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Purpose: Avitinib is the first third-generation epithelial growth factor receptor (EGFR) 
inhibitor independently developed in China and is mainly used for treating non-small cell 
lung cancer. However, pharmacokinetic details are limited. This study explored the in vivo 
and in vitro effects of avitinib on cytochrome CYP450 enzymes metabolic activity.
Methods: A rapid and sensitive ultra-performance liquid chromatography-tandem mass spec-
trometry (UPLC-MS/MS) method was developed and validated for determining six probe 
substrates and their metabolites. Avitinib influence on activity levels of CYP isozymes was 
examined in vitro using human and rat liver microsomes (HLMs/RLMs). For in vivo studies, rats 
were pretreated with 30 mg/kg avitinib once daily for 7 days (avitinib multiple-doses group), 
30 mg/kg avitinib on day 7 (avitinib single-dose group), or an equivalent amount of CMC-Na 
once daily for 7 days (control group), followed by intragastrical administration of the probe 
substrates (1 mg/kg tolbutamide and 10 mg/kg phenacetin, bupropion, chlorzoxazone, dextro-
methorphan, and midazolam). Plasma pharmacokinetics and IC50 values of the probe substrates 
were then compared. Pharmacokinetic parameters were determined using non-compartmental 
analysis implemented in a pharmacokinetic program.
Results: In vitro experiments revealed different inhibitory effects of avitinib on the six probe 
substrates with various IC50 values (bupropion, 6.39/22.64 μM; phenacetin, 15.79/48.36 μM; 
chlorzoxazone, 23.15/57.09 μM; midazolam, 27.64/59.6 μM; tolbutamide, 42.18/6.91 μM; 
dextromethorphan, 44.39/56.57 μM, in RLMs and HLMs respectively). In vivo analysis revealed 
significant differences (P <0.05) in distinct pharmacokinetic parameters (AUC(0-t), AUC (0-∞), 
Cmax, MRT(0-t), MRT (0-∞), and CLz/F) for the six probe substrates after avitinib pretreatment.
Conclusion: A sensitive and reliable UPLC-MS/MS method was established to determine 
the concentration of six probe substrates in rat plasma. Avitinib had inhibitory effects on 
CYP450 enzymes, especially cyp2b1, cyp1a2 in RLMs, CYP2C9 in HLMs, and cyp1a2, 
cyp2b1, cyp2d1, and cyp2e1 in vivo. Our data recommend caution when avitinib was taken 
simultaneously with drugs metabolized by CYP450 enzymes.
Keywords: cytochrome, EGFR inhibitor, UPLC-MS/MS, rat liver microsome, drug-drug 
interaction

Introduction
Non-small cell lung cancer (NSCLC) is one of the most prevalent malignant tumors 
worldwide with mutations in epithelial growth factor receptor (EGFR) being the 
most common cause.1 NSCLC mortality rates are ranked first among malignant 
tumors, exhibiting severely low 5-year survival rates.2,3 Tyrosine kinase inhibitor 
(TKI) is one type of targeting drug for the treatment of NSCLCs carrying EGFR 
mutations. TKI treatment is effective for approximately 70% of NSCLC patients 
having EGFR mutations. However, acquired resistance is very common among 
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patients taking first- or second-generation TKIs, especially 
for patients carrying the T790M mutation, which leads to 
EGFR-TKI drug failure. To overcome this problem third- 
generation EGFR-targeted drugs, such as avitinib 
(AC0010), have been recently developed.4–6

Avitinib is the first self-developed third-generation TKI 
in China and currently has entered the clinical trial stage. 
Clinical research has shown that patients taking avitinib 
for more than one month can significantly reduce their 
tumor volumes with high efficacy and safety.7–9 Avitinib 
is metabolized by the liver after oral administration 
through cytochrome (CYP) enzymes CYP2C19, 
CYP3A4, and CYP1A2, as well as other channels, and is 
mainly metabolized into seven metabolites, which are 
excreted in urine and feces.10–13 Unfortunately, there 
have been only a few reports published on the pharmaco-
kinetic characteristics and drug-drug interactions of aviti-
nib with other drugs since its entry into clinical trials.14

The CYP enzyme CYP450 is responsible for the meta-
bolism of many drugs and plays an important role in drug 
metabolism. Accordingly, it is the subject of important 
preclinical drug metabolism research, including many of 
its subtypes, such as CYP1A2, CYP3A4, and CYP2C9, 
among others.15,16 Based on previously reports, many 
drugs can either inhibit or induce CYP450 activity, leading 
to changes in plasma drug concentrations. These drug-drug 
interactions can potentially produce undesirable interac-
tions and affect treatment efficacy and safety.17 For 
instance, the combination of many drugs can induce 
CYP3A4 mRNA expression and increase drug metabolic 
toxicity in the body.18 Experiments using rat models have 
also provided evidence that the active ingredients of 
Andrographis paniculata can induce CYP1A1/2 and 
CYP2B activity and alter the metabolic activity of 
CYP1A1 and CYP1A2. Moreover, some drugs, such as 
tanshinone and glycyrrhetinic acid, can inhibit the meta-
bolic activity of specific CYP450 enzymes and may 
increase drug exposure time.19,20 The use of cocktails is 
a well-known method for drug-drug interaction studies and 
it is widely employed in the evaluation of drug efficacy, 
both in vitro and in vivo.21 Cocktails allow for rapid and 
routine simultaneous measurement of enzyme activity of 
multiple isozymes, thereby significantly increasing sample 
throughput.22

