.10.009
https://doi.org/10.1038/s41590-019-0312-6
https://doi.org/10.1084/jem.20100643
https://doi.org/10.1172/JCI46102
https://doi.org/10.1182/blood-2008-12-195792
https://doi.org/10.1016/j.immuni.2016.07.011
https://doi.org/10.1038/nature22079
https://doi.org/10.1097/COH.0b013e3282f9ae8b
https://doi.org/10.4049/jimmunol.1400961
https://doi.org/10.1097/QAD.0000000000000589
https://doi.org/10.1016/j.clim.2017.09.002
https://doi.org/10.4049/jimmunol.1402176
https://doi.org/10.1371/journal.ppat.1005349
https://doi.org/10.1038/srep40354
https://doi.org/10.1016/j.immuni.2018.04.026
https://doi.org/10.1016/j.ccell.2014.10.018
https://doi.org/10.1158/2326-6066.CIR-18-0725
https://doi.org/10.1038/ni.1679
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

68. Vigano S, Bellutti Enders F, Miconnet I, Cellerai C, Savoye AL, Rozot V,

et al. Rapid perturbation in viremia levels drives increases in functional

avidity of HIV-specific CD8T cells. PLoS Pathog. (2013) 9:e1003423.

doi: 10.1371/journal.ppat.1003423

69. Liu S, Zhang W, Liu K, Wang Y. CD160 expression on CD8+ T cells is

associated with active effector responses but limited activation potential

in pancreatic cancer. Cancer Immunol Immunother. (2020) 69:789–97.

doi: 10.1007/s00262-020-02500-3

70. Agresta L, Hoebe KHN, Janssen EM. The emerging role of CD244 signaling

in immune cells of the tumor microenvironment. Front Immunol. (2018)

9:2809. doi: 10.3389/fimmu.2018.02809

71. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander

C, et al. CD8+ T cells specific for tumor antigens can be rendered

dysfunctional by the tumor microenvironment through upregulation of

the inhibitory receptors BTLA and PD-1. Cancer Res. (2012) 72:887–96.

doi: 10.1158/0008-5472.CAN-11-2637

72. Enyindah-Asonye G, Nwankwo A, Rahman MA, Hunegnaw R, Hogge

C, Helmold Hait S, et al. Overexpression of CD6 and PD-1 identifies

dysfunctional CD8+ T-cells during chronic SIV infection of rhesus

macaques. Front Immunol. (2019) 10:3005. doi: 10.3389/fimmu.2019.03005

73. Li L, Wan S, Tao K, Wang G, Zhao E. KLRG1 restricts memory

T cell antitumor immunity. Oncotarget. (2016) 7:61670–8.

doi: 10.18632/oncotarget.11430

74. Lines JL, Sempere LF, Broughton T, Wang L, Noelle R. VISTA is a novel

broad-spectrum negative checkpoint regulator for cancer immunotherapy.

Cancer Immunol Res. (2014) 2:510–7. doi: 10.1158/2326-6066.CIR-14-0072

75. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, et al. VISTA

is an immune checkpoint molecule for human T cells. Cancer Res. (2014)

74:1924–32. doi: 10.1158/0008-5472.CAN-13-1504

76. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, et al. VISTA

regulates the development of protective antitumor immunity. Cancer Res.

(2014) 74:1933–44. doi: 10.1158/0008-5472.CAN-13-1506

77. Canale FP, Ramello MC, Nunez N, Araujo Furlan CL, Bossio SN,

Gorosito Serran M, et al. CD39 expression defines cell exhaustion

in tumor-infiltrating CD8+ T cells. Cancer Res. (2018) 78:115–28.

doi: 10.1158/0008-5472.CAN-16-2684

78. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, et al. Bystander

CD8+ T cells are abundant and phenotypically distinct in human tumour

infiltrates. Nature. (2018) 557:575–9. doi: 10.1038/s41586-018-0130-2

79. Zheng Z, Cai Y, Chen H, Chen Z, Zhu D, Zhong Q, et al. CXCL13/CXCR5

axis predicts poor prognosis and promotes progression through

PI3K/AKT/mTOR pathway in clear cell renal cell carcinoma. Front

Oncol. (2018) 8:682. doi: 10.3389/fonc.2018.00682

80. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, et al. Landscape of

infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell.

(2017) 169:1342–56.e16. doi: 10.1016/j.cell.2017.05.035

81. Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von

Gunten S, et al. Self-associated molecular patterns mediate cancer immune

evasion by engaging siglecs on T cells. J Clin Invest. (2018) 128:4912–23.

doi: 10.1172/JCI120612

82. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, et al. TOX

reinforces the phenotype and longevity of exhausted T cells in chronic viral

infection. Nature. (2019) 571:265–9. doi: 10.1038/s41586-019-1326-9

83. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al.

TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion.

Nature. (2019) 571:211–8. doi: 10.1038/s41586-019-1325-x

84. LaFleur MW, Nguyen TH, Coxe MA, Miller BC, Yates KB, Gillis

JE, et al. PTPN2 regulates the generation of exhausted CD8+ T cell

subpopulations and restrains tumor immunity. Nat Immunol. (2019)

20:1335–47. doi: 10.1038/s41590-019-0480-4

85. Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, Huang AC, et al. TCF-1-centered

transcriptional network drives an effector versus exhausted CD8T cell-fate

decision. Immunity. (2019) 51:840–55.e5. doi: 10.1016/j.immuni.2019.09.013

86. Kujawski M, Zhang C, Herrmann A, Reckamp K, Scuto A, Jensen M,

et al. Targeting STAT3 in adoptively transferred T cells promotes their

in vivo expansion and antitumor effects. Cancer Res. (2010) 70:9599–610.

doi: 10.1158/0008-5472.CAN-10-1293

87. Ciucci T, Vacchio MS, Bosselut R. A STAT3-dependent transcriptional

circuitry inhibits cytotoxic gene expression in T cells. Proc Natl Acad Sci USA.

(2017) 114:13236–41. doi: 10.1073/pnas.1711160114

88. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner

SL, et al. A role for the transcriptional repressor Blimp-1 in CD8+ T

cell exhaustion during chronic viral infection. Immunity. (2009) 31:309–20.

doi: 10.1016/j.immuni.2009.06.019

89. Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required

for the differentiation of effector CD8+ T cells and memory responses.

Immunity. (2009) 31:283–95. doi: 10.1016/j.immuni.2009.06.021

90. Nutt SL, Fairfax KA, Kallies A. BLIMP1 guides the fate of effector B and T

cells. Nat Rev Immunol. (2007) 7:923–7. doi: 10.1038/nri2204

91. Thaventhiran JE, Fearon DT. Control of HIV infection: escape

from the shadow of Blimp-1. Eur J Immunol. (2013) 43:323–6.

doi: 10.1002/eji.201243263

92. Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al.

Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in

patients with acute myeloid leukemia. J Hematol Oncol. (2017) 10:124.

doi: 10.1186/s13045-017-0486-z

93. Mann TH, Kaech SM. Tick-TOX, it’s time for T cell exhaustion. Nat

Immunol. (2019) 20:1092–4. doi: 10.1038/s41590-019-0478-y

94. Mathieu M, Cotta-Grand N, Daudelin JF, Thebault P, Labrecque N. Notch

signaling regulates PD-1 expression during CD8+ T-cell activation. Immunol

Cell Biol. (2013) 91:82–8. doi: 10.1038/icb.2012.53

95. Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann

A, et al. Exhaustion-associated regulatory regions in CD8+ tumor-

infiltrating T cells. Proc Natl Acad Sci USA. (2017) 114:E2776–E85.

doi: 10.1073/pnas.1620498114

96. Oestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-

1 expression upon T cell activation. J Immunol. (2008) 181:4832–9.

doi: 10.4049/jimmunol.181.7.4832

97. Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, DiIorio MA, Lemieux ME,

et al. The transcription factor BATF operates as an essential differentiation

checkpoint in early effector CD8+ T cells. Nat Immunol. (2014) 15:373–83.

doi: 10.1038/ni.2834

98. Murphy TL, Tussiwand R, Murphy KM. Specificity through cooperation:

BATF-IRF interactions control immune-regulatory networks. Nat Rev

Immunol. (2013) 13:499–509. doi: 10.1038/nri3470

99. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al.

Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1

inhibits T cell function by upregulating BATF. Nat Med. (2010) 16:1147–51.

doi: 10.1038/nm.2232

100. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al.

Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the

development of memory-like T cells during chronic infection. Immunity.

(2017) 47:1129–41.e5. doi: 10.1016/j.immuni.2017.11.021

101. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, et al.

Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to

persistent antigen. Nat Immunol. (2013) 14:1173–82. doi: 10.1038/ni.2714

102. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, et al. The

transcription factor FoxO1 sustains expression of the inhibitory receptor PD-

1 and survival of antiviral CD8+ T cells during chronic infection. Immunity.

(2014) 41:802–14. doi: 10.1016/j.immuni.2014.10.013

103. Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ,

Svoronos N, et al. Transforming growth factor beta-mediated suppression of

antitumor T cells requires FoxP1 transcription factor expression. Immunity.

(2014) 41:427–39. doi: 10.1016/j.immuni.2014.08.012

104. Giordano M, Henin C, Maurizio J, Imbratta C, Bourdely P, Buferne M,

et al. Molecular profiling of CD8T cells in autochthonous melanoma

identifies Maf as driver of exhaustion. EMBO J. (2015) 34:2042–58.

doi: 10.15252/embj.201490786

105. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang

H, et al. A distinct gene module for dysfunction uncoupled from

activation in tumor-infiltrating T cells. Cell. (2016) 166:1500–11.e9.

doi: 10.1016/j.cell.2016.08.052

106. Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE,

et al. Chronic virus infection enforces demethylation of the locus that

Frontiers in Immunology | www.frontiersin.org 13 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1371/journal.ppat.1003423
https://doi.org/10.1007/s00262-020-02500-3
https://doi.org/10.3389/fimmu.2018.02809
https://doi.org/10.1158/0008-5472.CAN-11-2637
https://doi.org/10.3389/fimmu.2019.03005
https://doi.org/10.18632/oncotarget.11430
https://doi.org/10.1158/2326-6066.CIR-14-0072
https://doi.org/10.1158/0008-5472.CAN-13-1504
https://doi.org/10.1158/0008-5472.CAN-13-1506
https://doi.org/10.1158/0008-5472.CAN-16-2684
https://doi.org/10.1038/s41586-018-0130-2
https://doi.org/10.3389/fonc.2018.00682
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.1172/JCI120612
https://doi.org/10.1038/s41586-019-1326-9
https://doi.org/10.1038/s41586-019-1325-x
https://doi.org/10.1038/s41590-019-0480-4
https://doi.org/10.1016/j.immuni.2019.09.013
https://doi.org/10.1158/0008-5472.CAN-10-1293
https://doi.org/10.1073/pnas.1711160114
https://doi.org/10.1016/j.immuni.2009.06.019
https://doi.org/10.1016/j.immuni.2009.06.021
https://doi.org/10.1038/nri2204
https://doi.org/10.1002/eji.201243263
https://doi.org/10.1186/s13045-017-0486-z
https://doi.org/10.1038/s41590-019-0478-y
https://doi.org/10.1038/icb.2012.53
https://doi.org/10.1073/pnas.1620498114
https://doi.org/10.4049/jimmunol.181.7.4832
https://doi.org/10.1038/ni.2834
https://doi.org/10.1038/nri3470
https://doi.org/10.1038/nm.2232
https://doi.org/10.1016/j.immuni.2017.11.021
https://doi.org/10.1038/ni.2714
https://doi.org/10.1016/j.immuni.2014.10.013
https://doi.org/10.1016/j.immuni.2014.08.012
https://doi.org/10.15252/embj.201490786
https://doi.org/10.1016/j.cell.2016.08.052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

encodes PD-1 in antigen-specific CD8+ T cells. Immunity. (2011) 35:400–12.

doi: 10.1016/j.immuni.2011.06.015

107. Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlovu ZM, Austin JW,

et al. Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic

program for PD-1 expression in virus-specific CD8T cells. J Immunol. (2013)

191:540–4. doi: 10.4049/jimmunol.1203161

108. Yang R, Masters AR, Fortner KA, Champagne DP, Yanguas-Casas N,

Silberger DJ, et al. IL-6 promotes the differentiation of a subset of naive

CD8+T cells into IL-21-producing B helper CD8+T cells. J ExpMed. (2016)

213:2281–91. doi: 10.1084/jem.20160417

109. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al.

The epigenetic landscape of T cell exhaustion. Science. (2016) 354:1165–9.

doi: 10.1126/science.aae0491

110. Zhu T, Hu Z, Wang Z, Ding H, Li R, Sun J, et al. Epigenetically

silenced PD-L1 confers drug resistance to anti-PD1 therapy in gastric

cardia adenocarcinoma. Int Immunopharmacol. (2020) 82:106245.

doi: 10.1016/j.intimp.2020.106245

111. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al.

Epigenetic stability of exhausted T cells limits durability of reinvigoration by

PD-1 blockade. Science. (2016) 354:1160–5. doi: 10.1126/science.aaf2807

112. Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M,

et al. Chromatin states define tumour-specific T cell dysfunction and

reprogramming. Nature. (2017) 545:452–6. doi: 10.1038/nature22367

113. Laino AS, Betts BC, Veerapathran A, Dolgalev I, Sarnaik A, Quayle

SN, et al. HDAC6 selective inhibition of melanoma patient T-cells

augments anti-tumor characteristics. J Immunother Cancer. (2019) 7:33.

doi: 10.1186/s40425-019-0517-0

114. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P,

et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell

rejuvenation. Cell. (2017) 170:142–57.e19. doi: 10.1016/j.cell.2017.06.007

115. Bengsch B, Ohtani T, Herati RS, Bovenschen N, Chang KM, Wherry

EJ. Deep immune profiling by mass cytometry links human T and NK

cell differentiation and cytotoxic molecule expression patterns. J Immunol

Methods. (2018) 453:3–10. doi: 10.1016/j.jim.2017.03.009

116. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer

immunoediting. Nat Rev Immunol. (2006) 6:836–48. doi: 10.1038/nri1961

117. Schmiedel D, Mandelboim O. NKG2D ligands-critical targets for

cancer immune escape and therapy. Front Immunol. (2018) 9:2040.

doi: 10.3389/fimmu.2018.02040

118. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al.

Senescence surveillance of pre-malignant hepatocytes limits liver cancer

development. Nature. (2011) 479:547–51. doi: 10.1038/nature10599

119. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS,

et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a

therapeutic target for human solid tumors. Proc Natl Acad Sci USA. (2012)

109:6662–7. doi: 10.1073/pnas.1121623109

120. Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, et al.

TRF2 inhibits a cell-extrinsic pathway through which natural killer cells

eliminate cancer cells. Nat Cell Biol. (2013) 15:818–28. doi: 10.1038/ncb2774

121. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells

in the tumor microenvironment. Nat Immunol. (2013) 14:1014–22.

doi: 10.1038/ni.2703

122. Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L,

et al. Evolution ofmetastases in space and time under immune selection. Cell.

(2018) 175:751–65.e16. doi: 10.1016/j.cell.2018.09.018

123. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor

microenvironment: expect the unexpected. J Clin Invest. (2015) 125:3356–64.

doi: 10.1172/JCI80005

124. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression

and metastasis. Nat Med. (2013) 19:1423–37. doi: 10.1038/nm.3394

125. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD,

et al. Metabolic competition in the tumor microenvironment is a driver

of cancer progression. Cell. (2015) 162:1229–41. doi: 10.1016/j.cell.2015.

08.016

126. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita

R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-

tumor T cell responses. Cell. (2015) 162:1217–28. doi: 10.1016/j.cell.2015.

08.012

127. Kedia-Mehta N, Finlay DK. Competition for nutrients and its role

in controlling immune responses. Nat Commun. (2019) 10:2123.

doi: 10.1038/s41467-019-10015-4

128. Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a

subset of exhausted CD8T cells by alphaPD-L1 blockade. Proc Natl Acad Sci

USA. (2008) 105:15016–21. doi: 10.1073/pnas.0801497105

129. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al.

