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Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact
ranging from commercial to health domains. A vast amount of research has been carried
out on these microbes, deciphering many of the pathways and components responsible
for these desirable effects. However, a large proportion of this functional information
has been derived from a reductionist approach working with pure culture strains. This
provides limited insight into understanding the impact of LAB within intricate systems
such as the gut microbiome or multi strain starter cultures. Whole genome sequencing
of strains and shotgun metagenomics of entire systems are powerful techniques that
are currently widely used to decipher function in microbes, but they also have their
limitations. An available genome or metagenome can provide an image of what a strain
or microbiome, respectively, is potentially capable of and the functions that they may
carry out. A top-down, multi-omics approach has the power to resolve the functional
potential of an ecosystem into an image of what is being expressed, translated and
produced. With this image, it is possible to see the real functions that members of a
system are performing and allow more accurate and impactful predictions of the effects
of these microorganisms. This review will discuss how technological advances have the
potential to increase the yield of information from genomics, transcriptomics, proteomics
and metabolomics. The potential for integrated omics to resolve the role of LAB in
complex systems will also be assessed. Finally, the current software approaches for
managing these omics data sets will be discussed.

Keywords: lactic acid bacteria, multi-omics, microbiome, genomics, transcriptomics, proteomics, metabolomics,
meta-omics

INTRODUCTION

Sequencing the first whole genome of a bacterial strain, namely Haemophilus influenzae, in 1995
was a milestone in molecular biology for a number of reasons (Fleischmann et al., 1995), one of
which was heralding in an era rich in information where the volume of data produced was beyond
being completely interpreted. Subsequent genomic data sets derived from bacteria elucidated gene
functions, metabolic networks, biological pathways, microbial evolution and genome structure
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significantly enhancing our understanding of bacterial function
and potential (Kanehisa and Goto, 2000; Ley et al., 2006).
However, the challenge in deciphering relevant genetic
information from the background genetic material was almost an
impossible task. To combat this, more information was required.
Information on the transcription of the genetic material and
subsequent production of proteins was necessary. The targets
of these proteins and the molecules they interact with had to be
determined. Nuanced epigenetic triggers and the metabolites
that are ultimately produced are all crucial to understanding the
system as a whole. Indeed, much of the observed phenotype in
a system can be explained in the context of these data sets when
interpreted correctly.

Biological systems rely on the DNA – RNA – protein
information transfer paradigm that determines the phenotype
of an organism. Biologists have analyzed these “omes” for a
number of years in the form of genomics, transcriptomics and
proteomics. In addition to these, epigenomics and metabolomics
have recently been used to answer specific questions relating
to the many functions of an organism. Given the year on year
advances in “omics” technologies, the volume of information
that can be gathered in individual studies is expanding rapidly.
Furthermore, the current high throughput nature of these
techniques has increased accessibility to this information in terms
of time and cost. This has placed many researchers in a situation
where they can collect several omics data sets on the same
experimental samples. In order to draw more comprehensive
conclusions on biological processes these data sets must be
integrated and analyzed as a holistic system.

Technologies involved in a multi-omics approach share
several commonalities, some of which contrast with the
original approach of molecular biologists. For the most part,
molecular biology has utilized a reductionist approach to date.
This methodology involves breaking a complex problem into
its constituent parts and solving them individually. While
reductionism has had significant successes, particularly when
the experimental subject is controlled by a single component
(Isberg and Falkow, 1985), or can be explained by interactions
between single molecules (Krebs, 1940), it also has substantial
limitations. These limitations are caused by the process of
isolating components of a complex system; often the nature
of their role in the system is lost. This is the most significant
advantage that omics technologies can have compared to a
reductionist approach. Maintaining these components in the
system allows observation in a realistic environment where
emergent properties can also be studied. These high throughput,
top down methods also provide a phenomenal volume of data in
comparison to the reductionist approach. For example, as much
as six terabytes of information can be generated by processing
samples in tandem on an Illumina NovaSeq 6000. Finally, omics
technologies require significant computational infrastructure in
the form of novel algorithms and software to process and analyze
the information produced (Berger et al., 2013).

This has placed researchers in a situation where they must
adapt to maximize the results from biological data. Biologists
must acquire skills in managing and manipulating these vast
quantities of data to resolve experimental questions outside the

scope of the lab bench. An appreciation of the strengths and
limitations of many of these technologies will allow researchers
to answer more complex questions and generate more general
conclusions. This is a constant arms race as the technologies
that underpin the generation of these omic and meta’omic
data sets are constantly advancing. The scope of analysis
ranges from entire community samples of 1012 microbes to
exploring the components of single cells. Higher throughput
machines are facilitating deeper sequencing than ever before.
This sequencing depth is opening new potential use cases
such as metatranscriptomics of the gut microbiome. Integrating
these large data sets to provide a systems level view will
reveal previously unattainable information on the individual
microbes involved.

LAB are uniquely placed to take full advantage of these
fundamental changes in approach. Notably, LAB have been the
subject of extensive research exploring specific attributes and
functions of isolated cultures (Noike et al., 2002; Leroy and De
Vuyst, 2004). In depth analysis of individual LAB strains has
provided a wealth of information on their biological processes
and functionality in a variety of publically available databases.
Multi-omics technologies stand ready to exploit this information
on LAB to decipher and predict many functions of interest using
a systems level approach. Inter-microbe interactions, particularly
within starter cultures, are some of the first to witness the
potential in these advances (Sattin et al., 2016; Sirén et al., 2019).
Similarly, multi-omics technologies are currently being used to
tackle more complex systems such as the gut microbiome and
host-microbe interactions (Turroni et al., 2016; Huang et al.,
2017; Wang et al., 2019). This emerging field is capable of
providing a platform for more accurate functional prediction of
LAB in a variety of complex environments.

In this review, we will discuss the current most popular
combinations of different omics technologies to facilitate
accurate functional prediction for LAB. The most recent advances
in the relevant technologies will be mentioned, while the potential
they hold for deciphering the final phenotype of these microbes
will be assessed. Finally, the computational barriers associated
with integrating complex and diverse data sets will be discussed.

