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Abstract

High levels of trait impulsivity are considered a risk factor for substance abuse and drug

addiction. We recently found that non-planning trait impulsivity was negatively correlated with

post-commissural putamen volumes in men, but not women, using the Karolinska Scales of

Personality (KSP). Here, we attempted to replicate this finding in an independent sample

using an updated version of the KSP: the Swedish Universities Scales of Personality (SSP).

Data from 88 healthy male participants (Mean Age: 28.16±3.34), who provided structural T1-

weighted magnetic resonance images (MRIs) and self-reported SSP impulsivity scores,

were analyzed. Striatal sub-region volumes were acquired using the Multiple Automatically

Generated Templates (MAGeT-Brain) algorithm. Contrary to our previous findings trait impul-

sivity measured using SSP was not a significant predictor of post-commissural putamen vol-

umes (β = .14, df = 84, p = .94). A replication Bayes Factors analysis strongly supported this

null result. Consistent with our previous findings, secondary exploratory analyses found no

relationship between ventral striatum volumes and SSP trait impulsivity (β = -.05, df = 84, p =

.28). An exploratory analysis of the other striatal compartments showed that there were no

significant associations with trait impulsivity. While we could not replicate our previous find-

ings in the current sample, we believe this work will aide future studies aimed at establishing

meaningful brain biomarkers for addiction vulnerability in healthy humans.

Introduction

Heightened impulsivity is considered both a risk factor for, and a consequence of, chronic sub-

stance abuse and drug addiction [1–3]. Impulsivity is a multidimensional construct, encom-

passing impulsive choice, impulsive action, and self-reported impulsive personality traits [4].

While studies have not observed strong relationships between measures of impulsive choice

and impulsive action, both are weakly correlated with measures of trait impulsivity [4–6].
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Thus, elucidating the neural correlates of trait impulsivity may help inform models of drug

addiction vulnerability [7, 8].

Several in vivo positron emission tomography (PET) studies have examined the neurochemical

correlates of trait impulsivity in humans [9], with an emphasis on the striatal dopamine (DA) sys-

tem [10]. Lower DA D2/3 receptor (D2/3R) availability, particularly in the ventral striatum (VS),

has been associated with both drug-use and impulsivity in animals [11–15] and in people with

drug addiction [16–18]. However, whether higher trait impulsivity is related to lower D2/3R avail-

ability in the VS of healthy humans remains unclear. While studies have differed in terms of the

radiotracers and personality scales employed, there have been reports of no correlations [19–21],

positive correlations [22, 23], as well as negative correlations [24, 25] between striatal D2/3R avail-

ability and impulsivity. These mixed findings do not lend strong support to the hypothesis that

VS D2/3R availability may be a link between impulsivity and drug addiction [10].

We recently observed a negative correlation between D2/3R availability in the VS and trait

impulsivity, measured using the Karolinska Scales of Personality (KSP), in healthy people [24].

Since lower D2/3R availability in the VS has been related to smaller VS volumes in rodents [26]

and humans [27, 28], we explored whether trait impulsivity measured with the KSP was related

to VS volumes in healthy humans [29]. While trait impulsivity was not significantly associated

with VS volumes, in a post-hoc analysis we observed a significant sex-interaction in the post-

commissural putamen. Specifically, greater impulsivity was associated with smaller post-com-

missural putamen volumes in males, but not in females [29].

Overall, studies examining the relationship between impulsivity and striatal volumes in

healthy persons have provided mixed results [30–33]. These studies have employed various

measures, sample sizes, and age ranges. Regarding impulsive choice (i.e. delay discounting),

negative correlations with post-commissural putamen volumes (n = 34) [31], positive correla-

tions with caudate volumes (n = 70) [32], and positive correlations with VS volumes in adoles-

cents (n = 1830) [33] have been observed. Also, trait negative urgency (the tendency to act

rashly under extreme negative emotions) has been related to smaller left ventral striatum vol-

umes after controlling for other potentially confounding traits: neuroticism (negative emo-

tionality), sensation seeking, and lack of planning and perseverance (n = 152) [30]. While our

observed sex-interaction between post-commissural putamen volumes and trait impulsivity

was unexpected [29], this work warranted replication for several reasons. First, if the effect is

robust, it could potentially reconcile previously reported mixed-findings in the literature

between trait impulsivity and striatal volume. Second, it could further inform biological factors

underlying sex-differences in substance abuse vulnerability.

