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The natural alkaloid Jerantinine B has
activity in acute myeloid leukemia cells
through a mechanism involving c-Jun
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Abstract

Background: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term
survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity
and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

Methods: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines
and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase
arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were
confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

Results: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent
colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using
Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was
shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be
associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of
c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which
resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced
C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

Conclusions: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-
induced c-Jun activation as the major mechanism of action.
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Background
Acute myeloid leukemia is an aggressive heterogeneous
clonal disorder of hematopoietic stem cells. It is charac-
terized by defects in the self-renewal and differentiation
programs that regulate myeloid cell production causing
accumulation of immature, non-functional cells termed
myeloblasts. Despite advances in the outcome of younger

AML patients, long-term remission is still not achieved in
the majority of cases and AML in the elderly, which is
often correlated with adverse risk factors, is associated
with poor clinical outcome [1]. Whilst initial clinical re-
sults in patients treated with small molecule inhibitors are
promising, relapse often occurs due to the emergence of
acquired resistance mechanisms; there therefore remains
an unmet need for drugs acting on other signaling
pathways.
Natural products represent important sources of drugs

and drug-scaffolds, and natural product-inspired therapies
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continue to have significant impact in the cancer arena
[2]. Work by Lim et al. [3] on the leaf extracts of the Ma-
layan plant Tabernaemontana corymbosa resulted in the
isolation and purification of a series of new alkaloids, the
Jerantinines, which have demonstrated promising bio-
logical activity. The majority of published work has been
on Jerantinines A and B (JA and JB), reporting in vitro an-
titumor activities of these agents against various solid
human-derived carcinomas. Specifically, JA and JB
have been shown to inhibit the growth and colony
formation of cancer cell lines accompanied by induc-
tion of apoptosis in a dose- and time-dependent man-
ner [4, 5]. JA and JB potently inhibited tubulin
polymerization and caused severe perturbation of
microtubule dynamicity [4, 5]. X-ray crystallography
studies demonstrated the colchicine site as the bind-
ing site of JB acetate (JBa) on microtubules [6].
JA and JB were also found to inhibit the activity of ki-

nases involved in mitosis and significantly evoke potent
G2/M cell cycle arrest with PLK1 being targeted in a
dose-dependent manner [5]. An additional mechanism
of action in non-hematological cancers included modu-
lation of splicing [7].
These findings encouraged us to assess JB activity in

AML cells, with the aims of establishing whether this
natural product would provide potential effective target-
ing of AML and to elucidate the main mechanism of
drug action in AML cells.

Methods
Materials
10mM stocks of JB and JBa were stored in dimethyl
sulphoxide (DMSO) at − 80 °C protected from light. Un-
less otherwise stated IC50 JB concentrations were used.

AML cell lines and primary samples
MV4–11 and HL-60 myeloid leukemia cell lines were
grown in Roswell Park Memorial Institute (RPMI-1640)
medium supplemented with 10% fetal calf serum (FCS:
02–00-850; First Link), 2 mM L-glutamine (G7513,
Sigma), 10 μg/ml streptomycin and 100 U/ml penicillin.
KG-1a cell line was cultured as above but supple-
mented with 20% FCS. MV4–11 was purchased from
the American Tissue Culture Collection (Manassas,
USA). HL-60 and KG1a were purchased from the Euro-
pean Collection of Animal Cell Culture (Salisbury, UK).
All cells were incubated at 37 °C in 5% CO2 and assays
were set up using cells in the log phase of growth. Con-
tinued testing to authenticate these cell lines was per-
formed using multiplex short tandem repeat analysis
(Powerplex 16, Promega) and mycoplasma testing was
carried out routinely using the Mycoalert mycoplasma
detection kit (Lonza).

Blood or bone marrow samples were obtained from
AML patients presenting to Nottingham University
Hospital following informed consent. Mononuclear cells
were isolated from AML patient samples using a stand-
ard density gradient/centrifugation method and clono-
genic assays were carried as previously described using
2 × 104 cells per well. Growth was defined by the pres-
ence of > 12 colonies in untreated conditions [8].