THE POTENTIAL FOR FUNCTIONAL
PREDICTION IN LAB USING OMICS
TECHNOLOGIES

LAB are among the most industrially significant groups of
bacteria. These versatile microbes have a variety of potential
functions that are applied in many sectors. Food production,
health promotion, production of antimicrobials and in vivo
fermentation all see benefit from this group of microorganisms.
These diverse functions encoded within single genomes are a
source of valuable information available for exploitation. As
a result, these processes have been studied extensively using
in vitro, in vivo and more recently in silico techniques to
determine the critical pathways underpinning the phenotypes.
Analysis of these molecular pathways has resulted in more
accurate use of LAB in commercial endeavors such as starter
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fermentation cultures and probiotic supplements (Leroy and
De Vuyst, 2004; Muñoz-Atienza et al., 2013). Deciphering the
underlying biological attributes associated with these critical
microbes allows greater understanding of their current roles and
may reveal new applications. However, this scrutiny has often
focused on a single element of interest in isolation, instead of
taking the entire system into account.

A more inclusive approach is possible with diverse sets
of information interrogated by omics technologies. To date,
many groups have utilized both omics and multi-omics data
sets to advance this field and progress knowledge of LAB
function (Lahtvee et al., 2011; Rebollar et al., 2016; Huang
et al., 2017; Filannino et al., 2018; Ellepola et al., 2019). The
consistent progression of new technologies and methodologies
has resulted in many studies providing crucial information on
the function of LAB. Progress in this manner also provides
direction for future work with these microbes. Studies using
multi omics for mammalian or bacterial cells may pre-empt
similar work with LAB. New methodologies incorporating
omics technologies are often applicable to a variety of research
topics. These studies will be discussed to gain insight into the
potential use cases for LAB. Translating the relevant findings
in multi omics research will focus on what can be discovered
in LAB within ecosystems they inhabit and their common
commercial applications. The influence exerted by the new
technological advancements will also be assessed for their
direct effect on LAB.

Basic functions of LAB are well understood, as are the cellular
processes underlying them. With this foundation of knowledge,
research into LAB is in a prime position to exploit the coming
wave of omics technologies. The sections below document the
strengths and limitations of each omics technology, the impact of
each omic data set on inferring LAB function to date, the relevant
advancement in technology and how these new methodologies
may accelerate future progress.

THE IMPACT OF GENOMICS ON LACTIC
ACID BACTERIA

Genomic information has recently become essential when
studying microbes in detail. These data sets can provide an
immutable link to the organism that for the most part remains
constant. In well studied bacteria, such as many LAB, fully
sequenced genomes are readily available in a variety of species
(Chenoll et al., 2015; Inglin et al., 2018). These may be used
as reference genomes when assembling draft genomes of the
strain at hand. Mining these genomes alone reveals information
on all traits available to the microbe. Potential products are
inferred from the genetic code and viable pathways can be
determined analyzing the relevant genes. These pathways are
categorized by their overarching function e.g., carbohydrate
utilization pathways. Comparative genomic analysis between the
generic pathways available to LAB and the strain of interest
may highlight the unique functional capacity of the particular
strain of interest (Makarova et al., 2006). De novo construction of
genomic information is also possible. Knowledge of characteristic

motifs and patterns in specific alignment of DNA bases e.g.,
Shine-Dalgarno, allows software to detect important genes
such as cluster specific transcription factors and the promoters
associated with said genes (Wolf et al., 2018). Such methods
can be used in conjunction with comparative genomics to
predict the production of difficult to detect molecules such
as secondary metabolites in the form of antibiotics, toxins
and immunosuppressives (Zerikly and Challis, 2009; Weber
et al., 2018). Mining genomes for well-known genes is more
straightforward using BLAST or DIAMOND (Altschul et al.,
1990; Buchfink et al., 2014). Searching the DNA or protein
sequence of the element of interest against your genome will
provide probability-based results on its presence in the genome.
This information is the bedrock on which the multi-omics
integration is built.

Mining genomic information on its own may direct
experimentation or suggest mechanisms for known functional
attributes. This was exemplified by analysis of genomic data
in Lactobacillus ruminis revealing the presence of functional
flagellar apparatus in the form of 45 flagellar genes (Neville
et al., 2012). Robust flagellar apparatus suggests L. ruminis
is a motile microbe and presents a mechanism for pro-
inflammatory tendencies. Despite not expressing flagella in
culture media, strains with the genomic capacity to produce
flagella were observed to partially recover this ability in vivo.
Gene clusters for crucial mucus binding pili have been detected
in several LAB (Douillard et al., 2013). This gene cluster explains
L. rhamnosus’ capacity to adhere to the intestinal mucosa
(Kankainen et al., 2009). In a similar fashion, gene clusters that
are capable of producing a broad range of bacteriocins have been
reported. This information led to observe Lactobacillus salivarius
outcompeting Listeria monocytogenes utilizing these compounds
(Corr et al., 2007).

Appropriate use of secondary metabolite software tools for
analyzing the genome has resulted in the discovery of many
novel antibiotics (Schulze et al., 2015; Tian et al., 2016).
Incorporating software such as anti-SMASH (Blin et al., 2017),
PRISM (Skinnider et al., 2017) and GRAPE (Dejong et al.,
2016) has facilitated mining of the genomic data sets for crucial
biosynthetic gene clusters. A very similar process unlocks the
potential in genomic data sets of LAB. These microbes are capable
of producing a wide variety of diverse anti-microbial peptides
(Stoyanova et al., 2012; Zacharof and Lovitt, 2012). Capitalizing
on these powerful analysis tools can realize much of the potential
that a genomic data set provides and determine many possible
functions available to the bacterium in question. Researchers
can forgo the culture based issues with screening for novel
anti-microbial compounds and instead direct future experiments
more accurately. This process was adeptly demonstrated by
Singh S. et al. (2015), to identify putative bacteriocins (Singh N.P.
et al., 2015). Twenty LAB genomes were assessed for relevant
bacteriocin producing genes. Putative operons were identified
leading to further characterization of novel bacteriocins. This
simplistic process describes the exploitation of genomic material
to identify these traits of interest.