In the current investigation, we attempted to replicate our previous findings between trait

impulsivity and post-commissural putamen volumes in a larger sample of healthy Swedish

men, using the Swedish Universities Scale of Personality (SSP) [34], an updated version of the

KSP. Specifically, our a priori hypothesis was that trait impulsivity would be negatively corre-

lated with post-commissural putamen volumes in healthy men. To help us further interpret

our a priori findings, secondary exploratory analyses were conducted examining potential

laterality effects as well as potential relationships between trait impulsivity and VS volumes.

Collectively, this work will help to further clarify how striatal morphology may relate to trait

impulsivity in humans.

Materials and methods

Participants

Data from 88 healthy male participants was included in this replication study (Table 1). Specif-

ically, structural T1-weighted images and self-report measures of trait impulsivity data were

Trait impulsivity and post-commissural putamen volumes
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pooled from various PET studies [35–38]. All studies, and their design, were approved by the

Regional Ethics Committee in Stockholm and the Karolinska University Hospital Radiation

Safety Committee. All subjects gave written informed consent prior to participating according

to the Helsinki declaration.

Structural data for 76 subjects was acquired on a 1.5 T GE Signa system (Milwaukee, WI)

(hereafter termed Scanner 1) and for 12 subjects on a 1.5T Siemens Magnetom Avanto system

(Erlangen, Germany) (hereafter termed Scanner 2). Exclusion criteria for all subjects included

historical or present episode of psychiatric illness, alcohol or drug abuse, major somatic illness,

or habitual use of nicotine as determined by a physical and psychiatric examination by a

physician.

Swedish Universities Scales of Personality (SSP)

All participants completed either the KSP196 questionnaire (N = 54) or the Swedish Universi-

ties Scales of Personality (SSP) (N = 34) [34]. KSP196 and SSP are updated versions of the

original KSP [39] employed in our previous studies [24, 29]. The SSP shows improved psycho-

metric properties, as well as updated normative data for healthy samples [34]. The SSP impul-

sivity scale was derived from the KSP196 impulsivity scale. This measure of trait impulsivity

denotes the degree to which subjects’ report that they act on the spur of the moment (non-

planning impulsivity). Responses are made on a four-point Likert scale (“does not apply” to

“applies completely”), and includes statements such as, “I have a tendency to act on the spur of

the moment without really thinking ahead.” Notably, the impulsivity subscale on the KSP and

KSP196 includes 10-items (Cronbach’s α = .68), while the SSP includes 7 items showing

slightly higher internal reliability (Cronbach’s α = .73) [34]. In the creation of the SSP impul-

sivity scale, three of the original items were removed: KSP-20, KSP-62 and KSP-113. The

phrasing of two other items was also slightly changed (KSP-8/SSP-5 and KSP-68/SSP-44). In

general, the reasons for the rephrasing was to enhance clarity and replace outdated words/

phrasing. The impulsivity scales of the KSP and SSP are highly correlated with one another

(r = 0.89, p< 1 x 10−15), based on data from [40].

Magnetic resonance imaging (MRI)

The parameters for scanner 1 were as follows: T1-weighted imaging, TE = 5 ms, TR = 20 ms,

3D, 256 x 256, voxel-size 1 mm isotropic. The parameters for scanner 2 were as follows:

T1-weighted imaging, TE = 3.53 ms, TR = 1.79 seconds, 3D, 256 x 256, voxel-size 1 mm

isotropic.

Subcortical volume analyses

The Multiple Automatically Generated Templates (MAGeT-Brain) algorithm [41, 42] was

employed to provide fully-automated segmentation of striatal subdivisions (Fig 1) [43]. The

delineation of the striatal subdivisions based on serial histological data, and the Collin27 Brain

atlas (http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27), has been described in detail

Table 1. Participant demographics (n = 88, male).

Age Trait Impulsivity–

SSP

Total Brain

Volume

Post-Commissural Putamen Volume

Mean ±S.D. 28.16

±3.34

50.84

±9.29

1584685.86

±101878.52

3781.23

±372.50

Range: 21.32–34.96 29.48–78.85 1369636–1872065 2957–4751

https://doi.org/10.1371/journal.pone.0209584.t001

Trait impulsivity and post-commissural putamen volumes
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elsewhere (https://github.com/CobraLab/atlases) [43]. These include the pre-commissural

caudate, post-commissural caudate, pre-commissural putamen, post-commissural putamen,

and the VS. Briefly, the putamen (and caudate) can be divided based on the position of the

anterior commissure as seen on the coronal plane. The portion of the putamen located anteri-

orly to the coronal location of the anterior commissure is demarcated as pre-commissural.