Cell viability assays
Cell viability was initially assessed using Alamar Blue
(AbD Serotec) according to the manufacturer’s instruc-
tions. Cell counting using a hemocytometer was also
undertaken.
Apoptosis was examined using the Annexin V-FITC

apoptosis detection kit (Trevigen) according to manufac-
turer’s instructions. Cleaved PARP was measured in cells
fixed in 4% paraformaldehyde using Alexa Fluor 647
Conjugate (BD Biosciences). Analyzes were performed
by flow cytometry using a FACS Canto II (BD Biosci-
ences). Assessment of activated caspase was made on
cells fixed and permeabilized using a Leucoperm kit
(AbD Serotec), active caspase 3 was measured using PE-
conjugated polyclonal rabbit anti-active caspase-3 (BD
Pharmingen).

Dynamic BH3 profiling
Cells at 5 × 105/ml were incubated with the IC50 concen-
tration of JB in culture medium for 4 h. Cytochrome C
release was measured as previously described. Adjust-
ments for peptide induced cytochrome C release in
untreated cells were made in order to establish agent-
specific release, using the formula 100*(release with
agent – release without agent)/(100 – release without
agent) [9].

Identification of target proteins
A Proteome Profiler Human Phospho-Array (R&D Sys-
tems) was used to analyze the phosphorylation profile in
cells according to the manufacturer’s instructions. Re-
sults were confirmed using western blot analysis with
anti-rabbit total c-Jun (Abcam 32137), anti-rabbit phos-
pho c-Jun (S63) (Abcam 32385) and loading control
mouse anti-Lamin (Santa Cruz # SC-7292). C-jun was
probed for first, followed by membrane striping and
probing for lamin.

Determination of intracellular ROS
Cells at a density of 5 × 105/ml medium were treated
with JB and incubated at 37 °C for 4 h. Twenty-five mins
prior to the end of incubation, 3 μM chloromethyl dihy-
dro 2′7’dichlorofluorescein diacetate (CM-H2DCFDA)
(Invitrogen) was added to cells. At the completion of in-
cubation, samples were placed on ice and the fluorescent
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oxidation product measured immediately by FACS
Canto II flow cytometry. N-Acetyl-L-Cysteine (NAC)
and SP600125 JNK inhibitor (JNKI) were purchased
from Sigma (A7250) and Abcam (ab120065) respectively.
Further dilutions were made in cell culture medium.

Assessment of DNA damage response (DDR) marker
(H2AX Ser139)
H2AX phosphorylation on Ser139 (γH2AX) was examined
by flow cytometry with a kit from Upstate (Millipore cat#
16–202) according to the manufacturer’s instructions.

Statistical analysis
Statistical analyses were performed using paired T-test.
Significance was defined as a p < 0.05.

Results
Jerantinine B inhibits the growth of AML cells in a dose-
dependent manner
The structure of JB is shown in Fig. 1a. IC50 values were
determined at 24 h exposure to JB for cell lines using
alamar blue assay and cell counting. The cell lines dem-
onstrated similar sensitivities with IC50 values: MV4–11
0.3 μM; HL-60 0.4 μM and KG1a 0.8 μM (Fig. 1b). Due

to the comparable drug sensitivities, further assays were
not always performed on all three of the cell lines.
Annexin V assays were performed to establish whether

JB induced apoptosis after 24 and 72 h exposure. Figure 2a
demonstrates significant apoptotic cell death resulting
from IC50-JB treatment in all cell lines when compared to
untreated controls (p < 0.05) in a time-dependent manner.
This was particularly profound in the HL-60 cell line at
72 h.
Apoptotic markers were also assessed to further con-

firm apoptotic cell death in JB-exposed cells. Using
MV4–11 and HL-60 cells treated with IC50 JB, active
caspase 3 and cleaved PARP apoptotic markers were
shown to increase significantly (p < 0.05) when com-
pared to untreated controls (Fig. 2b).
JB was shown to affect the cell cycle in AML cell lines

and cause transient G2/M arrest, however the increase
was not as profound as in solid cancer cell lines
(additional file 1).

JB exerts an early apoptotic effect on AML cells
BH3 profiling assays on MV4–11 cells demonstrated
that JB has an early effect with cells being primed for
apoptosis within 4 h. Figure 2c shows that when using
the negative control, mutated PUMA2A peptide, there is
no induction of cytochrome C release, indicating that JB
alone does not induce cytochrome C (and thus apop-
tosis) at this time point. However, when PUMA-BH3 or
BAD-BH3 are added, cytochrome C release occurs indi-
cating that JB has primed the cells to undergo apoptosis.