The utility of genomic information is on the cusp of a
generational leap forward. Third generation sequencers, such
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as the Sequel II and the MinIon, are set to remedy many of
the intrinsic issues associated with second generation sequencers
(Rhoads and Au, 2015; Lu et al., 2016). These are primarily
a GC bias in fragmentation and amplification (Grokhovsky
et al., 2011; Poptsova et al., 2014), short reads resulting in
difficult to sequence repeat regions (Bovee et al., 2007; Aird
et al., 2011; Genovese et al., 2013) and substantial burdens on
computational rearrangement of genomes from a huge volume
of short reads (Aldrup-Macdonald and Sullivan, 2014; Sims et al.,
2014). Limitations associated with short read sequencing become
apparent when analyzing large insertion sequences (Iranzo et al.,
2014) or substantial rearrangements in chromosomal or circular
genomic sequences (Darling et al., 2008; Sobreira et al., 2011).
Transposable elements often contain genes of interest encoding
traits such as antibiotic resistance and bacteriocin production
(Klaenhammer, 1993; Toomey et al., 2009). In some cases, critical
processes such as genome replication are also intrinsically linked
to the presence of inverted repeats (El Kafsi et al., 2017) and
structure variants of large genomic transfers between species
often harbor crucial mechanisms (Kant et al., 2011). Progress
in this area will have a significant impact on determining some
of the poorly understood traits associated with LAB (Teusink
and Molenaar, 2017). Similarly, it will be possible to shed more
light on up-and-coming areas for LAB such as discovering novel
bacteriocins (Perez et al., 2014). The ability to analyse far greater
read lengths (>20 kb) has facilitated the characterization of
clusters coding resistance to crucial antibiotics as well as accurate
tracking of large translocations of patho-adaptive traits from
commensals to pathogenic bacteria in the microbiota (Huang
et al., 2016; Proença et al., 2017). LAB are likely to have gained
traits from similar translocation events.

However, this is the proverbial tip of the iceberg regarding
the potential impact on LAB due to third generation sequencing.
The most striking example of this is the extraordinary amount
of information in the form of epigenetics that is lost due to
the fragmentation and sequencing process in next generation
sequencing. Epigenetic, post transcriptional modifications exert
significant control on bacterial genomes resulting in altered
phenotypes (Goldberg et al., 2007). Currently, there is a
significant cost in both time and money associated with
determining epigenetic marks (Kurdyukov and Bullock, 2016;
Soto et al., 2016). Both Nanopore and PacBio report the
presence of epigenetic modifications during sequencing (van Dijk
et al., 2018). This will result in regular sequencing reporting
epigenetic alterations to bases, in turn opening this added layer of
complexity to a far greater audience (Casadesús and Low, 2006).

OVERVIEW OF OMICS TECHNOLOGIES

The following section will review the existing omics technologies
in the context of LAB. The advantages and disadvantages of each
is summarized in Table 1.

Single Cell Genomics
Single cell sequencing approaches have become more frequently
utilized throughout the past decade (Tang et al., 2009).

This approach holds significant promise for several reasons,
primarily due to its potential to decipher cellular differences
within heterogenous cell populations in any tissue or cell
culture. Determining cell heterogeneity is an essential step
in understanding the development, regulation and response
to external influence in a population of cells. This natural
heterogeneity is amassed and averaged in bulk sequencing
approaches. Traditional sequencing removes much information
that may indicate more nuanced reasons for phenotypes of
interest. Many techniques have been developed to isolate and
sequence these single cells in a cost effective and high throughput
manner (Wang and Navin, 2015; Lan et al., 2017; Hwang
et al., 2018). Microfluidics and Fluorescent Activated Cell Sorting
(FACS) are the most popular methods to date. FACS relies
on tagging and isolating fluorescent cells by capitalizing on
the charged nature of a fluorescently tagged cell (Gross et al.,
2015). Microfluidics focuses on the precise combinations of oil,
surfactants and cells to create a droplet containing a single cell
(Lecault et al., 2012). These techniques are used in a variety of
fields and are perfectly designed for use in single cell sequencing.
Furthermore, these techniques are adapted to include lysing of
cells and to incorporate sequencing materials within the droplets
encapsulating the cell components.

Single cell sequencing technologies have focused on human
cells to date. This is in part due to the ease involved in lysing them
to release nucleic acids, enabling high throughput protocols.
This issue is being addressed to link higher throughput cell
isolation methods, such as microfluidics, including suitable lysing
protocol for bacterial cells (Liu et al., 2018). For this reason,
however, LAB studies availing of high throughput analysis are
not presently available. Despite this, proof of principle studies
demonstrate the potential for LAB research in this area. Large
sequencing attempts to explore the “microbial dark matter”
of unknown areas of the tree of life (Rinke et al., 2013) in
microbiome samples have been conducted. In a similar manner,
single cell isolation techniques may also be employed to analyze
the least abundant bacterial species within community samples.
Minor community members have been observed within the
fermented dairy product Koumiss using this approach (Yao et al.,
2017). The protocol, described by Yao et al., 2017, involves
diluting microbiome samples and sequencing single cells. This
powerful, yet simplistic, technique can be exploited to analyze
pools of bacteria that are known to have a specific output or
phenotype in order to isolate the cells responsible. Analyzing
minute quantities of DNA and RNA, sometimes as low as
femtograms of material, are within the remit of these single cell
techniques (Lasken, 2007). This knowledge has been utilized in
environmental samples to isolate microbes of interest such as
oil degrading microorganisms (Mason et al., 2012). Furthermore,
single cell segmented filamentous bacteria were isolated using
microfluidics from mouse gut microbiome samples (Pamp et al.,
2012). This protocol provides an isolation method applicable for
single cell LAB in community samples. Despite the lack of single
cell sequencing studies on LAB, many of the techniques described
are directly applicable to LAB. These highlight the potential
advances that are attainable in this area. The rapid progress of
isolation technologies, lysing protocols and sequencing depth will

Frontiers in Microbiology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 3084

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03084 January 24, 2020 Time: 17:37 # 5

O’Donnell et al. Multi-Omics Technologies for LAB

TABLE 1 | Strengths and weaknesses of the individual omics technologies described in this review.