In the current study, we established an ultra high per-
formance liquid chromatography- tandem quadrupole 
mass spectrometry (UPLC-MS/MS) method for the detec-
tion of six probe substrates (phenacetin for cyp1a2 and 

CYP1A2, bupropion for cyp2b1 and CYP2B6, tolbuta-
mide for cyp2c11 and CYP2C9, dextromethorphan for 
cyp2d1 and CYP2D6, chlorzoxazone for cyp2e1 and 
CYP2E1, and midazolam for cyp3as and CYP3As, 
Figure 1) in rat plasma and investigated the effect of 
avitinib on CYP450 enzyme activity in rats, RLMs and 
HLMs. Our findings should provide a theoretical basis for 
the rational clinical usage of avitinib, therapeutic drug 
monitoring, and clinical reduction of drug interactions.

Methods
Chemicals and Reagents
Avitinib (purity >98%) was purchased from Send 
Pharmaceutical Technology Co., Ltd (Shanghai, China). 
Diazepam (purity >98%) was purchased from King York 
Pharmaceutical Co., Ltd. (Tianjin, China) and used as the 
internal standard. Hydroxybupropion, α- 
hydroxymidazolam, acetaminophen, and formic acid were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Phenacetin, tolbutamide, dextromethorphan, and chlorzox-
azone were purchased from Powered by J&K Chemical 
Ltd. (Beijing, China). Bupropion hydrochloride, and nor-
dextromethorphan were purchased from Tokyo Chemical 
Industry (Tokyo, Japan). Midazolam was purchased from 
Nhwa Pharmaceutical Co., Ltd (Jiangsu, China). Hydroxy 
tolbutamide and 6-hydroxychlorzoxazone were purchased 
from Toronto Research Chemicals (Toronto, Canada). 
Nicotinamide adenine dinucleotide phosphate (NADPH) 
was purchased from Roche (Shanghai, China). BCA 
Protein Assay Kit was purchased from Thermo Scientific 
(USA). HLM was purchased from PrimeTox (Wuhan, 
China). Rat liver microsomes (RLMs) were prepared in 
our laboratory. Ultra-pure water was prepared using 
a Millipore Milli-Q purification system (Bedford, MA, 
USA). UPLC-grade acetonitrile and methanol were pur-
chased from Fisher Scientific Co., (Waltham, MA, USA). 
Rat blank plasma samples from drug-free rats were sup-
plied by the Laboratory Animal Center of Wenzhou 
Medical University. All other chemicals for this study 
were reagent grade and used without further purification.

Instrumentation and Analytical 
Conditions
A UPLC-MS/MS system consisting of an ACQUITY 
I-Class UPLC and XEVO TQD triple quadrupole mass 
spectrometer (Waters Corp., Milford, MA, USA) equipped 
with an electrospray ionization (ESI) interface was used to 
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analyze the compounds. The ACQUITY UPLC system 
had a Binary Solvent Manager (BSM) and Sample 
Manager-Flow Through Needle (SM-FTN). Masslynx 4.1 
software (Waters Corp.) was used for data acquisition and 
instrument control.

Probe substrates and their metabolites, as well as the 
internal standard diazepam, were separated using a UPLC 
BEH C18 column (2.1 mm × 50 mm, 1.7 μm; Waters 
Corp.) and maintained at 40°C. The initial mobile phase 
consisted of acetonitrile and formic acid water (0.1% for-
mic acid) with a linear gradient elution flow rate of 
0.4 mL/min and an injection volume of 2 μL. The linear 
elution gradient consisted of acetonitrile content increasing 
from 10% to 50% within 0.6 min, rapidly increasing from 
50% to 80% between 0.6 and 1.0 min, and increasing from 
80% to 95% from 1.0 to 2.0 min. The acetonitrile content 
was then maintained at 95% for 0.5 min and finally 
dropped to 10% within 0.1 min. The total run time of the 
analytes was 3 min. After each injection, the sample man-
ager underwent a needle wash process with methanol- 
water.

Mass spectrometric detection was performed on a triple 
quadrupole mass spectrometer equipped with an electro-
spray ionization (ESI) interface in positive mode. Nitrogen 

was used as the desolvation gas (1000 L/h) and cone gas 
(50 L/h). The ion monitoring voltage conditions were as 
follows: capillary voltage, 2.5 kV; source temperature, 
150°C; and desolvation temperature, 500°C. Multiple 
reaction monitoring (MRM) methods were used for quan-
titative analysis.