Defining CD8+ T cells that provide the proliferative burst after PD-1

therapy. Nature. (2016) 537:417–21. doi: 10.1038/nature19330

130. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett

BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate

to contain chronic viral infection. Science. (2012) 338:1220–5.

doi: 10.1126/science.1229620

131. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5-

expressing CD8+ T cells curtail chronic viral infection. Nature. (2016)

537:412–28. doi: 10.1038/nature19317

132. Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S,

et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool

with predictive potential in non-small-cell lung cancer treated with PD-1

blockade. Nat Med. (2018) 24:994–1004. doi: 10.1038/s41591-018-0057-z

133. Utzschneider DT, Alfei F, Roelli P, Barras D, Chennupati V, Darbre S,

et al. High antigen levels induce an exhausted phenotype in a chronic

infection without impairing T cell expansion and survival. J Exp Med. (2016)

213:1819–34. doi: 10.1084/jem.20150598

134. WuT, Ji Y,Moseman EA, XuHC,ManglaniM, KirbyM, et al. The TCF1-Bcl6

axis counteracts type I interferon to repress exhaustion and maintain T cell

stemness. Sci Immunol. (2016) 1:eaai8593. doi: 10.1126/sciimmunol.aai8593

135. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-

Copete S, Pais Ferreira D, et al. Intratumoral Tcf1+PD-1+CD8+ T Cells with

stem-like properties promote tumor control in response to vaccination and

checkpoint blockade immunotherapy. Immunity. (2019) 50:195–211.e10.

doi: 10.1016/j.immuni.2018.12.021

136. Le KS, Ame-Thomas P, Tarte K, Gondois-Rey F, Granjeaud S, Orlanducci

F, et al. CXCR5 and ICOS expression identifies a CD8 T-cell subset

with TFH features in hodgkin lymphomas. Blood Adv. (2018) 2:1889–900.

doi: 10.1182/bloodadvances.2018017244

137. Xing J, Zhang C, Yang X, Wang S, Wang Z, Li X, et al. CXCR5+CD8+ T cells

infiltrate the colorectal tumors and nearby lymph nodes, and are associated

with enhanced IgG response in B cells. Exp Cell Res. (2017) 356:57–63.

doi: 10.1016/j.yexcr.2017.04.014

138. Ferrando-Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K,

Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic

SIV infection. J Clin Invest. (2018) 128:2089–103. doi: 10.1172/JCI96207

139. Bai M, Zheng Y, Liu H, Su B, Zhan Y, He H. CXCR5+ CD8+ T cells potently

infiltrate pancreatic tumors and present high functionality. Exp Cell Res.

(2017) 361:39–45. doi: 10.1016/j.yexcr.2017.09.039

140. Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, Mikulak J,

et al. High-dimensional single cell analysis identifies stem-like cytotoxic

CD8+ T cells infiltrating human tumors. J Exp Med. (2018) 215:2520–35.

doi: 10.1084/jem.20180684

141. Jifu E, Yan F, Kang Z, Zhu L, Xing J, Yu E. CD8+CXCR5+ T

cells in tumor-draining lymph nodes are highly activated and predict

better prognosis in colorectal cancer. Hum Immunol. (2018) 79:446–52.

doi: 10.1016/j.humimm.2018.03.003

142. Valentine KM, Davini D, Lawrence TJ, Mullins GN, Manansala M,

Al-Kuhlani M, et al. CD8 follicular T cells promote B cell antibody

class switch in autoimmune disease. J Immunol. (2018) 201:31–40.

doi: 10.4049/jimmunol.1701079

143. Quigley MF, Gonzalez VD, Granath A, Andersson J, Sandberg JK. CXCR5+

CCR7- CD8T cells are early effector memory cells that infiltrate tonsil B cell

follicles. Eur J Immunol. (2007) 37:3352–62. doi: 10.1002/eji.200636746

144. Chu F, Li HS, Liu X, Cao J, Ma W, Ma Y, et al. CXCR5+CD8+ T cells are

a distinct functional subset with an antitumor activity. Leukemia. (2019)

33:2640–53. doi: 10.1038/s41375-019-0464-2

145. Im SJ, Konieczny BT, Hudson WH, Masopust D, Ahmed R. PD-

1+ stemlike CD8T cells are resident in lymphoid tissues during

persistent LCMV infection. Proc Natl Acad Sci USA. (2020) 117:4292–9.

doi: 10.1073/pnas.1917298117

Frontiers in Immunology | www.frontiersin.org 14 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1016/j.immuni.2011.06.015
https://doi.org/10.4049/jimmunol.1203161
https://doi.org/10.1084/jem.20160417
https://doi.org/10.1126/science.aae0491
https://doi.org/10.1016/j.intimp.2020.106245
https://doi.org/10.1126/science.aaf2807
https://doi.org/10.1038/nature22367
https://doi.org/10.1186/s40425-019-0517-0
https://doi.org/10.1016/j.cell.2017.06.007
https://doi.org/10.1016/j.jim.2017.03.009
https://doi.org/10.1038/nri1961
https://doi.org/10.3389/fimmu.2018.02040
https://doi.org/10.1038/nature10599
https://doi.org/10.1073/pnas.1121623109
https://doi.org/10.1038/ncb2774
https://doi.org/10.1038/ni.2703
https://doi.org/10.1016/j.cell.2018.09.018
https://doi.org/10.1172/JCI80005
https://doi.org/10.1038/nm.3394
https://doi.org/10.1016/j.cell.2015.08.016
https://doi.org/10.1016/j.cell.2015.08.012
https://doi.org/10.1038/s41467-019-10015-4
https://doi.org/10.1073/pnas.0801497105
https://doi.org/10.1038/nature19330
https://doi.org/10.1126/science.1229620
https://doi.org/10.1038/nature19317
https://doi.org/10.1038/s41591-018-0057-z
https://doi.org/10.1084/jem.20150598
https://doi.org/10.1126/sciimmunol.aai8593
https://doi.org/10.1016/j.immuni.2018.12.021
https://doi.org/10.1182/bloodadvances.2018017244
https://doi.org/10.1016/j.yexcr.2017.04.014
https://doi.org/10.1172/JCI96207
https://doi.org/10.1016/j.yexcr.2017.09.039
https://doi.org/10.1084/jem.20180684
https://doi.org/10.1016/j.humimm.2018.03.003
https://doi.org/10.4049/jimmunol.1701079
https://doi.org/10.1002/eji.200636746
https://doi.org/10.1038/s41375-019-0464-2
https://doi.org/10.1073/pnas.1917298117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

146. Mylvaganam GH, Rios D, Abdelaal HM, Iyer S, Tharp G, Mavigner

M, et al. Dynamics of SIV-specific CXCR5+ CD8T cells during

chronic SIV infection. Proc Natl Acad Sci USA. (2017) 114:1976–81.

doi: 10.1073/pnas.1621418114

147. Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H. Inhibition of follicular T-

helper cells by CD8+ regulatory T cells is essential for self tolerance. Nature.

(2010) 467:328–32. doi: 10.1038/nature09370

148. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5+

follicular cytotoxic T cells control viral infection in B cell follicles. Nat

Immunol. (2016) 17:1187–96. doi: 10.1038/ni.3543

149. Jin Y, Lang C, Tang J, Geng J, Song HK, Sun Z, et al. CXCR5+CD8+

T cells could induce the death of tumor cells in HBV-related

hepatocellular carcinoma. Int Immunopharmacol. (2017) 53:42–8.

doi: 10.1016/j.intimp.2017.10.009

150. Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, et al.

TOX is a critical regulator of tumour-specific T cell differentiation. Nature.

(2019) 571:270–4. doi: 10.1038/s41586-019-1324-y

151. Seo H, Chen J, Gonzalez-Avalos E, Samaniego-Castruita D, Das A, Wang

YH, et al. TOX and TOX2 transcription factors cooperate with NR4A

transcription factors to impose CD8+ T cell exhaustion. Proc Natl Acad Sci

USA. (2019) 116:12410–5. doi: 10.1073/pnas.1905675116

152. Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, Shih HY, et al.

Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T

cell persistence in chronic infection. Nat Immunol. (2019) 20:890–901.

doi: 10.1038/s41590-019-0403-4

153. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno

L, et al. Memory CD8+ T cells vary in differentiation phenotype

in different persistent virus infections. Nat Med. (2002) 8:379–85.

doi: 10.1038/nm0402-379

154. Mueller YM, De Rosa SC, Hutton JA, Witek J, Roederer M, Altman JD,

et al. Increased CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells.

Immunity. (2001) 15:871–82. doi: 10.1016/S1074-7613(01)00246-1

155. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al.