Data set Strengths Limitations Recent advances Citations

Genomic Immutable link to the organism;
databases of reference
genomes often available to aid
reconstruction; provides a
static image of genes of
interest; high throughput
sequencing as standard

Short read sequencing results in gaps
in “hard to sequence” regions;
impossible to determine the activity of
the genetic elements sequenced;
difficult reconstruction of genomes with
bioinformatic software

Third generation sequencing; simultaneous
epigenetic determination with genome
sequencing; higher throughput for shotgun
meta-genomics

Bovee et al., 2007;
Sims et al., 2014; van
Dijk et al., 2018

Transcriptomic Robust data on the
requirements of a microbe in a
given environment; vast
quantity of data is produced;
effective combination with
single cell technologies

RNA isolation and sequencing are
susceptible to handling errors; the
transient nature of RNA only provides a
snapshot of the needs of the
organisms; presence of RNA’s does not
necessarily predict the translation into
proteins

Higher throughput Next Gen Sequencers
(NovaSeq 6000); meta-transcriptomics of
large systems is now possible; more reliable
software for integration and variant
determination

Lohse et al., 2012;
Vogel and Marcotte,
2012; Liu et al., 2016;
Dagogo-Jack and
Shaw, 2018

Proteomic Significant database of known
proteins provide a strong
platform to predict function;
robust link between an
organisms proteomic profile
and its phenotype; provides a
more stable image of the
current requirements of the
organism than other omics
technologies

Throughput capabilities of proteomics
lags behind other omics; expensive MS
machinery is required for proteomic
research; concessions are made in
order to analyze the vast array of
proteins – Splitting large proteins into
smaller sections to facilitate MS analysis

Orbitrap Mass Spec facilitates ionization of
more complex proteins; combining liquid
chromotography with multiple MS’s allows
accurate depiction of specific groups of
proteins; powerful analytical tools i.e.,
PECAN, facilitate more accurate predictions
from untargeted proteomics

Pascal et al., 2008;
Michalski et al., 2012;
The Uniprot
Consortium, 2014; Ting
et al., 2017; Monaci
et al., 2018

Metabolomic Direct connection between
phenotype and metabolomics
profile; provides an image of
many well-studied metabolites
simultaneously; diverse range
of applications across many
fields

The transient nature of metabolites
makes them susceptible to sampling
artifacts; numerous costly LC/GC and
MS machines needed for processing

Back to back LC or MS machines provide
higher resolution of specific groups e.g.,
LC-MS/MS; new machinery such as High
Temperature-Ultra High Performance LC
are overcoming previously difficult to detect
metabolites; single cell sorting advances
are facilitating robust single-cell
metabolomics in the near future

Wang et al., 2014;
Chetwynd et al., 2015;
Rebollar et al., 2016;
Ferrocino and Cocolin,
2017; Zhang and
Vertes, 2018

The recent advances in their respective fields are included to illustrate the frequent progress in this area. As discussed below, many of the weaknesses that are mentioned
may be overcome by integration of several of these omics technologies together.

provide a more stable platform for targeted single cell analysis of
LAB (Gawad et al., 2016).

Metagenomics
In contrast to single cell genomics, metagenomics provides
community-based genome sequences of many diverse species
simultaneously. This information allows correlation-based work
to compare the abundance of particular gene families to the
respective environment (Brown et al., 2011). Metagenomics
provides an overview of species abundance in the microbiome
and characterizes common metabolic pathways available in
the ecosystem (Huttenhower et al., 2012). The contribution
LAB make to the gene pool and functional processes can be
discerned using metagenomic data. Armed with this knowledge,
the potential role LAB play in the community can be determined.
Metagenomics is regularly used to determine the microbial
diversity in order to direct further analysis of the sample at
hand. Zhang et al., 2016, used metagenome sequencing to study
novel fermented foods. These insights into fermented foods
revealed potentially interesting Lactobacillus strains that were
then isolated from the samples (Zhang et al., 2016). This targeted
approach to omics data is the most effective method when
working with a single omics set. However, combining other

omics data unveils a more dynamic image of the metagenome.
This is most commonly applied when integrating genomic
and transcriptomic data. These data can be indispensable to
understanding the functional role members fill in a given system.

COMBINING TRANSCRIPTOMICS WITH
GENOMIC DATA SETS

The combination of genomics and transcriptomics is one
of the most common in addressing experimental questions.
Combining transcript data with available genomic information
provides an image of the intentions of the organisms, given a
specific environmental situation. The integration of genomic and
transcriptomic data (Curtis et al., 2012; Ju et al., 2012; Craig et al.,
2013; Lappalainen et al., 2013) is frequently used across many
fields, while merging metagenome and metatranscriptome data
(Shi et al., 2010; Solbiati and Frias-Lopez, 2018) is becoming far
more prevalent. Genomic and transcriptomic data sets have been
combined regularly to offer insight into the role LAB play in
food spoilage (Andreevskaya et al., 2015), potentially probiotic
traits of LAB strains (Saulnier et al., 2011) and their ability to
use alternative electron acceptors in order to respire instead of
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ferment (Brooijmans et al., 2009). Isolating strains with particular
functions is readily facilitated by transcriptomics data. A systems
approach was used to analyze the altered functional capacity
of a mutated Lactococcus lactis strain utilizing genomic and
microarray data (Chen et al., 2015). The genetic component
responsible for its increased thermo resistance was determined
using this combination of omics data. Transcriptome analysis
of Lactobacillus strains causing beer spoilage was performed to
determine the functional pathways which enable these microbes
to enter the viable putative non-culturable (VPNC) state and
thus survive in beer. Analysis of three Lactobacillus acetotolerans
strains revealed that these strains were in a heightened stress
state and had reduced gene expression levels in several other
regular pathways such as metabolic processes, transport and
enzyme activity. Understanding this process may afford future
opportunities to prevent beer spoilage by inhibiting entry into the
VPNC state (Liu et al., 2016).

Fundamental processes in LAB such as amino acid
and carbohydrate metabolism have been advanced using
transcriptomic data. Comparative transcriptomics has been
imperative in understanding amino acid metabolism in
Lactococcus lactis MG1363. A codY mutant strain was used to
determine the role this gene plays in regulating more than 30
genes involved in metabolizing amino acids (den Hengst et al.,
2005; Guédon et al., 2005). This strain was further analyzed using
transcriptomic data to analyze its global regulatory networks
during growth in milk (de Jong et al., 2013). Knowledge regarding
the expression of critical genetic components in LAB such as
the catabolite control protein A (CcpA) has seen considerable
advancement using transcript data. Deep transcriptomic and
physiological data were used to explore the differential expression
between WT Lactobacillus plantarum and a CcpA mutant during
growth phase on different carbohydrates (Lu et al., 2018). This
study reports a substantial rearrangement in the carbohydrate
metabolism regulatory network and sheds new light on the
complexity of this process. It is clear that incorporating this
data set into LAB research has already led to an increased
understanding of these microbes.