The remaining portions of the putamen posterior to the anterior commissure, is considered

post-commissural [44, 45]. Several studies have been conducted to validate the reliability of

MAGeT-Brain against “gold-standard” manual segmentation–the correlation between meth-

ods in the striatum have been reported to be around r = .92 (p = .0001) with a DiceKappa of

0.861 [41, 42, 46–48]. Typically, in a multi-atlas segmentation approach, manually drawn labels

from atlases are warped (or propagated) into native subject space by applying transformations

estimated from non-linear image registration. Candidate labels from all atlas images are fused

(via probabilistic segmentation techniques) to create a final segmentation. The goal of the

MAGeT-Brain algorithm is to mitigate sources of error from regular multi-atlas segmentation

approaches, including: 1) spurious non-linear registration or resampling errors (including par-

tial volume effects in label resampling), and 2) irreconcilable differences in neuroanatomy

between the atlas and target images. The MAGeT-Brain algorithm is a modified multi-atlas

segmentation technique, which employs a limited number of high-quality manually segmented

atlases as an input to reduce bias and enhance segmentation accuracy. MAGeT-Brain propa-

gates atlas segmentations to a template library, formed from a subset of target images, via

transformations estimated by nonlinear image registration. The resulting segmentations are

then propagated to each target image and fused using a label fusion method.

Templates images for Scanner 1 (n = 21) and Scanner 2 (n = 11) were chosen as random

sub-samples of the full-samples. These randomly selected cases were used as a template library

through which the final segmentation was bootstrapped. Each subject in the template library

was segmented through non-linear atlas-to-template registration followed by label propaga-

tion, yielding a unique definition of the subdivisions for each of the templates. The bootstrap-

ping of the final segmentations through the template library produces candidate labels for each

subject, and the labels are then fused using a majority vote to complete the segmentation pro-

cess. Since this is a majority vote process, to avoid potential “ties” an odd number of template

Fig 1. Regions of interest. Region of interest labels in native space produced by MAGeT-Brain in a randomly selected subject from Scanner 1 (A) and Scanner 2 (B).

https://doi.org/10.1371/journal.pone.0209584.g001
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images were employed. Non-linear registration was performed using a version of the Auto-

matic Normalization Tools (ANTS) registration technique [49] that is compatible with the

minc toolkit (https://github.com/vfonov/mincANTS).

The effects of using multiple input atlases, varying the size of the template library con-

structed, has been rigorously examined for MAGeT-Brain previously [42]. Given the high

computational demands of multi-atlas techniques, the MAGeT-Brain method is predicated on

the finding that a useful template library can be generated from a small set of labelled atlas

images [42]. While increasing the number of templates used improves the MAGeT-Brain seg-

mentation, using even a smaller number of atlases (as low as n = 21 for samples�22) greatly

improves the overlap between manually generated “gold standard” segmentations and auto-

matically generated segmentations [46, 50]. Thus, while we have used smaller template librar-

ies than the full sample, our segmentations are improved compared to other automated

segmentation approaches [46].

Volumes (mm3) from ROIs were averaged across hemispheres. Compared to other auto-

mated techniques such as FreeSurfer and FSL, MAGeT-Brain demonstrates the highest corre-

lation with gold-standard manual segmentation techniques, while FreeSurfer and FSL

significantly overestimate subcortical volumes compared to MAGeT-Brain [46]. Quality con-

trol by visual inspection was carried out by authors FC and EP to ensure that, 1) there were no

major artifacts in the original T1 images, and, 2) no anomalies in the labelling of the subcorti-

cal structures by examining for each subject the original subject image with the resulting

labelled image.

Total brain volume analysis

Total brain volume (TBV) was obtained using the Brain Extraction based on non-local Seg-

mentation Technique (BEaST) method [51]. This method is based on non-local segmentation

in a multi-resolution framework. Each voxel is labeled based on the similarity of its neighbor-

hood of voxels to all the neighborhoods in a library of pre-defined priors, and a non-local

means estimator is used to estimate the label at the voxel. Inputs are down-sampled to a lower

resolution, segmentation is performed, and results are propagated up to higher resolutions

[51]. BEaST is designed to include CSF (in the ventricles, cerebellar cistern, deep sulci, along

surface of brain, and brainstem), the brainstem, and cerebellar white matter (WM) and gray

matter (GM) in the brain mask, while excluding the skull, skin, fat, muscles, dura, eyes, bone,

exterior blood vessels, and exterior nerves.