HIV nonprogressors preferentially maintain highly functional HIV-specific

CD8+ T cells. Blood. (2006) 107:4781–9. doi: 10.1182/blood-2005-12-4818

156. Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry

EJ. A role for the chemokine RANTES in regulating CD8T cell

responses during chronic viral infection. PLoS Pathog. (2011) 7:e1002098.

doi: 10.1371/journal.ppat.1002098

157. Greenwald RJ, Freeman GJ, Sharpe AH. The B7

family revisited. Annu Rev Immunol. (2005) 23:515–48.

doi: 10.1146/annurev.immunol.23.021704.115611

158. Bhadra R, Gigley JP,Weiss LM, Khan IA. Control of Toxoplasma reactivation

by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade.

Proc Natl Acad Sci USA. (2011) 108:9196–201. doi: 10.1073/pnas.10152

98108

159. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, et al.

Transcription factor T-bet represses expression of the inhibitory receptor

PD-1 and sustains virus-specific CD8+ T cell responses during chronic

infection. Nat Immunol. (2011) 12:663–71. doi: 10.1038/ni.2046

160. Lu P, Youngblood BA, Austin JW, Mohammed AU, Butler R, Ahmed

R, et al. Blimp-1 represses CD8T cell expression of PD-1 using a feed-

forward transcriptional circuit during acute viral infection. J ExpMed. (2014)

211:515–27. doi: 10.1084/jem.20130208

161. Lee MS, Park CH, Jeong YH, Kim YJ, Ha SJ. Negative regulation

of type I IFN expression by OASL1 permits chronic viral infection

and CD8+ T-cell exhaustion. PLoS Pathog. (2013) 9:e1003478.

doi: 10.1371/journal.ppat.1003478

162. Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, et al.

Differential association of programmed death-1 and CD57 with ex vivo

survival of CD8+ T cells in HIV infection. J Immunol. (2009) 183:1120–32.

doi: 10.4049/jimmunol.0900182

163. Petrovas C, Yamamoto T, Price DA, Rao SS, Klatt NR, Brenchley JM,

et al. High production rates sustain in vivo levels of PD-1high simian

immunodeficiency virus-specific CD8T cells in the face of rapid clearance.

J Virol. (2013) 87:9836–44. doi: 10.1128/JVI.01001-13

164. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, et al. PD-

1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta

signalosome and downstream signaling to PKCtheta. FEBS Lett. (2004)

574:37–41. doi: 10.1016/j.febslet.2004.07.083

165. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane

A, Azuma M, Saito T. Programmed cell death 1 forms negative

costimulatory microclusters that directly inhibit T cell receptor signaling

by recruiting phosphatase SHP2. J Exp Med. (2012) 209:1201–17.

doi: 10.1084/jem.20112741

166. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T

cell costimulatory receptor CD28 is a primary target for PD-1-mediated

inhibition. Science. (2017) 355:1428–33. doi: 10.1126/science.aaf1292

167. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, et al.

Rescue of exhausted CD8T cells by PD-1-targeted therapies is CD28-

dependent. Science. (2017) 355:1423–7. doi: 10.1126/science.aaf0683

168. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein

I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell

activation by distinct mechanisms. Mol Cell Biol. (2005) 25:9543–53.

doi: 10.1128/MCB.25.21.9543-9553.2005

169. Schurich A, Pallett LJ, Jajbhay D, Wijngaarden J, Otano I, Gill US,

et al. Distinct metabolic requirements of exhausted and functional virus-

specific CD8T cells in the same host. Cell Rep. (2016) 16:1243–52.

doi: 10.1016/j.celrep.2016.06.078

170. Jiao YM, Yang HG, Huang HH, Tu B, Xing SJ, Mao L, et al. Dichotomous

roles of programmed cell death 1 on HIV-specific CXCR5+ and CXCR5−

CD8+ T cells during chronic HIV infection. Front Immunol. (2017) 8:1786.

doi: 10.3389/fimmu.2017.01786

171. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura

T, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates

with disease progression and defines a reversible immune dysfunction. Nat

Immunol. (2007) 8:1246–54. doi: 10.1038/ni1515

172. Kaufmann DE, Walker BD. PD-1 and CTLA-4 inhibitory cosignaling

pathways in HIV infection and the potential for therapeutic intervention.

J Immunol. (2009) 182:5891–7. doi: 10.4049/jimmunol.0803771

173. Cornberg M, Kenney LL, Chen AT, Waggoner SN, Kim SK, Dienes

HP, et al. Clonal exhaustion as a mechanism to protect against severe

immunopathology and death from an overwhelming CD8T cell response.

Front Immunol. (2013) 4:475. doi: 10.3389/fimmu.2013.00475

174. Salek-Ardakani S, Schoenberger SP. T cell exhaustion: a means or an end?

Nat Immunol. (2013) 14:531–3. doi: 10.1038/ni.2619

175. Utzschneider DT, Legat A, Fuertes Marraco SA, Carrie L, Luescher I,

Speiser DE, et al. T cells maintain an exhausted phenotype after antigen

withdrawal and population reexpansion. Nat Immunol. (2013) 14:603–10.

doi: 10.1038/ni.2606

176. Vigano S, Banga R, Bellanger F, Pellaton C, Farina A, Comte

D, et al. CD160-associated CD8 T-cell functional impairment is

independent of PD-1 expression. PLoS Pathog. (2014) 10:e1004380.

doi: 10.1371/journal.ppat.1004380

177. Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, et al. Enhancing

SIV-specific immunity in vivo by PD-1 blockade. Nature. (2009) 458:206–10.

doi: 10.1038/nature07662

178. Dyavar Shetty R, Velu V, Titanji K, Bosinger SE, Freeman GJ, Silvestri G,

et al. PD-1 blockade during chronic SIV infection reduces hyperimmune

activation and microbial translocation in rhesus macaques. J Clin Invest.

(2012) 122:1712–6. doi: 10.1172/JCI60612

179. Finnefrock AC, Tang A, Li F, Freed DC, Feng M, Cox KS, et al. PD-1

blockade in rhesus macaques: impact on chronic infection and prophylactic

vaccination. J Immunol. (2009) 182:980–7. doi: 10.4049/jimmunol.182.2.980

180. Titanji K, Velu V, Chennareddi L, Vijay-Kumar M, Gewirtz AT, Freeman

GJ, et al. Acute depletion of activated memory B cells involves the PD-1

pathway in rapidly progressing SIV-infected macaques. J Clin Invest. (2010)

120:3878–90. doi: 10.1172/JCI43271

181. Amancha PK, Hong JJ, Rogers K, Ansari AA, Villinger F. In vivo blockade of

the programmed cell death-1 pathway using soluble recombinant PD-1-Fc

enhances CD4+ and CD8+ T cell responses but has limited clinical benefit.

J Immunol. (2013) 191:6060–70. doi: 10.4049/jimmunol.1302044

182. Gay CL, Bosch RJ, Ritz J, Hataye JM, Aga E, Tressler RL, et al. Clinical

trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants

on suppressive antiretroviral therapy. J Infect Dis. (2017) 215:1725–33.

doi: 10.1093/infdis/jix191

Frontiers in Immunology | www.frontiersin.org 15 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1073/pnas.1621418114
https://doi.org/10.1038/nature09370
https://doi.org/10.1038/ni.3543
https://doi.org/10.1016/j.intimp.2017.10.009
https://doi.org/10.1038/s41586-019-1324-y
https://doi.org/10.1073/pnas.1905675116
https://doi.org/10.1038/s41590-019-0403-4
https://doi.org/10.1038/nm0402-379
https://doi.org/10.1016/S1074-7613(01)00246-1
https://doi.org/10.1182/blood-2005-12-4818
https://doi.org/10.1371/journal.ppat.1002098
https://doi.org/10.1146/annurev.immunol.23.021704.115611
https://doi.org/10.1073/pnas.1015298108
https://doi.org/10.1038/ni.2046
https://doi.org/10.1084/jem.20130208
https://doi.org/10.1371/journal.ppat.1003478
https://doi.org/10.4049/jimmunol.0900182
https://doi.org/10.1128/JVI.01001-13
https://doi.org/10.1016/j.febslet.2004.07.083
https://doi.org/10.1084/jem.20112741
https://doi.org/10.1126/science.aaf1292
https://doi.org/10.1126/science.aaf0683
https://doi.org/10.1128/MCB.25.21.9543-9553.2005
https://doi.org/10.1016/j.celrep.2016.06.078
https://doi.org/10.3389/fimmu.2017.01786
https://doi.org/10.1038/ni1515
https://doi.org/10.4049/jimmunol.0803771
https://doi.org/10.3389/fimmu.2013.00475
https://doi.org/10.1038/ni.2619
https://doi.org/10.1038/ni.2606
https://doi.org/10.1371/journal.ppat.1004380
https://doi.org/10.1038/nature07662
https://doi.org/10.1172/JCI60612
https://doi.org/10.4049/jimmunol.182.2.980
https://doi.org/10.1172/JCI43271
https://doi.org/10.4049/jimmunol.1302044
https://doi.org/10.1093/infdis/jix191
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