Single Cell Transcriptomics
Transcriptomics at a single cell resolution is a relatively new
field that may unravel many of the changes in transcription
that are altered through a cells life span. These alterations
are completely masked by bulk transcriptomics (Shapiro et al.,
2013). With new technologies providing faster delineation of
single cells (Klein et al., 2015) in conjunction with greater
sequencing depth with machines such as the NovaSeq, large
scale single cell transcriptomics is more accessible than ever.
Progress in these complimentary fields allows researchers to
explore a previously unavailable aspect of cell state heterogeneity.
Many single cell transcriptomic studies focused on stem
cells (Kolodziejczyk et al., 2015), embryos (Yan et al., 2013),
tumors (Patel et al., 2014) and the nervous system (Zeisel
et al., 2015). The use cases for this approach in these tissue
types are apparent due to the advantages of delineating
the differences between differentiated and non-differentiated
cells. Comparing the responders to non-responders provides

a greater opportunity to isolate mechanisms that stimulate
desired responses (Hidalgo-Cantabrana et al., 2012; Shalek et al.,
2013). This method is also efficacious when the genome and
transcriptome sequencing are carried out simultaneously on the
same cell (Macaulay et al., 2015). These researchers sequenced
the DNA and RNA of single mammalian cells in parallel,
demonstrating the current capacity of single cell technologies.
A subpopulation of 10% within 172 single cells of human
and murine origin was reported after analysis. Several genetic
alterations between cells and large chromosomal translocations
events were observed.

LAB are among the best understood constituents within the
microbiome. However, it is difficult to determine the importance
of their role in an ecosystem this large without a systems
approach (Pessione, 2012; Waldor et al., 2015). Constituents of
the microbiome are known for their ability to affect the impact of
drug compounds and therapy (Lindenbaum et al., 1981), ferment
and convert many components in our diet (Albenberg and Wu,
2014) and have significant impact on healthy brain function
(Foster and McVey Neufeld, 2013). Single cell technologies
may lead the way in deciphering LABs role in these functions
of the microbiome.

Metatranscriptomics
Advances in next generation sequencing technology have
reached a sequencing depth that facilitates more comprehensive
metatranscriptomics of large community samples such as the
gut microbiome (Bashiardes et al., 2016; Furnholm et al.,
2017; Mehta et al., 2018). The current NovaSeq can produce
20 billion reads in a machine run. With this volume of
reads between 100–400 taxa can reach maximum saturation
of reads required for the highest statistical power (Ching
et al., 2014). This step forward provides a powerful tool for
gut microbiota analysis and realizes a true systems biology
approach to determining how this community reacts to
environmental perturbations. Due to the large database of
sequenced LAB genomes, LAB stand to gain the most from
the analysis of ecosystems such as the gut microbiome with
a systems level approach. This combination of metagenomics
and metatranscriptomic data is just beginning to become
relevant in larger ecosystems; however, significant results have
already been attained.

To date, this approach has been observed in smaller
microbiome samples such as Kimchi (Jung et al., 2013) and
rumen (Kamke et al., 2016). This methodology was also used
in a proof of principle analysis to determine the function of
a critical microbe in bacterial vaginosis. Indeed, by utilizing
metatranscriptomics Lactobacillus iners was implicated in having
a functional role in the presence of this disease differentially
expressing over 10% of its genome between healthy and disease
states (Macklaim et al., 2013). Specific commercially important
processes such as cheese ripening have also seen the impact
of this approach. Despite using shallower metatranscriptome
data, De Filippis et al., 2016 demonstrated temperature-driven
functional changes in the cheese microbiome during ripening
which had a significant impact on cheese maturation rate.
They indicated that “processing-driven microbiome responses”
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can be altered to influence product quality and production
efficiency (De Filippis et al., 2016). Expression data that can
be tracked throughout the process and related back to the
specific strains responsible is invaluable in important commercial
processes such as cheese production. The potential to carry
out similar research in large microbiome samples such as
the gut, in a manner similar to De Filippis’ experiment, is
fast approaching.

Third generation sequencing platforms may have a direct
impact on the RNA-seq field. Long read technologies perform
better in the determination of unknown transcript abundance
in single celled organisms (Tombácz et al., 2018), full-length
splice isoforms with alternative splicing (Xu et al., 2017) and
co-transcription of genes in a polycistronic fashion (Tardaguila
et al., 2018). It is clear that there are obvious advantages
to long read sequencing in reducing the difficult reassembly
and loss of contextual information associated with short read
sequencing. However, the lower accuracy and sheer scale of some
transcriptomics and metatranscriptomics projects keeps them
out of reach of current third generation sequencers.

Integrating metatranscriptomics with deep metagenomic data
presents the ability to track a time mediated response to specific
changes in the environment. Be it antibiotic exposure, pathogenic
infection or probiotic administration, a wealth of information on
how the system is reacting to the alteration will be generated.
Such data could be tracked back to each species and provide
information on how to produce effective therapies in similar
situations. This holistic approach to studying these bacteria in
their natural habitat will reveal much about the production of
compounds of interest and may result in interesting revelations
about the transition between the microbiomes symbiotic and
dysbiotic states.

ASSESSING THE UTILITY OF
PROTEOMICS WITHIN MULTI-OMICS
DATA

Proteomics investigates the complete set of proteins present
in a cell, tissue or organism at a molecular level. Proteomics
in its own right is a powerful analytical tool that has helped
resolve many functional questions regarding LAB. Proteomic
analysis has determined abundant compounds that are present
in the transition between growth phases in LAB (Pessione et al.,
2005) and has been used to study the metabolic interactions
of LAB (Pessione et al., 2010). Proteomics has determined
critical proteins involved in acid stress resistance in Lactobacillus
casei comparing a known stress resistant mutant to the Wild
Type (WT) strain (Wu et al., 2012). Assessing the complete set
of secreted proteins in LAB has increased our understanding
of how these bacteria interact with their environment (Zhou
et al., 2010). Research to determine the capacity for LAB
to resist osmotic stress, a critical trait of all microbes in
challenging environments, has also progressed notably utilizing
proteomics (Zhang et al., 2010). These examples serve to prove
the flexibility and effectiveness of proteomics; however, this
information is best used when combined with other omics data

sets. Despite considerable advances in proteomic technologies of
late (Michalski et al., 2012; Hein et al., 2013; Gillet et al., 2016),
this omics data set is the limiting factor in relation to throughput
when integrated with genomics and transcriptomics. Untargeted
discovery proteomics is termed Data Independent Acquisition
(DIA) and allows the most comprehensive combination with
other omics sets (Hu et al., 2016). This process facilitates
the tracking of genes to proteins in a manner that produces
functional data (Tocchetti et al., 2015; Trapp et al., 2016;
Kedaigle and Fraenkel, 2018).