Statistical analysis

We conducted a priori as well as complementary secondary exploratory analyses. For our a pri-
ori analysis, the hypotheses tested were:

1. H1: A negative relationship between post-commissural putamen volume and SSP

impulsivity.

2. H0: No relationship between post-commissural putamen volume and SSP impulsivity.

We employed a linear-mixed-effects (LME) model, taking the hierarchical structure (sub-

jects belonging to two different scanner groups) into account. The post-commissural putamen

volumes were specified as the dependent variable, SSP impulsivity as the independent variable,

and TBV and age as co-variates. Scanner condition (‘Scanner 1’ or ‘Scanner 2’) was specified

as a random effect, allowing the intercepts to vary. All continuous variables of interest were

standardized (z-scored) before being entered into the statistical model. We examined that the

Trait impulsivity and post-commissural putamen volumes
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assumptions of linear regression were not violated our analyses. Alpha for this a priori test was

set to 0.05 (one-sided expecting a negative relationship).

A p-value in-and-of itself is often a poor metric for assessing the success of a replication

attempt, since the difference between a “significant” and a “non-significant” p-value is not nec-

essarily meaningful [52]. For this reason, a statistical procedure known as the replication Bayes

Factor (BF) [53] was also employed. A BF quantifies the relative strength of evidence in favor

of two hypotheses by computing the predicative adequacy of H1 over H0 relative to one

another. For the correlation replication BF specifically, H1 is defined as the posterior distribu-

tion of the correlation coefficient from the original study, assuming that a uniform prior was

employed, and H0 is defined as a point null hypothesis of no effect [54]. Correlation coeffi-

cients were obtained by converting the test-statistics of the original finding (KSP Impulsivity, r
= -.62) and the test-statistics from the abovementioned LME model to correlation coefficients

[55]. The BF was calculated using the Savage-Dickey ratio [56]. A BF above 3 for H1 (BF10 > 3

or BF01 < 1/3) is commonly interpreted as providing moderate evidence for a successful repli-

cation, and a BF above 3 for H0 (BF01 > 3 or BF10 < 1/3) as moderate evidence for a failed

replication. A BF above 10 indicates strong evidence in favor of one hypothesis (H1 or H0),

over the other.

We also conducted secondary post hoc exploratory analyses to help inform our a priori find-

ings. Specifically, we explored whether there were relationships between the left versus the

right post-commissural putamen volumes and SSP impulsivity. Finally, in accordance with the

previously reviewed literature, we examined whether VS volumes were related to SSP impul-

sivity (average ROI, as well as left and right ROIs separately). All statistical modelling was car-

ried out using R (v.3.3.2).

Results

A priori analysis

Contrary to our previous findings [29], trait impulsivity measured by the SSP was not a significant

predictor of post-commissural putamen volumes (β = .14, df = 84, p = .94) (Table 2 & Fig 2).

Table 3 outlines the beta-weights compared between the previous publication [29], the current

findings, as well as the replication BF. The replication BF in favor of H0 (a failed replication) was

607.8 and inversely, the replication BF in favor of H1 (a successful replication) was 0.0016. Hence,

replication BFs showed that the data was over 607 times more likely to have occurred under H0,

compared to under that of the posterior distribution of the original study, i.e. a strong negative

relationship between trait impulsivity and post-commissural putamen volume (Fig 3).

Post hoc exploratory analyses

First, excluding subjects imaged with Scanner 2 (n = 12) did not significantly change our a pri-
ori null findings (β = .16, df = 72, p = .96). Second, trait impulsivity measured by the SSP was

Table 2. Simple liner-mixed effects (LME) model predicting post-commissural putamen volumes.

Variables Estimate (β) t-value p-value

Independent:
Trait Impulsivity–SSP .14 1.60 .94

Covariates:
Age -.33 -3.91 .0002

Total Brain Volume .49 5.65 .0000002

All variables of interest were standardized (z-scored) before entering the statistical model.

https://doi.org/10.1371/journal.pone.0209584.t002

Trait impulsivity and post-commissural putamen volumes
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not a significant predictor of either left (β = .12, df = 84, p = .92) or right (β = .15, df = 84,

p = .96) post-commissural putamen volumes (Table 4). Further exploratory analyses demon-

strated that trait impulsivity measured by the SSP was also not a significant predictor of VS

volumes (Table 5). A further exploration of all the other striatal subdivisions is presented in

Table 6 (two-tailed tests). Notably, pre-commissural caudate volumes were negatively associ-

ated with trait impulsivity measured with the SSP (β = -.20, t = -2.15, p = .03). However, this

relationship did not survive Bonferroni correction for multiple comparisons (corrected

p-threshold = .006).