JB induces c-Jun activation in leukemia cell lines
A protein kinase array was used to identify changes at
the 4 h time point with prominent phosphorylation seen
in the c-Jun/JNK signaling pathway. JB-treated MV4–11
and HL-60 cells exhibited a high level of phosphoryl-
ation in JNK1/2/3 and c-Jun S63 compared to the
untreated samples (additional file 2). Western blotting
confirmed increased levels of total and phosphorylated
(S63) c-Jun after 4 h JB exposure. Figure 3a shows that 4 h
exposure to JB resulted in strong expression of total and
phosphorylated c-Jun protein in all cell lines studied.

JB induces reactive oxygen species (ROS)
c-Jun/JNK has previously reported to be activated in
cells exposed to oxidative stress [10, 11]. ROS levels in
JB treated cells were therefore determined at 4 h using
oxidative stress indicator CM-H2DCFDA. In comparison
to the control group, IC50 JB treatment produced signifi-
cantly increased ROS levels (Fig. 3b). Flow cytometric
analysis demonstrated that ROS levels were increased by
2.39 (P = 0.002), 1.57 (P = 0.03) and 1.70-fold (P = 0.006)
in HL-60, MV4–11 and KG1a respectively. Confirmatory
assays with HL-60 cells demonstrated that co-treatment

Fig. 1 Cytotoxicity of jerantinine B in AML cell lines. a. Structure of JB
and JBa. b. Mean IC50 values of JB at 24 h. Columns, mean of three
independent experiments; bars, SD
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of cells with JB and the antioxidant NAC abolished JB-
induced ROS (P = 0.03) (Fig. 3b).

Association between ROS generation and c-Jun/JNK
activation in JB-induced AML cell death
Upon establishing that JB generated significant levels of
ROS, we aimed to establish whether scavenging of ROS
resulted in the inhibition of c-Jun activation following
JB-treatment. A JNK inhibitor (JNKI) was used as a posi-
tive control. HL-60 cells were pre-incubated with 20 μM
JNKI for 1 h to allow JNK inhibition and then treated

with JB for up to 24 h. Lysates were prepared after 4 h of
incubation for assessing c-Jun protein expression and
cell counting was performed after 24 h for evaluating cell
viability. Immunoblotting results revealed that co-
treatment with JB and the antioxidant NAC significantly
reduced JB-induced c-Jun activation to levels compar-
able with the JNKI- JB co-treated sample (Fig. 3c). These
data support the involvement of ROS in JB activity. Sub-
sequently, a cell viability assay demonstrated that JB-
treated samples exhibited 59.93% ± 9.38 viability that
was increased significantly in JB-NAC and JNKI-JB

Fig. 2 Induction of apoptosis in IC50 JB exposed AML cells. a. Flow cytometric analysis of Annexin V/propidium iodide staining following IC50-JB
treatment for 24 and 72 h. Representative flow cytometry plots and summary histograms are shown. A+/PI− indicates cells undergoing early
stage apoptosis, while A+/PI+ defines late stage apoptotic populations. b. Summary bar chart of flow cytometric analysis of cleaved PARP and
active caspase 3 apoptotic markers following 24 h IC50 JB exposure. c. BH3 profiling following 4 h IC50-JB treatment in MV4–11 cells. Cytochrome
C release demonstrates PUMA- and BAD-BH3 peptides prime the cells to apoptosis. PUMA2A is a mutated peptide which acts as a negative
control . Columns, mean of at least three independent experiments; bars, SD. * P < 0.05, ** P < 0.01, *** P < 0.001
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Fig. 3 JB activates c-Jun through ROS induction. a. Western blot (cropped) demonstrating 4 h JB exposure results in a strong upregulation of total
c-Jun and activation of c-Jun (S63 phosphorylation) in AML cell lines. Lamin is shown as the loading control and the figure is representative of
three independent experiments. b. JB induced intracellular ROS in AML cell lines. The bar charts indicate the fold change in median fluorescence
intensity compared to untreated controls upon addition of the oxidative stress indicator CM-H2DCFDA, with the elimination of ROS seen when
the anti-oxidant NAC is included. Representative flow cytometry plots of ROS measurements are shown above the corresponding bar charts. c.
Western blot results (cropped) showing elimination of JB-dependent c-Jun activation by either ROS scavenger or JNKI, representative of three
independent experiments. d. cell counts after 24 h incubation showing a combination of ROS scavenger or JNKI with JB treatment reversed JB-
induced cell death, displayed as % viability of untreated control. e. DNA damage, assessed by the response marker γH2AX, is increased in JB-
treated cells. Bars represent the mean of the Median Fluorescence Intensity (MFI) in respect to the negative untreated control. Etoposide was
used as a positive control. Columns, mean of at least three independent experiments; bars, SD. * P < 0.05 and ** P < 0.01. Full length blots for the
westerns in this figure are shown in additional file 3
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treated samples (P = 0.003 and 0.02 respectively)
(Fig. 3d). This suggests that JB-mediated intracellular
oxidative stress acts as a signal for c-Jun/JNK-in-
duced death in AML cells.