Protein abundance is intrinsically linked to the mRNA levels
discussed above, however, mRNA abundance does not correlate
well to protein abundance in a system (Chen et al., 2002;
Pascal et al., 2008; Vogel and Marcotte, 2012). Considering
this disparity, and that proteins are the molecules that control
almost all cellular processes, the benefit from integrating these
technologies for a more complete image is clear (Griffin et al.,
2002; Cox and Mann, 2007). When combined, these data sets
can answer higher dimensional questions about large scale
processes such as studying the metabolism of many products
simultaneously in a holistic manner (Delmotte et al., 2010;
Wang et al., 2013). Complex microbial interactions such as
quorum sensing may be deciphered using this approach (Di
Cagno et al., 2011). This process was carried out to assess the
complex interplay between LAB strains in yogurt fermentations.
Transcriptomics and proteomics were combined to understand
how the strains present interacted to produce the desirable effects.
By-products from a single strain stimulated growth in the co-
culture resulting in a reliable yogurt formation (Herve-Jimenez
et al., 2009; Sieuwerts et al., 2010). Similarly, this information
can be used to further understand specific traits of LAB such as
their crucial ability to manage bile stress in the case of probiotic
strains of Lactobacillus (Koskenniemi et al., 2011). Combining
proteomics with genomics and transcriptomics allows more
robust biomarkers and treatments to be determined. This is
observed in traits of disease phenotypes in humans (Wheelock
et al., 2013) or functional processes in bacteria (De Keersmaecker
et al., 2006). Understanding the methods that bacteria use
to interact with their environment through several omic data
sets develops network links between these data sets. Primary
processes such as stress responses are frequent targets for a
combinatory approach and may reveal critical information that
would be lost without a holistic approach (Dressaire et al., 2011).

Single Cell Proteomics
Single cell analysis also makes an impression on the field
of proteomics. Until recently, there were merely proof of
principle publications describing the ability to identify minute
concentrations of proteins available in a single cell (Jo et al.,
2007; Rubakhin and Sweedler, 2007). Mass spectrometry, the
primary method for proteomics research, is frequently used
when tens of thousands of cells are available from which to
extract proteins. However, a single cell has in the region of
1 × 105 protein molecules. With this in mind, it is clear
why single cell mass spectrometry (MS) techniques will reveal
only the most abundant of proteins present. Despite this,
advances in this area have increased the scope of single cell
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proteomics considerably. Progress within the flow cytometry
field has resulted in an increased variety of fluorescent markers
(Krutzik and Nolan, 2006). Antibody based immunofluorescence
confocal microscopy has been used in human cells to identify
>12,000 proteins across multiple cell lines (Thul et al., 2017).
Microfluidic image cytometry can now analyze activity of specific
protein groups such as kinases (Sun et al., 2010) and using
photocleavable DNA barcode-antibodies to quantify various
proteins from single cells is also possible (Agasti et al., 2012;
Ullal et al., 2014). These techniques have enabled targeted
proteomics of single cells, however, to our knowledge no single
cell proteomics work has been carried out on LAB. Tracking the
mechanisms and rate at which single cells adapt to environmental
exposures will help define the specific triggers, systems and
pathways involved in these situations. Developing knowledge of
these networks while avoiding the clouded nature of bulk analysis
is the most effective method to increase the accuracy at which we
can predict the function and reactions of these microbes.

Metaproteomics
Currently, meta-proteomics struggles to stack up
to the comprehensive nature of metagenomics and
metatranscriptomics. However, a recent study by Ting et al.
(2017) depicts the current power of untargeted exploratory
proteomics accurately. This group demonstrated that the
difference between the more comprehensive nature of Data
Independent Acquisition and more accurate Data Dependent
Acquisition (DDA) is lessening. After developing a novel library
free peptide detection method, PECAN, this group was capable
of detecting 12,767 peptides within a sample, 6,221 of which were
unique compared to the targeted approach. The untargeted DIA
approach detected 83% of the peptides elucidated during the
targeted DDA approach. The detection accuracy was impressive
as ∼99.5% of the retention times were identical between both
approaches. This is while simultaneously detecting more than
twice the number of peptides, indicating its suitability for
exploratory proteomics. Techniques such as this are facilitating
more realistic, high throughput proteome analysis (Kim et al.,
2014). This represents the future of larger scale metaproteomic
work; however, it is still in its infancy. For this reason, targeted
assessment of protein abundance and identification is more
appropriate and useful than untargeted in its current state. As
such a targeted approach must often be taken when combining
the information with metagenomic and metatranscriptomics
data. It is feasible to choose a specific function or set of functions
to analyze as part of the system-wide metaomics approach.
Important traits associated with functional features of LAB
can be interrogated further with proteomics in this manner
(Hamon et al., 2011; Perez Montoro et al., 2018). Analyzing
functional traits has developed a significant understanding of
the proteome of the LAB group to date (De Angelis et al., 2016).
Several studies in 2019 have combined metaproteomic data
sets with the genomic counterparts to analyze fermented foods.
This phenomenon has revealed much information regarding
the central role played by LAB in these functional foods (Xie
et al., 2019a,b). However, these metaproteomic approaches
may only assess smaller scale community samples. Expanding

this process to incorporate gut microbiome samples is beyond
current proteomic technologies (Verberkmoes et al., 2009).

COMPLETING THE MULTI-OMICS
PICTURE: METABOLOMICS

Metabolomics is the study of all metabolites produced in a given
system. This omics technology is a natural progression from
proteomics in that proteins are responsible for the presence of the
majority of metabolites found in an organism. The far-reaching
effect that metabolomics research may have is apparent, as all
phenotypes are intrinsically linked to the metabolites involved
in the system studied. This concrete connection between the
phenotype and metabolome makes it an exciting data set to add
to any research. The volume of information that can be gathered
is substantial considering the sheer scale of all metabolites that
may be present. Recent advances have resulted in more accurate
systems than ever for delineating these compounds. Back
to back Liquid Chromotography or Mass Spectrometry units
(LC/LC-MS, LC-MS/MS) (Cui et al., 2018), High Temperature
Ultra High Performance Liquid Chromotography (HT-UHPLC)
(Yoshida et al., 2007; Sarrut et al., 2014) and nanoflowUHPLC-
nanoESI-MS (Chetwynd et al., 2015) are filling in the gaps for
previously difficult to detect compounds such as hydrophilic
or minor metabolites. This progress results in untargeted
metabolomics reaching the throughput necessary to combine
them comprehensively with other omics data sets.