Discussion

Determining the neural correlates of impulsivity in healthy persons may help inform biological

markers of drug addiction vulnerability. Research on how trait impulsivity may be related to

striatal neurochemistry and morphology have yielded mixed results [30–33]. In the current

investigation, we attempted to replicate our previous observation that higher trait impulsivity

Fig 2. Trait impulsivity and post-commissural putamen volumes. The relationship between trait impulsivity measured by the Swedish Universities Scales of

Personality (SSP) and post-commissural putamen volumes in 88 healthy males. Post-commissural putamen volumes have been corrected for age and total brain volume,

and SSP impulsivity scores have been standardized (z-scored). The shaded area represents the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0209584.g002

Trait impulsivity and post-commissural putamen volumes
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was related to smaller post-commissural putamen volumes in healthy men [29]. Contrary to

our previous findings, we observed no significant relationship between trait impulsivity and

post-commissural putamen volumes in a larger, independent sample of healthy males. Rather,

we found strong evidence in favor of a failed replication: the data were over 607 times more

likely to have occurred under the null hypothesis of no effect than they were under the out-

come of the original study. Furthermore, in line with our initial study, our exploratory analyses

did not show a significant relationship between trait impulsivity and VS volumes in healthy

males.

Table 3. Data used for calculating replication Bayes function.

Study Beta (β) Degrees of Freedom p-value† BF10 BF01

Original -.62 27 .0003 - -

Current .14 84 .94 .0016 607.8

†The original analysis was two-tailed. The current analysis was a one-tailed test in the direction of the original study.

https://doi.org/10.1371/journal.pone.0209584.t003

Fig 3. Replication bayes factor analysis. The results of the replication Bayes Factor (BF) analysis. The dashed line (the “prior”) denotes the original relationship

(previously published) between post-commissural putamen volumes and trait impulsivity, and the updated estimate (“the posterior”) from data from the current study.

BF was calculated using the ratio between the heights of the prior and posterior at zero (denoted by the grey circles). The label “Density” on the y-axis refers to the

probability density.

https://doi.org/10.1371/journal.pone.0209584.g003

Trait impulsivity and post-commissural putamen volumes
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It is difficult to definitively interpret the results of a failed replication, and there were several

differences between the studies which could be speculated to have led to the differing results.

First, the original investigation employed a statistically significantly older sample than the cur-

rent investigation (Mean Age: 32.13±9.13 versus 28.16±3.34; t = 3.49, df = 117, p = .0007).

Thus, it is possible that trait impulsivity may be negatively correlated with post-commissural

putamen volumes in older (�34 years of age) but not younger subjects. However, we are cur-

rently unaware of any evidence a priori to support this potential interpretation. Thus, we do

not suspect that this age difference significantly accounts for the observed discrepancy between

Table 4. Results of secondary post hoc analyses exploring potential effects of laterality.

Region of Interest Variables Estimate (β) t-value p-value†

Left Post-Commissural Putamen

Independent:
Trait Impulsivity—SSP .12 1.43 .92

Covariates:
Age -.33 -3.91 p< .0001

Total Brain Volume .49 5.68 p< .0001

Right Post-Commissural Putamen

Independent:
Trait Impulsivity—SSP .15 1.71 .96

Covariates:
Age -.33 -3.73 p< .0001

Total Brain Volume .47 5.35 p< .0001

†Results are reported as one-tailed tests.

https://doi.org/10.1371/journal.pone.0209584.t004

Table 5. Results of secondary post hoc analyses exploring potential relationships between trait impulsivity and ventral striatum volumes.