DNA damage assessment
Establishing significant generation of ROS by JB led us
to evaluate the potential of JB to cause DNA damage.
This was investigated by flow cytometric detection of the
DNA damage response protein, gamma-H2AX (γH2AX).
Figure 3e represents the measurement of γH2AX after 4 h
exposure to JB in MV4–11 and HL-60 showing that
γH2AX was significantly increased in both cell lines (P <
0.05). Etoposide, a known inducer of DNA DSBs, was used
as a positive control.

JB acetate (JBa) inhibits colony formation of primary AML
patient cells
To demonstrate that JB is also effective in primary AML
cells, JB acetate (JBa) was tested on four patient samples
in clonogenic assays. For this long-term assay, the
acetate derivative of JB was used; as it demonstrates in-
creased stability and reduction of overall polarity [3].
Fresh diagnostic AML samples were grown for 14 days
in a methylcellulose-based medium containing 0 to
5 μM JBa. All samples exhibited sensitivity to JBa and
with IC50 values 0.47 ± 0.11 (Fig. 4).

Discussion
In this study, cytotoxicity assays established that JB ex-
hibited potent anti-proliferative activities against AML
cell lines accompanied by time- dependent apoptotic cell
death. JBa, an acetate derivative of JB, resulted in a dose-
dependent inhibition of colony formation in primary
AML cells indicating cell death or loss of capacity to div-
ide and form progeny colonies. JBa may act as a prodrug
with its bio-activation requiring the presence of cellular

esterases [12]. As clonogenic assays are performed with
a low density of cells, with subsequent low esterase ac-
tivity, there may be a low bioavailability of the test agent
[12], meaning the effects of JBa on AML patient primary
cells was potentially underestimated. Importantly, the
concentrations used in this work have been demon-
strated to be pharmacologically achievable [5].
Results of BH3 profiling assays on MV4–11 cells sug-

gested that JB has an early effect with cells being primed
to undergo apoptosis by 4 h. Thus, we examined changes
in phosphorylation in an array of protein kinases to
identify changes at this time point. This investigation
revealed the activation of mitogen-activated protein
kinases (MAPKs) in JB-treated cell lines. It specifically
established that JB caused strong activation of c-Jun/JNK
signaling.
It has been long established that many natural products

have pro-oxidant properties [13–15]. The JNK pathway is
one of the major signaling cascades of the MAPK signaling
pathway that is activated when cells have been exposed to
various forms of environmental stress stimuli including
ROS. Mitochondrial release of ROS was found to cause
JNK activation [11, 16]. In the current study, we have estab-
lished the activation of c-Jun/JNK by JB in AML cells
through ROS induction. Pharmacological inhibition of JNK
confirmed the requirement of activated c-Jun/JNK for JB-
induced apoptosis. These findings indicate that the effect of
JB in AML cells is dependent on oxidative stress that acts
as an early trigger for c-Jun activation, and we suggest that
the main molecular targets are via c-Jun/JNK signaling. In-
deed, numerous agents with pro-oxidant properties have
been shown to be effective against both primary leukemic
blasts and leukemic cell lines. It has been reported that clin-
ically achievable concentrations of arsenic trioxide, an agent
approved for treating APL has pro-oxidant capacity and
mediates apoptosis through three mechanisms: increasing
endogenous ROS production, activating MAPKs and also