The utility of metabolomics technology on its own is
obvious and has been used to make connections between gut
related diseases and metabolites produced by gut microbes
(Bingham, 1999; van Nuenen et al., 2004; Nicholson et al., 2005).
Metabolomics has also been utilized to decipher functions of
LAB such as their role in commercially important processes and
revealing information regarding their metabolism (Weckx et al.,
2010; Wilson et al., 2012; Mozzi et al., 2013). In a study by Hong
et al., 2011, probiotic LAB were introduced to a group of Irritable
Bowel Syndrome (IBS) sufferers. NMR was used to determine the
metabolic niche that these LAB fulfilled in the IBS sufferers by
comparing them to a control group not receiving the probiotic
(Hong et al., 2011). The resulting data suggested a dysregulation
in energy homeostasis and liver function based on the metabolites
present. The potential of metabolomic data sets are unlocked
when linked to other components throughout the organism such
as proteins, RNA etc.

Many functions have been determined integrating these data
sets as they provide a powerful platform to answer many research
questions. This has been observed in several fields such as
chemotherapy toxicity, toxicology, fungal phytopathology and
heavy metal resistance in plants (Heijne et al., 2005; Tan et al.,
2009; Singh S. et al., 2015; Wilmes et al., 2015). In LAB,
this combination of technologies is useful when analyzing an
organism-wide response such as growth efficiency and amino
acid metabolism (Lahtvee et al., 2011) or the ability to adapt to
ecological niches (Heinl and Grabherr, 2017). Conversely, these
omics can be used with a specific end point in mind such as
probiotic potential to treat a specific issue, providing a powerful
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protocol for selecting suitable candidates (Rebollar et al., 2016).
A combination of genomics, transcriptomics and metabolomics
has been used to analyze the microbial role in the fast growing
area of milk whey. Milk whey has recently transitioned from
a low value by-product to a high value commercial product.
However, the regulation has lagged behind resulting in many
unknowns regarding the microbial composition and microbial
by-products present in this milk whey. Omics data sets allowed
Sattin et al., 2016, to report the reasons for poor whey
quality, the potentially concerning compounds present and
how to maintain higher commercial value (Sattin et al., 2016).
Similar processes’ were described when assessing the role multi-
omics data may play in food microbial interactions (Sattin
et al., 2016; Ferrocino and Cocolin, 2017). Indeed, genomics,
transcriptomics and metabolomics aided Turroni et al., 2016, in
deciphering the complex interactions that allow Bifidobacterium
strains to persist in the murine gut (Turroni et al., 2016).
This valuable information leads to a greater understanding of
the functional requirements for probiotic strains to survive
this environment.

Exploiting multi-omics data sets is now a pivotal step in
discovering novel antibiotics (Palazzotto and Weber, 2018).
Albright et al., 2014, demonstrate a clear methodology for
screening strains for novel antibiotic metabolites based on multi-
omics data (Albright et al., 2014). Figure 1 shows a generalized
version of the method outlined in this paper. The flow begins
with sequencing the genome of the strain of interest. This
facilitates searching the genome for the presence of biosynthetic
gene clusters that may indicate antibiotic production. The
genome enabled proteomics used in this study produced >15
fold increase in the number of antibiotic peptides detected
compared to regular proteomic analysis. After determining the
relevant proteins produced, metabolites were assessed using data-
dependant acquisition. Metabolites associated with the proteomic
data set that represent potential antibiotic compounds are
selected for using LC MS/MS. Isolated metabolites are compared
to the relevant databases to rule out the known compounds. In
this manner, novel natural products are isolated in an effective
progression from strain to isolated compound using multi-
omics data.

Single Cell Metabolomics
Single cell metabolomics, although still in its infancy, can
reveal the closest link to the phenotype of a single cell in a
population. Sample volumes, low concentrations of analytes and
sampling techniques are significant obstacles to this technology
based on miniscule substances. However, in recent years, we
have seen significant steps in accurate sampling of metabolites.
A comprehensive review has been completed by Duncan et al.,
2019, on the state of the art techniques developed over the last
three years for single cell metabolomics (Duncan et al., 2019).
A primary concern of these techniques is the transient nature
of metabolites. A cell with particularly fast metabolic turnover
can change its metabolic profile in 0.3 s (Zhang and Vertes,
2018). This volatility means the cells must be maintained in the
native environment and treated carefully to avoid artifacts of the
sampling technique.

FIGURE 1 | The flow chart depicts a generalized version of the methodology
used by Albright et al. (2014) to isolate novel secondary metabolites with
antibiotic potential.

Live single cell mass spectrometry shows promise providing
rapid, direct analysis of targets while also producing a complete
annotation of the results in less than one hour (Fujii et al.,
2015). Fluorescent based techniques relying on flow cytometry
and direct microscopy are suitable methods for analyzing
specific metabolites (Li et al., 2016; Mondal et al., 2017).
More recent developments in single cell technologies such as
microfluidics are also applicable in isolating cells based on
their extracellular metabolite profile (Wang et al., 2014). With
associated technologies progressing quickly, it is clear that single
cell metabolomics will make large steps with regard to throughput
and accuracy in the near future. However, no LAB based single
cell metabolomics data are available in published literature.
Despite the difficulty in accessing the metabolomic data of single
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cells, the utility of the information is clear. This analysis allows
abundance of specific metabolites to be confidently linked to
traits. Moreover, developing specific links will aid functional
prediction in all similar microbes with metabolomics data.

The flexibility of these data sets is apparent and with the
advent of more effective and comprehensive technologies, even
more research will move to this culture independent, data driven
approach. Further development in multi-omic databases will
fuel research in improving the technologies related to each
omics data set. Understanding the methods that bacteria use to
interact with their environment through analysis of simultaneous
omics data sets will result in the development of network
links between the data sets themselves. Common links that
are regularly observed between omics data sets will lead to
greater molecular understanding and will be incorporated into
traditional interaction networks. Extracting and depicting these
complex interactions is an intrinsic issue associated with big data
sets that multi-omics produce. Complex software pipelines play
an important role in making sense of these data. To this end, we
will briefly mention the more prominent software used for these
integration processes.