183. Mylvaganam GH, Chea LS, Tharp GK, Hicks S, Velu V, Iyer SS,

et al. Combination anti-PD-1 and antiretroviral therapy provides

therapeutic benefit against SIV. JCI Insight. (2018) 3:e122940.

doi: 10.1172/jci.insight.122940

184. Bekerman E, Hesselgesser J, Carr B, Nagel M, Hung M, Wang A,

et al. PD-1 blockade and TLR7 activation lack therapeutic benefit

in chronic simian immunodeficiency virus-infected macaques on

antiretroviral therapy. Antimicrob Agents Chemother. (2019) 63: e01163–19.

doi: 10.1128/AAC.01163-19

185. Davar D, Wilson M, Pruckner C, Kirkwood JM. PD-1 blockade in advanced

melanoma in patients with hepatitis C and/or HIV. Case Rep Oncol Med.

(2015) 2015:737389. doi: 10.1155/2015/737389

186. Evans VA, van der Sluis RM, Solomon A, Dantanarayana A, McNeil

C, Garsia R, et al. Programmed cell death-1 contributes to the

establishment and maintenance of HIV-1 latency. AIDS. (2018) 32:1491–7.

doi: 10.1097/QAD.0000000000001849

187. Le Garff G, Samri A, Lambert-Niclot S, Even S, Lavole A, Cadranel J,

et al. Transient HIV-specific T cells increase and inflammation in an

HIV-infected patient treated with nivolumab. AIDS. (2017) 31:1048–51.

doi: 10.1097/QAD.0000000000001429

188. Wightman F, Solomon A, Kumar SS, Urriola N, Gallagher K, Hiener

B, et al. Effect of ipilimumab on the HIV reservoir in an HIV-

infected individual with metastatic melanoma. AIDS. (2015) 29:504–6.

doi: 10.1097/QAD.0000000000000562

189. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted

HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med. (2006)

203:2223–7. doi: 10.1084/jem.20061800

190. Gill AL, Green SA, Abdullah S, Le Saout C, Pittaluga S, Chen H, et al.

Programed death-1/programed death-ligand 1 expression in lymph nodes

of HIV infected patients: results of a pilot safety study in rhesus macaques

using anti-programed death-ligand 1 (Avelumab). AIDS. (2016) 30:2487–93.

doi: 10.1097/QAD.0000000000001217

191. Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry

EJ. Network analysis reveals centrally connected genes and pathways

involved in CD8+ T cell exhaustion versus memory. Immunity. (2012)

37:1130–44. doi: 10.1016/j.immuni.2012.08.021

192. Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A. Impaired

NFAT nuclear translocation results in split exhaustion of virus-specific

CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci

USA. (2007) 104:4565–70. doi: 10.1073/pnas.0610335104

193. Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F, Pipkin ME, et al.

The transcription factor NFAT promotes exhaustion of activated CD8+ T

cells. Immunity. (2015) 42:265–78. doi: 10.1016/j.immuni.2015.01.006

194. Martins G, Calame K. Regulation and functions of Blimp-1 in

T and B lymphocytes. Annu Rev Immunol. (2008) 26:133–69.

doi: 10.1146/annurev.immunol.26.021607.090241

195. Sullivan JA, Kim EH, Plisch EH, Peng SL, Suresh M. FOXO3 regulates

CD8T cell memory by T cell-intrinsic mechanisms. PLoS Pathog. (2012)

8:e1002533. doi: 10.1371/journal.ppat.1002533

196. Sullivan JA, Kim EH, Plisch EH, Suresh M. FOXO3 regulates the CD8T

cell response to a chronic viral infection. J Virol. (2012) 86:9025–34.

doi: 10.1128/JVI.00942-12

197. Tzelepis F, Joseph J, Haddad EK, Maclean S, Dudani R, Agenes F, et al.

Intrinsic role of FoxO3a in the development of CD8+ T cell memory. J

Immunol. (2013) 190:1066–75. doi: 10.4049/jimmunol.1200639

198. van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C, Zhang Y, et al.

Transcription factor FOXO3a controls the persistence of memory CD4+ T

cells during HIV infection. Nat Med. (2008) 14:266–74. doi: 10.1038/nm1728

199. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones

DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint

blockade resist tumor-mediated inhibition. J Clin Invest. (2016) 126:3130–44.

doi: 10.1172/JCI83092

200. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA,

Michaelsson J, et al. T-bet and eomes are differentially linked to the

exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. (2014)

10:e1004251. doi: 10.1371/journal.ppat.1004251

201. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ. Genetic absence

of PD-1 promotes accumulation of terminally differentiated exhausted

CD8+ T cells. J Exp Med. (2015) 212:1125–37. doi: 10.1084/jem.20142237

202. Boise LH, Thompson CB. Hierarchical control of lymphocyte survival.

Science. (1996) 274:67–8. doi: 10.1126/science.274.5284.67

203. Seddiki N, Phetsouphanh C, Swaminathan S, Xu Y, Rao S, Li J, et al.

The microRNA-9/B-lymphocyte-induced maturation protein-1/IL-2 axis is

differentially regulated in progressive HIV infection. Eur J Immunol. (2013)

43:510–20. doi: 10.1002/eji.201242695

204. de Masson A, Kirilovsky A, Zoorob R, Avettand-Fenoel V, Morin V, Oudin

A, et al. Blimp-1 overexpression is associated with low HIV-1 reservoir and

transcription levels in central memory CD4+ T cells from elite controllers.

AIDS. (2014) 28:1567–77. doi: 10.1097/QAD.0000000000000295

205. Shankar EM, Che KF, Messmer D, Lifson JD, Larsson M. Expression of

a broad array of negative costimulatory molecules and Blimp-1 in T cells

following priming by HIV-1 pulsed dendritic cells. Mol Med. (2011) 17:229–

40. doi: 10.2119/molmed.2010.00175

206. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition

of native chromatin for fast and sensitive epigenomic profiling of open

chromatin, DNA-binding proteins and nucleosome position. Nat Methods.

(2013) 10:1213–8. doi: 10.1038/nmeth.2688

207. Scharer CD, Bally AP, Gandham B, Boss JM. Cutting edge: chromatin

accessibility programs CD8T cell memory. J Immunol. (2017) 198:2238–43.

doi: 10.4049/jimmunol.1602086

208. Scott-Browne JP, Lopez-Moyado IF, Trifari S, Wong V, Chavez L, Rao

A, et al. Dynamic changes in chromatin accessibility occur in CD8+

T cells responding to viral infection. Immunity. (2016) 45:1327–40.

doi: 10.1016/j.immuni.2016.10.028

209. Zhang F, Zhou X, DiSpirito JR, Wang C, Wang Y, Shen H. Epigenetic

manipulation restores functions of defective CD8+ T cells from chronic viral

infection. Mol Ther. (2014) 22:1698–706. doi: 10.1038/mt.2014.91

210. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti

T, et al. Characterization of hepatitis B virus (HBV)-specific T-cell

dysfunction in chronic HBV infection. J Virol. (2007) 81:4215–25.

doi: 10.1128/JVI.02844-06

211. Radziewicz H, Ibegbu CC, Fernandez ML, Workowski KA, Obideen K,

Wehbi M, et al. Liver-infiltrating lymphocytes in chronic human hepatitis

C virus infection display an exhausted phenotype with high levels of

PD-1 and low levels of CD127 expression. J Virol. (2007) 81:2545–53.

doi: 10.1128/JVI.02021-06

212. Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G,

et al. PD-1 expression in acute hepatitis C virus (HCV) infection is

associated with HCV-specific CD8 exhaustion. J Virol. (2006) 80:11398–403.