Region of Interest Variables Estimate (β) t-value p-value†

Ventral Striatum

Independent:
Trait Impulsivity—SSP -.05 -.58 .28

Covariates:
Age -.21 -2.34 .02

Total Brain Volume .48 5.21 .000001

Left Ventral Striatum

Independent:
Trait Impulsivity—SSP -.04 -.41 .34

Covariates:
Age -.25 -2.77 .01

Total Brain Volume .48 5.24 .001

Right Ventral Striatum

Independent:
Trait Impulsivity—SSP -.05 -.55 .29

Covariates:
Age -.19 -1.91 .06

Total Brain Volume .45 4.71 .001

†Results are reported as one-tailed tests.

https://doi.org/10.1371/journal.pone.0209584.t005
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studies. Second, the current investigation employed an updated scale measuring trait impulsiv-

ity compared to the original investigation. However, the KSP and SSP Impulsivity scales are in

theory meant to measure the same construct [34]. In a separate sample of 304 individuals who

filled out both the KSP and SSP [40], the correlation between the two measures was found to

be very high. It is therefore highly unlikely that the removal of three out of ten items, which

was done to improve the reliability, could explain the different results. Moreover, it cannot be

fully excluded that differences in genetic, cultural, and socioeconomic measures between the

Canadian and Swedish samples could have lead to discrepancies between studies, and these

factors should be taken into consideration in future investigations. Finally, different sequence

parameters for the T1-image acquisition were employed between the previous study and the

current investigation. Since these parameters (TR, TE, flip angle) influence image contrast, it is

possible that there were slight differences in tissue classification and segmentation between

studies [57], which in turn may have contributed to our differing results. While this potential

effect can not be directly examined by our current data, it is important to note that the

MAGeT-brain method shows both a high degree of test-retest reliability and congruence with

“gold-standard” manual segmentation techniques [46].

There are several strengths and weaknesses associated with the current investigation. First,

this study employed a substantially larger sample of healthy males compared to our initial

study (n = 88 versus n = 31). Second, we employed an improved measure of trait impulsivity

compared to the original investigation. However, like our original investigation, this study was

retrospective. Therefore, the influence of other important demographic and psychological

measures relevant to trait impulsivity and striatal morphology could not be investigated. For

example, several lines of evidence suggest that motivational deficits may be related to both

striatal dopaminergic functioning and striatal morphology in healthy persons [58–61] and per-

sons with neuropsychiatric diseases [61–63]. Therefore, future studies should examine the

Table 6. Results of secondary post hoc analyses exploring potential relationships between trait impulsivity and all the remaining striatal subdivisions.

Region of Interest Variables Estimate (β) t-value p-value†

Pre-Commissural Putamen

Independent:
Trait Impulsivity—SSP -0.05 -0.58 .56

Covariates:
Age -0.21 -2.34 .02

Total Brain Volume 0.48 5.21 >.0001

Pre-Commissural Caudate

Independent:
Trait Impulsivity—SSP -0.20 -2.15 .03

Covariates:
Age -0.34 -3.66 .0004

Total Brain Volume 0.33 3.60 .0005

Post-Commissural Caudate

Independent:
Trait Impulsivity—SSP -0.10 -1.18 0.24

Covariates:
Age -0.49 -5.82 >.0001

Total Brain Volume 0.34 3.95 .0002

†Results are reported as two-tailed tests.

https://doi.org/10.1371/journal.pone.0209584.t006
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potential interactions between trait impulsivity and motivational functioning on striatal mor-

phology; for instance, using behavioural measures specifically designed to dissociate these

related traits and behaviours [64, 65]. Moreover, there may be other participant differences–

such as lifestyle factors and other personality traits (e.g. social desirability)–which may have

lead to the differing results between the Toronto and Karolinska samples. Unfortunately, such

influences cannot be readily determined from the data collected from both samples. Finally,

our investigation only examined male participants. Future studies should examine the rela-

tionship between trait impulsivity and striatal morphology in larger samples of both healthy

men and women.

We attempted to replicate a previously observed negative association between trait impul-

sivity and post-commissural putamen volumes in healthy males, finding strong evidence in

favor of a failed replication. Especially in neuroscience, there is a growing need for more repli-

cation attempts in larger independent samples before strong research claims can be made [66,

67]. Neuroscience as a field particularly suffers from a lack of replicability for several reasons.

First, surveys suggest neuroscience studies in general are underpowered [67]. Low statistical

power overestimates the true effect sizes of observed findings, resulting in these findings being

less likely to be reproduced. While unexpected findings from smaller samples–like in our origi-

nal study (n = 31)–can point to true, strong effects [68], replication in multiple, larger samples

is the only means of validating these findings [69]. Large variations in neuroimaging methods

further decrease replicability [70], with the majority of surveyed studies reporting associations

between structural brain morphology and behaviour failing to replicate [71]. Collectively, this

crisis in replicability severely impairs the progress of neuroscience as a field [72]. We believe

our replication attempt represents an important step towards such goals, and we hope that

future studies building upon this line of research will help establish new meaningful brain bio-

markers for addiction vulnerability in healthy humans.
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