DATA INTEGRATION AND
COMPUTATIONAL LIMITATIONS

The integration of data sets generated in multi-omics research is
by no means trivial. Each omics technology naturally consists of
different types of data complicating the analysis to begin with.
This is further complicated by the sheer volume of information
that must be sifted through, particularly with meta-omics data.
Software pipelines have been developed to manage this seemingly
impossible task. Programs are developed to create models that
can predict outcomes when multi-omics data is inputted. The
outcomes analyzed are frequently disease states that can be
described in terms of multi-omic data sets using these techniques.
These pipelines generally fit into one of three approaches.

These models approach the issue with different methods, but
all are valuable assets available to integrate the data. However,

each of these approaches has limitations when negotiating
these data. These limitations manifest in difficulty transforming
differing data sets, combining massive input matrices and
over fitting training data. Most pipelines adopt one of these
approaches as a broad starting point. Researchers will have
nuanced differences in how they treat types of data and how they
weight connections between their data points.

A creative use of a transformation based approach has led to
remarkable results in liver cancer survival prediction (Chaudhary
et al., 2018). This model developed by Chaudhary et al., 2018 uses
a deep learning method autoencoder and a single variate cox-
PH model to choose features associated with survival. K-mean
clustering is applied to these features to determine survival-risk
groups. The omics data sets are then ranked via an ANOVA and
features common with the predicting set are chosen. This step is
depicted in Figure 2, where omics data sets are transformed into
survival-risk predicting sets. These ranks can then be compared
and combined. The final survival-risk labels are generated from
the top features chosen by this method (Chaudhary et al.,
2018). By incorporating microRNA seq, RNA seq, methylation
and genomic information this study highlights the potential
powerful use for multi–omics data when appropriate software
can realize its potential.

An R based software, mixOmics, presents a recent example
of a modified concatenation-based approach (Rohart et al.,
2017). This R based software uses its “Diablo” process for
this approach. Diablo incorporates all the input variables into
a single input matrix. During this process interactions and
associations between data sets are factored into the single
input matrix. Figure 3 represents a schematic of this approach,
combining the different omics sets while taking interactions
between data sets into account. This adds another level
of complexity that suits multi-omics approaches specifically,
creating a more powerful input matrix from which the model
is derived. This software also contains another pipeline, namely
“MINT”, which is a model-based integration where data sets
of the same type, e.g., transcriptomics, from different studies
are combined to produce a model. Each type of data set
predicts aspects of the phenotype as illustrated in Figure 4. The

FIGURE 2 | Transformation based integration: Each omics data set is transformed into comparable input matrices. Relevant identifiers are united to build the
predictive model from all transformed data sets. This model discerns phenotypic traits that can be quantified using multi-omics data.
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FIGURE 3 | Concatenation based integration: Omics data sets (colored rectangles) are combined at the beginning of concatenation based integration. Identifiers are
determined between and within each omics set. These identifiers are combined and used as a model to discern specific attributes within the phenotype.

FIGURE 4 | Model based integration: Each omics data set is used as a model to determine identifiers of traits within the phenotype. The phenotypic traits that are
discerned from each omics data set/model are weighted based on their capacity to predict the phenotype. These weighted identifiers are then combined and
ultimately predict the phenotype.

predictions determined by each model are weighted based on
their propensity to determine the phenotype. These input models
are subsequently combined to generate a final prediction model
(Rohart et al., 2017).

These exciting new software packages encompass each of the
major methods of generating models for integrating omics data.
Many developers are constantly updating and upgrading their
platforms to incorporate the latest data sets and produce the
most effective models (Medina et al., 2010; Alonso et al., 2015).
Many concatenation based approaches have been developed to
address nuanced different data sets (Fridley et al., 2012; Kim
et al., 2013). Cancer survival prediction has seen significant
success utilizing transformation and model based approaches.
This progress has been observed using multiple genomic
data sets to accurately assess ovarian cancer survival and in
predicting instigators of melanoma from gene expression data
and chromosomal copy number variation (Akavia et al., 2010;
Kim et al., 2013).

More powerful models are constantly being developed,
incorporating ever expanding data sets while integrating even

more types of omics data. These advances are essential to keep
up with the rapidly increasing volumes of data and to address the
current limitations associated with many original data sets (Pinu
et al., 2019). Several studies have emphasized the over estimation
of significant results and several contradictory outcomes in multi-
omics data sets in many high impact publications (Ioannidis,
2005; Ioannidis and Trikalinos, 2005). In these cases, genuine
heterogeneity within samples in genome wide association studies
is considered statistically important disease specific information
(Ioannidis et al., 2003; Kavvoura et al., 2008). Software tools
must understand and incorporate these issues, while avoiding
the risk of false negatives due to too harshly correcting data. For
more information on the challenges associated with integrating
these data sets, the reader is directed to the following review
articles (Palsson and Zengler, 2010; Gomez-Cabrero et al., 2014;
Fondi and Lio, 2015). For the reasons detailed above, there
must be an element of responsibility on biologists to negate
some of these limitations by developing a workable level of
understanding regarding the most suitable software model for
their experimental questions.
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CONCLUSIONS

The mechanisms responsible for generating omics information
have seen considerable progress in recent years. The advent
of new technologies, such as third generation sequencing,
is capable of transforming the level of information available
to researchers. These advances have placed the integration
of multiple omics data sets within reach of more scientists.
This availability will result in substantial advances in all
aspects of microbial work from delineating specific functions
to understanding their role in complex ecosystems. This review
assesses the advantages to a high dimensional systems level
approach when analyzing organisms and systems simultaneously.
The fortuitous position that LAB research finds itself in is
also discussed. LAB are a group of microbes with a wealth
of data already available in a variety of databases. Due to
this position, research focused on this group is poised to take
full advantage of the progress in multi-omics research. As the
field of molecular biology becomes a data intensive one, it is
critical that biologists keep up with this trend. Researchers must

develop skills in data processing, develop an understanding of
the mechanisms behind software they utilize and be flexible
to incorporating new technologies into their workflows. This
task is challenging, but the rewards available with multi-omics
are substantial.
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