Fig. 4 Effect of JB on colony formation of AML primary cells. a. Survival fraction of four AML patient samples when treated with JB. Results are
displayed as mean ± SD of survival fraction percent. b. Representative images of AML cells from a patient sample showing the effect of JBA on
colony formation at a range of drug concentration
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activating caspases in the leukemic cells [17]. In addition,
it has been demonstrated that quercetin, a plant-
derived bioflavonoid, enhances the production of
intracellular oxidative stress causing mitochondrial
membrane depolarization, cytochrome C release, sus-
tained activation of ERK and ultimately induction of
apoptosis in HL-60 cells in vivo and in vitro [18].
More recently, work has shown that tricetin, a dietary
flavonoid in Myrtaceae pollen and eucalyptus honey,
induces a JNK- induced apoptosis pathway in the HL-
60 cell line by enhancing ROS generation, and co-
treatment with the ROS scavenger, NAC, abolished
tricetin- mediated JNK activation and subsequent cell
apoptosis [11].
Increased levels of ROS have previously been shown

to perturb cell cycle dynamics, causing G2 phase ar-
rest [19] and correlate with increased DNA damage.
In solid cancer models, JB caused significant G2/M
cell cycle arrest accompanied by generation of ROS
and detection of γH2AX [5]. Clinically, the drug Vori-
nostat has also been reported to induce ROS produc-
tion and cause DNA damage [20]. Consequently,
establishing significant generation of ROS and cell
cycle perturbation by JB led us to investigate the po-
tential of JB to cause DNA damage. Measurement of
the DDR marker (γH2AX) exhibited a significant in-
crease in both the studied cell lines following 4 h JB
exposure (P < 0.05).

Oxidative stress induction in hematopoietic progeni-
tors and leukaemia cells has been reported to cause
myeloid cell differentiation [21]. More recently, and
of interest to this work, it has been established that
increased ROS levels by phorbol-12-myristate-13-acet-
ate (PMA), activate transcription of differentiation
genes in AML cells via the c-Jun/JNK signalling path-
way [22]. We have preliminary evidence to suggest
that JB induces differentiation in AML cells (data not
shown) and this is an avenue we will explore further
in future work.
It has previously been reported that microtubule

polymerization is the major molecular target affected by
JA and JB in solid cancers [4, 5]. In the current study,
the effect of JB on microtubules was not investigated.
However, transient G2/M- and S-phase cell cycle block-
ade (additional file 1) is a key indicator of microtubule
disruption and evidence is also available documenting
the link between microtubules and the JNK pathway.
JNK activity determines the fate of microtubules during
their life cycle [23] and the JNK pathway was found to
be activated by microtubule inhibitors in a wide variety
of cell lines [24] The early phosphorylation of JNK has
been reported as a specific mechanism mediating micro-
tubule depolymerization and G2/M arrest [25]. Further
work suggests that the activation of JNK is needed for,
or contributes to, cell death mediated by microtubule
disrupting agents [24, 26, 27].

Fig. 5 Suggested mechanism of action of JB in AML cells. JB in AML exerts its effect through increasing ROS level that cause c-Jun/JNK activation
as well as DNA damage. JB also targets PLK1 that contributes to G2/M arrest. Activated c-Jun/JNK may contribute to microtubule disruption and
ultimately G2/M arrest. JB was reported to bind directly to the colchicine site on microtubule and inhibits microtubule polymerisation but this
was not tested in this study
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Conclusion
Our investigation of this natural product provides the
first evidence of cytotoxicity of JB against AML cells and
elucidates the mechanism of drug action; this is sche-
matically illustrated in Fig. 5. Thus, JB appears to be a
potential chemotherapeutic agent in AML and is worthy
of continued development.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-07119-2.

Additional file 1. Cell cycle analysis following JB treatment. A. Summary
histogram illustrating the proportion of cells in each phase of the cell
cycle after 4 and 6 h treatment with IC50 dose of JB. B. example of flow
cytometric DNA (7-AAD) content histograms (6 h-JB-treated cells). C. Cell
cycle analysis after 24 h exposure to JB.D. example of flow cytometric
analysis at 24 h showing reduction in BrdU-positive (dividing) cells follow-
ing JB treatment. Columns, mean of three independent experiments; bars,
SD. * P < 0.05, ** P < 0.01, *** P < 0.001.

Additional file 2. Phospho-kinase measurements following 4 h JB treat-
ment. Pixel densities in A. MV4–11 and B. HL-60 JB-treated cells. Black
and grey bars are untreated and treated samples respectively. C. shows
the whole film image.

Additional file 3. Representative image of whole film of western blot. 3:
Full image of western blot. A. Full western blot film image for data in Fig.
3a showing upregulation of total and active (S63 phosphorylation) c-Jun
following JB treatment. The red boxes indicate where the blot was
cropped for Fig. 3a. B. Full length western blot film images for data in
Fig. 3c showing elimination of JB-dependent c-Jun activation by either
ROS scavenger or JNKI. The red boxes indicate where the blot was
cropped for Fig. 3c.
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