doi: 10.1128/JVI.01177-06

213. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral

persistence alters CD8 T-cell immunodominance and tissue distribution and

results in distinct stages of functional impairment. J Virol. (2003) 77:4911–27.

doi: 10.1128/JVI.77.8.4911-4927.2003

214. Mueller SN, Ahmed R. High antigen levels are the cause of T cell exhaustion

during chronic viral infection. Proc Natl Acad Sci USA. (2009) 106:8623–8.

doi: 10.1073/pnas.0809818106

215. Fuller MJ, Khanolkar A, Tebo AE, Zajac AJ. Maintenance, loss,

and resurgence of T cell responses during acute, protracted,

and chronic viral infections. J Immunol. (2004) 172:4204–14.

doi: 10.4049/jimmunol.172.7.4204

216. Fuller MJ, Zajac AJ. Ablation of CD8 and CD4T cell responses by high viral

loads. J Immunol. (2003) 170:477–86. doi: 10.4049/jimmunol.170.1.477

217. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T,

et al. Induction and exhaustion of lymphocytic choriomeningitis virus-

specific cytotoxic T lymphocytes visualized using soluble tetrameric major

histocompatibility complex class I-peptide complexes. J Exp Med. (1998)

187:1383–93. doi: 10.1084/jem.187.9.1383

218. Ou R, Zhou S, Huang L, Moskophidis D. Critical role for alpha/beta

and gamma interferons in persistence of lymphocytic choriomeningitis

virus by clonal exhaustion of cytotoxic T cells. J Virol. (2001) 75:8407–23.

doi: 10.1128/JVI.75.18.8407-8423.2001

Frontiers in Immunology | www.frontiersin.org 16 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1172/jci.insight.122940
https://doi.org/10.1128/AAC.01163-19
https://doi.org/10.1155/2015/737389
https://doi.org/10.1097/QAD.0000000000001849
https://doi.org/10.1097/QAD.0000000000001429
https://doi.org/10.1097/QAD.0000000000000562
https://doi.org/10.1084/jem.20061800
https://doi.org/10.1097/QAD.0000000000001217
https://doi.org/10.1016/j.immuni.2012.08.021
https://doi.org/10.1073/pnas.0610335104
https://doi.org/10.1016/j.immuni.2015.01.006
https://doi.org/10.1146/annurev.immunol.26.021607.090241
https://doi.org/10.1371/journal.ppat.1002533
https://doi.org/10.1128/JVI.00942-12
https://doi.org/10.4049/jimmunol.1200639
https://doi.org/10.1038/nm1728
https://doi.org/10.1172/JCI83092
https://doi.org/10.1371/journal.ppat.1004251
https://doi.org/10.1084/jem.20142237
https://doi.org/10.1126/science.274.5284.67
https://doi.org/10.1002/eji.201242695
https://doi.org/10.1097/QAD.0000000000000295
https://doi.org/10.2119/molmed.2010.00175
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.4049/jimmunol.1602086
https://doi.org/10.1016/j.immuni.2016.10.028
https://doi.org/10.1038/mt.2014.91
https://doi.org/10.1128/JVI.02844-06
https://doi.org/10.1128/JVI.02021-06
https://doi.org/10.1128/JVI.01177-06
https://doi.org/10.1128/JVI.77.8.4911-4927.2003
https://doi.org/10.1073/pnas.0809818106
https://doi.org/10.4049/jimmunol.172.7.4204
https://doi.org/10.4049/jimmunol.170.1.477
https://doi.org/10.1084/jem.187.9.1383
https://doi.org/10.1128/JVI.75.18.8407-8423.2001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

219. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R, et al. Strength of PD-

1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci

USA. (2013) 110:E2480–9. doi: 10.1073/pnas.1305394110

220. Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-

infiltrating effector and regulatory T cells. Immunol Rev. (2014) 259:245–58.

doi: 10.1111/imr.12166

221. Attanasio J, Wherry EJ. Costimulatory and coinhibitory receptor

pathways in infectious disease. Immunity. (2016) 44:1052–68.

doi: 10.1016/j.immuni.2016.04.022

222. Pellegrini M, Calzascia T, Elford AR, Shahinian A, Lin AE, Dissanayake

D, et al. Adjuvant IL-7 antagonizes multiple cellular and molecular

inhibitory networks to enhance immunotherapies. Nat Med. (2009) 15:528–

36. doi: 10.1038/nm.1953

223. Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, et al. T-

cell exhaustion in chronic infections: reversing the state of exhaustion and

reinvigorating optimal protective immune responses. Front Immunol. (2018)

9:2569. doi: 10.3389/fimmu.2018.02569

224. Yerinde C, Siegmund B, Glauben R, Weidinger C. Metabolic control of

epigenetics and its role in CD8+ T cell differentiation and function. Front

Immunol. (2019) 10:2718. doi: 10.3389/fimmu.2019.02718

225. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE,Watkins SC,

et al. The tumormicroenvironment represses T cell mitochondrial biogenesis

to drive intratumoral T cell metabolic insufficiency and dysfunction.

Immunity. (2016) 45:701–3. doi: 10.1016/j.immuni.2016.08.009

226. Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK,

Petroff M, et al. Activation of the PD-1/PD-L1 immune checkpoint confers

tumor cell chemoresistance associated with increased metastasis. Oncotarget.

(2016) 7:10557–67. doi: 10.18632/oncotarget.7235

227. Ghebeh H, Lehe C, Barhoush E, Al-Romaih K, Tulbah A, Al-Alwan M, et al.

Doxorubicin downregulates cell surface B7-H1 expression and upregulates

its nuclear expression in breast cancer cells: role of B7-H1 as an anti-

apoptotic molecule. Breast Cancer Res. (2010) 12:R48. doi: 10.1186/bc

r2605

228. Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with

chemotherapy can enhance the antigenicity and immunogenicity of tumours

by promoting adaptive immune responses. Br J Cancer. (2010) 102:115–23.

doi: 10.1038/sj.bjc.6605465

229. Sharma MD, Huang L, Choi JH, Lee EJ, Wilson JM, Lemos H,

et al. An inherently bifunctional subset of Foxp3+ T helper cells is

controlled by the transcription factor eos. Immunity. (2013) 38:998–1012.

doi: 10.1016/j.immuni.2013.01.013

230. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age.

Nature. (2011) 480:480–9. doi: 10.1038/nature10673

231. Thommen DS, Schreiner J, Muller P, Herzig P, Roller A, Belousov A, et al.

Progression of lung cancer is associated with increased dysfunction of T cells

defined by coexpression of multiple inhibitory receptors. Cancer Immunol

Res. (2015) 3:1344–55. doi: 10.1158/2326-6066.CIR-15-0097

232. Tang J, Zha J, Guo X, Shi P, Xu B. CXCR5+CD8+ T cells present elevated

capacity in mediating cytotoxicity toward autologous tumor cells through

interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol.

(2017) 50:146–51. doi: 10.1016/j.intimp.2017.06.020

233. Mastelic-Gavillet B, Navarro Rodrigo B, Decombaz L, Wang H, Ercolano G,

Ahmed R, et al. Adenosine mediates functional andmetabolic suppression of

peripheral and tumor-infiltrating CD8+ T cells. J Immunother Cancer. (2019)

7:257. doi: 10.1186/s40425-019-0719-5

234. Speiser DE,Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer.

Nat Rev Immunol. (2016) 16:599–611. doi: 10.1038/nri.2016.80

235. Choi YS, Eto D, Yang JA, Lao C, Crotty S. Cutting edge: STAT1 is required for

IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J

Immunol. (2013) 190:3049–53. doi: 10.4049/jimmunol.1203032

236. Yue C, Shen S, Deng J, Priceman SJ, Li W, Huang A, et al. STAT3 in

CD8+ T cells inhibits their tumor accumulation by downregulating

CXCR3/CXCL10 axis. Cancer Immunol Res. (2015) 3:864–70.

doi: 10.1158/2326-6066.CIR-15-0014

237. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F,

et al. Effector function of human tumor-specific CD8T cells in melanoma

lesions: a state of local functional tolerance. Cancer Res. (2004) 64:2865–73.

doi: 10.1158/0008-5472.CAN-03-3066

238. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi

ACJ, et al. Dysfunctional CD8T cells form a proliferative, dynamically

regulated compartment within human melanoma. Cell. (2019) 176:775–

89.e18. doi: 10.1016/j.cell.2018.11.043

239. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, et al.

Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated

by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA.

(2010) 107:7875–80. doi: 10.1073/pnas.1003345107

240. Speiser DE, Utzschneider DT, Oberle SG, Munz C, Romero P, Zehn D. T

cell differentiation in chronic infection and cancer: functional adaptation or

exhaustion? Nat Rev Immunol. (2014) 14:768–74. doi: 10.1038/nri3740

241. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S,

et al. Prospective identification of neoantigen-specific lymphocytes in

the peripheral blood of melanoma patients. Nat Med. (2016) 22:433–8.

doi: 10.1038/nm.4051

242. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the

patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors.

J Clin Invest. (2014) 124:2246–59. doi: 10.1172/JCI73639

243. Inozume T, Hanada K, Wang QJ, Ahmadzadeh M, Wunderlich JR,

Rosenberg SA, et al. Selection of CD8+PD-1+ lymphocytes in fresh human

melanomas enriches for tumor-reactive T cells. J Immunother. (2010)

33:956–64. doi: 10.1097/CJI.0b013e3181fad2b0

244. Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, et al. Human

breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1

expression. Nat Commun. (2018) 9:4297. doi: 10.1038/s41467-018-06653-9

245. Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R. Antigen-

independent memory CD8T cells do not develop during chronic

viral infection. Proc Natl Acad Sci USA. (2004) 101:16004–9.

doi: 10.1073/pnas.0407192101

246. Shin H, Blackburn SD, Blattman JN, Wherry EJ. Viral antigen and extensive

division maintain virus-specific CD8T cells during chronic infection. J Exp

Med. (2007) 204:941–9. doi: 10.1084/jem.20061937

247. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B,

et al. Resistance mechanisms to immune-checkpoint blockade in cancer:

tumor-intrinsic and -extrinsic factors. Immunity. (2016) 44:1255–69.

doi: 10.1016/j.immuni.2016.06.001

248. Vezys V, Masopust D, Kemball CC, Barber DL, O’Mara LA, Larsen CP,

et al. Continuous recruitment of naive T cells contributes to heterogeneity

of antiviral CD8T cells during persistent infection. J Exp Med. (2006)

203:2263–9. doi: 10.1084/jem.20060995

249. Araki K, Youngblood B, Ahmed R. Programmed cell death 1-directed

immunotherapy for enhancing T-cell function. Cold Spring Harb Symp

Quant Biol. (2013) 78:239–47. doi: 10.1101/sqb.78.019869

250. Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, et al.

Phenotype, function, and gene expression profiles of programmed death-

1(hi) CD8T cells in healthy human adults. J Immunol. (2011) 186:4200–12.

doi: 10.4049/jimmunol.1001783

251. Dolfi DV, Mansfield KD, Polley AM, Doyle SA, Freeman GJ, Pircher H,

et al. Increased T-bet is associated with senescence of influenza virus-

specific CD8T cells in aged humans. J Leukoc Biol. (2013) 93:825–36.

doi: 10.1189/jlb.0912438

252. Ahn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J, et al. Role of PD-

1 during effector CD8T cell differentiation. Proc Natl Acad Sci USA. (2018)

115:4749–54. doi: 10.1073/pnas.1718217115

253. Vigano S, Perreau M, Pantaleo G, Harari A. Positive and negative regulation

of cellular immune responses in physiologic conditions and diseases. Clin

Dev Immunol. (2012) 2012:485781. doi: 10.1155/2012/485781

254. Blattman JN, Wherry EJ, Ha SJ, van der Most RG, Ahmed R. Impact

of epitope escape on PD-1 expression and CD8 T-cell exhaustion during

chronic infection. J Virol. (2009) 83:4386–94. doi: 10.1128/JVI.02524-08

255. Streeck H, Brumme ZL, Anastario M, Cohen KW, Jolin JS, Meier A,

et al. Antigen load and viral sequence diversification determine the

functional profile of HIV-1-specific CD8+ T cells. PLoS Med. (2008) 5:e100.

doi: 10.1371/journal.pmed.0050100

256. Kasprowicz V, Kang YH, Lucas M, Schulze zur Wiesch J, Kuntzen T, Fleming

V, et al. Hepatitis C virus (HCV) sequence variation induces an HCV-

specific T-cell phenotype analogous to spontaneous resolution. J Virol. (2010)

84:1656–63. doi: 10.1128/JVI.01499-09

Frontiers in Immunology | www.frontiersin.org 17 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1073/pnas.1305394110
https://doi.org/10.1111/imr.12166
https://doi.org/10.1016/j.immuni.2016.04.022
https://doi.org/10.1038/nm.1953
https://doi.org/10.3389/fimmu.2018.02569
https://doi.org/10.3389/fimmu.2019.02718
https://doi.org/10.1016/j.immuni.2016.08.009
https://doi.org/10.18632/oncotarget.7235
https://doi.org/10.1186/bcr2605
https://doi.org/10.1038/sj.bjc.6605465
https://doi.org/10.1016/j.immuni.2013.01.013
https://doi.org/10.1038/nature10673
https://doi.org/10.1158/2326-6066.CIR-15-0097
https://doi.org/10.1016/j.intimp.2017.06.020
https://doi.org/10.1186/s40425-019-0719-5
https://doi.org/10.1038/nri.2016.80
https://doi.org/10.4049/jimmunol.1203032
https://doi.org/10.1158/2326-6066.CIR-15-0014
https://doi.org/10.1158/0008-5472.CAN-03-3066
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1073/pnas.1003345107
https://doi.org/10.1038/nri3740
https://doi.org/10.1038/nm.4051
https://doi.org/10.1172/JCI73639
https://doi.org/10.1097/CJI.0b013e3181fad2b0
https://doi.org/10.1038/s41467-018-06653-9
https://doi.org/10.1073/pnas.0407192101
https://doi.org/10.1084/jem.20061937
https://doi.org/10.1016/j.immuni.2016.06.001
https://doi.org/10.1084/jem.20060995
https://doi.org/10.1101/sqb.78.019869
https://doi.org/10.4049/jimmunol.1001783
https://doi.org/10.1189/jlb.0912438
https://doi.org/10.1073/pnas.1718217115
https://doi.org/10.1155/2012/485781
https://doi.org/10.1128/JVI.02524-08
https://doi.org/10.1371/journal.pmed.0050100
https://doi.org/10.1128/JVI.01499-09
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Patterns of Chronic Antigen Exposure

257. Conrad JA, Ramalingam RK, Duncan CB, Smith RM, Wei J, Barnett L, et al.

Antiretroviral therapy reduces the magnitude and T cell receptor repertoire

diversity of HIV-specific T cell responses without changing T cell clonotype

dominance. J Virol. (2012) 86:4213–21. doi: 10.1128/JVI.06000-11

258. Fuller MJ, Hildeman DA, Sabbaj S, Gaddis DE, Tebo AE, Shang L, et al.

Cutting edge: emergence of CD127high functionally competent memory

T cells is compromised by high viral loads and inadequate T cell help. J

Immunol. (2005) 174:5926–30. doi: 10.4049/jimmunol.174.10.5926

259. Wang C, McPherson AJ, Jones RB, Kawamura KS, Lin GH, Lang PA, et al.

Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation

during human and murine chronic infection. J Exp Med. (2012) 209:77–91.

doi: 10.1084/jem.20110675

260. Ahn E, Youngblood B, Lee J, Lee J, Sarkar S, Ahmed R. Demethylation of

the PD-1 promoter is imprinted during the effector phase of CD8T cell

exhaustion. J Virol. (2016) 90:8934–46. doi: 10.1128/JVI.00798-16

261. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett

LT, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears

established blood-stage plasmodium infection. Nat Immunol. (2011) 13:188–

95. doi: 10.1038/ni.2180

262. Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ,

et al. Functionally distinct LAG-3 and PD-1 subsets on activated and

chronically stimulated CD8T cells. J Immunol. (2009) 182:6659–69.

doi: 10.4049/jimmunol.0804211

263. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM,

et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med.

(2013) 369:122–33. doi: 10.1056/NEJMoa1302369

264. Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-targeted

antitumor immunotherapy. Cancer Res. (2011) 71:6567–71.

doi: 10.1158/0008-5472.CAN-11-1487

265. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ.

Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor

immunity and suppresses established tumors. Cancer Res. (2011) 71:3540–

51. doi: 10.1158/0008-5472.CAN-11-0096

266. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH,

et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion

phenotype in mice with disseminated acute myelogenous leukemia. Blood.

(2011) 117:4501–10. doi: 10.1182/blood-2010-10-310425

267. Kassu A, Marcus RA, D’Souza MB, Kelly-McKnight EA, Palmer BE.

Suppression of HIV replication by antiretroviral therapy reduces TIM-3

expression onHIV-specific CD8+ T cells. AIDS Res HumRetroviruses. (2011)

27:1–3. doi: 10.1089/aid.2010.0156

268. Poonia B, Pauza CD. Levels of CD56+TIM-3- effector CD8T

cells distinguish HIV natural virus suppressors from patients

receiving antiretroviral therapy. PLoS ONE. (2014) 9:e88884.

doi: 10.1371/journal.pone.0088884

269. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune

checkpoint blockade therapy. Cancer Discov. (2018) 8:1069–86.

doi: 10.1158/2159-8290.CD-18-0367

270. Wolthers KC, Miedema F. Telomeres and HIV-1 infection:

in search of exhaustion. Trends Microbiol. (1998) 6:144–7.

doi: 10.1016/S0966-842X(98)01233-5

271. Zhou S, Ou R, Huang L, Price GE,Moskophidis D. Differential tissue-specific

regulation of antiviral CD8+ T-cell immune responses during chronic viral

infection. J Virol. (2004) 78:3578–600. doi: 10.1128/JVI.78.7.3578-3600.2004

272. Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M, et al.

Skewed maturation of memory HIV-specific CD8T lymphocytes. Nature.

(2001) 410:106–11. doi: 10.1038/35065118

273. Vigano S, Negron J, Ouyang Z, Rosenberg ES, Walker BD, Lichterfeld

M, et al. Prolonged antiretroviral therapy preserves HIV-1-specific

CD8T cells with stem cell-like properties. J Virol. (2015) 89:7829–40.

doi: 10.1128/JVI.00789-15

274. Doherty PC. Immune exhaustion: driving virus-specific

CD8+ T cells to death. Trends Microbiol. (1993) 1:207–9.

doi: 10.1016/0966-842X(93)90133-C

275. Alter G, Hatzakis G, Tsoukas CM, Pelley K, Rouleau D, LeBlanc R,

et al. Longitudinal assessment of changes in HIV-specific effector activity

in HIV-infected patients starting highly active antiretroviral therapy in

primary infection. J Immunol. (2003) 171:477–88. doi: 10.4049/jimmunol.17

1.1.477

276. Jamieson BD, Yang OO, Hultin L, Hausner MA, Hultin P, Matud J,

et al. Epitope escape mutation and decay of human immunodeficiency

virus type 1-specific CTL responses. J Immunol. (2003) 171:5372–9.

doi: 10.4049/jimmunol.171.10.5372

277. Rajandram R, Bennett NC, Wang Z, Perry-Keene J, Vesey DA, Johnson DW,

et al. Patient samples of renal cell carcinoma show reduced expression of

TRAF1 compared with normal kidney and functional studies in vitro indicate

TRAF1 promotes apoptosis: potential for targeted therapy. Pathology. (2012)

44:453–9. doi: 10.1097/PAT.0b013e3283557748

278. Vezys V, Penaloza-MacMaster P, Barber DL, Ha SJ, Konieczny B, FreemanGJ,

et al. 4-1BB signaling synergizes with programmed death ligand 1 blockade

to augment CD8T cell responses during chronic viral infection. J Immunol.

(2011) 187:1634–42. doi: 10.4049/jimmunol.1100077

279. Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM,

Barnett BE, et al. Molecular and transcriptional basis of CD4+ T

cell dysfunction during chronic infection. Immunity. (2014) 40:289–302.

doi: 10.1016/j.immuni.2014.01.005

280. Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S,

et al. Master transcription factors determine cell-type-specific responses

to TGF-beta signaling. Cell. (2011) 147:565–76. doi: 10.1016/j.cell.2011.

08.050

281. Trompouki E, Bowman TV, Lawton LN, Fan ZP, Wu DC, DiBiase A,

et al. Lineage regulators direct BMP and Wnt pathways to cell-specific

programs during differentiation and regeneration. Cell. (2011) 147:577–89.

doi: 10.1016/j.cell.2011.09.044

282. Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop

JK, et al. Requirement for T-bet in the aberrant differentiation of

unhelped memory CD8+ T cells. J Exp Med. (2007) 204:2015–21.

doi: 10.1084/jem.20070841

283. Banerjee A, Gordon SM, Intlekofer AM, Paley MA, Mooney EC, Lindsten T,

et al. Cutting edge: the transcription factor eomesodermin enables CD8+ T

cells to compete for the memory cell niche. J Immunol. (2010) 185:4988–92.

doi: 10.4049/jimmunol.1002042

284. Paley MA, Gordon SM, Bikoff EK, Robertson EJ, Wherry EJ, Reiner SL.

Technical advance: fluorescent reporter reveals insights into eomesodermin

biology in cytotoxic lymphocytes. J Leukoc Biol. (2013) 93:307–15.

doi: 10.1189/jlb.0812400

285. Zhou X, Yu S, Zhao DM, Harty JT, Badovinac VP, Xue HH. Differentiation

and persistence of memory CD8+ T cells depend on T cell factor 1.

Immunity. (2010) 33:229–40. doi: 10.1016/j.immuni.2010.08.002

286. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT,

Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by

T-bet and eomesodermin. Nat Immunol. (2005) 6:1236–44. doi: 10.1038/n

i1268

287. Scharer CD, Barwick BG, Youngblood BA, Ahmed R, Boss JM. Global

DNA methylation remodeling accompanies CD8T cell effector function. J

Immunol. (2013) 191:3419–29. doi: 10.4049/jimmunol.1301395

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Vigano, Bobisse, Coukos, Perreau and Harari. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 18 June 2020 | Volume 11 | Article 1350

https://doi.org/10.1128/JVI.06000-11
https://doi.org/10.4049/jimmunol.174.10.5926
https://doi.org/10.1084/jem.20110675
https://doi.org/10.1128/JVI.00798-16
https://doi.org/10.1038/ni.2180
https://doi.org/10.4049/jimmunol.0804211
https://doi.org/10.1056/NEJMoa1302369
https://doi.org/10.1158/0008-5472.CAN-11-1487
https://doi.org/10.1158/0008-5472.CAN-11-0096
https://doi.org/10.1182/blood-2010-10-310425
https://doi.org/10.1089/aid.2010.0156
https://doi.org/10.1371/journal.pone.0088884
https://doi.org/10.1158/2159-8290.CD-18-0367
https://doi.org/10.1016/S0966-842X(98)01233-5
https://doi.org/10.1128/JVI.78.7.3578-3600.2004
https://doi.org/10.1038/35065118
https://doi.org/10.1128/JVI.00789-15
https://doi.org/10.1016/0966-842X(93)90133-C
https://doi.org/10.4049/jimmunol.171.1.477
https://doi.org/10.4049/jimmunol.171.10.5372
https://doi.org/10.1097/PAT.0b013e3283557748
https://doi.org/10.4049/jimmunol.1100077
https://doi.org/10.1016/j.immuni.2014.01.005
https://doi.org/10.1016/j.cell.2011.08.050
https://doi.org/10.1016/j.cell.2011.09.044
https://doi.org/10.1084/jem.20070841
https://doi.org/10.4049/jimmunol.1002042
https://doi.org/10.1189/jlb.0812400
https://doi.org/10.1016/j.immuni.2010.08.002
https://doi.org/10.1038/ni1268
https://doi.org/10.4049/jimmunol.1301395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure
	Introduction
	Emergence of T Cell Exhaustion
	Hallmarks of T Cell Exhaustion in HIV-1 Infection
	Expression of Multiple ICs
	Alteration in TFs Expression and Epigenetic Regulation
	Loss of Functions

	Hallmarks of T Cell Exhaustion in Cancer
	Expression of Multiple ICs
	Alteration in TFs Expression and Epigenetic Regulation
	Loss of Functions

	Exhausted VS. Activated/Memory CD8T Cells
	Expression of Surface Molecules
	Transcriptional and Epigenetic Regulation

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