Preparation of RLMs and Protein 
Concentration Quantification
Male Sprague-Dawley (SD) rats, body weight 220–250 g, 
were weighed and anesthetized with 10% chloral hydrate 
(0.35 mL/100 g) followed by hepatic perfusion with phos-
phate buffered saline (PBS). The liver was excised, rinsed 
with ice-cold saline (0.9% NaCl), weighed, and homoge-
nized. The homogenized liquid was subsequently centri-
fuged at 9000 × g for 30 min at 4°C. The supernatant was 
collected and centrifuged at 105,000 × g for 60 min at 4°C. 
The precipitate was resuspended in a buffer solution of 
0.15 M KCl-PBS at pH 7.4. After repeating the above 
procedure, the final sample was stored in KCl-PBS con-
taining 0.25 mol/L sucrose at −80°C until use. The protein 
concentrations of the RLMs were determined using the 
BCA Protein Assay Kit (Pierce Thermo Scientific).

Figure 1 Probe substrate structures. (A) Dextromethorphan, (B) bupropion, (C) phenacetin (D) chlorzoxazone, (E) tolbutamide, (F) midazolam, (G) avitinib, and (H) 
diazepam, internal standard (IS).
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Effect of Avitinib on Probe Substrate 
Metabolism in vitro
To determine the half-maximal inhibitory concentration 
(IC50), based on previous studies,26–28 the incubation mix-
tures were prepared in a total volume of 200 μL as fol-
lows: 0.44 mg/mL RLMs or 0.5 mg/mL HLMs, 100 mM 
potassium phosphate buffer, cocktail probes (40μM phe-
nacetin, 20 μM bupropion, 100 μM tolbutamide, 10 μM 
dextromethorphan, 40 μM chlorzoxazone, and 5 μM mid-
azolam), a series concentration of avitinib (0, 1, 2.5, 5, 10, 
25, 50 and 100 μM), after pre-incubation in a 37°C water 
bath for 5 min, 1 mM NADPH was added to the mixture to 
start the reaction. Thirty minutes later, the mixture was 
transferred to ice and 200 μL of acetonitrile added to stop 
the reaction and precipitate the protein. Then, 20 μL of 
diazepam (500 ng/mL) was added and the mixture then 
vortexed and centrifuged 13,800 × g for 5 min. Finally, 2 
μL of the supernatant was injected into the ACQUITY 
I-Class UPLC and XEVO TQD triple quadrupole mass 
spectrometer for separation and analysis.

Animal Experiments
For the evaluation of drug interactions, male Sprague- 
Dawley (SD) rats, body weight 220–250 g, were obtained 
from the Wenzhou Medical University Experimental 
Animal Center. The animals were housed in a specific 
pathogen-free (SPF) facility under 12 h light-dark cycles 
with access to rodent cubes and sterile water. All experi-
mental procedures and protocols were reviewed and 
approved by the Animal Ethics Committee of Wenzhou 
Medical University in accordance with the “Guidelines for 
the Care and Use of Laboratory Animals” (ID Number: 
wydw2019-650). Water was freely available but the diet 
was prohibited for 12 h prior to the experiment.

Effects of Avitinib on Probe Drugs 
Pharmacokinetics in vivo
Eighteen SPF-grade healthy male SD rats were randomly 
selected, divided into multiple-dose avitinib group (Group 
A), single-dose avitinib group (Group B), and control 
group (Group C), with six rats each. Group A and 
Group B rats were orally administered 30 mg/kg avitinib 
daily for seven days or on day seven only, respectively, 
while Group C rats were orally administered carboxy-
methyl cellulose sodium (CMC-Na) daily for seven 
days. In the seventh day, 30 min later after oral adminis-
tration of avitinib, the rats were intragastrically 

administered the six probe drugs simultaneously, includ-
ing 1 mg/kg tolbutamide and 10 mg/kg each of phenace-
tin, bupropion, chlorzoxazone, dextromethorphan and 
midazolam. All rats were fasted for 12 h before sampling. 
Blood was collected from the tail veins and collected 
directly into clean centrifuge tubes containing heparin. 
The samples were immediately centrifuged at 3000 × 
g for 10 min, the supernatant separated and transferred 
to another centrifuge tube, and the samples stored at 
−20°C until use.

Sample Preparation
Before analysis, the plasma samples were thawed to room 
temperature. A 20 μL aliquot of the diazepam internal stan-
dard working solution (0.5 μg/mL) was added to 50 μL of the 
collected plasma sample in a 1.5 mL centrifuge tube, fol-
lowed by the addition of 200 μL of acetonitrile. The tubes 
were thoroughly mixed for 1.0 min and centrifuged at 13,000 
× g for 10 min. Finally, 2 μL of the supernatant was injected 
into the UPLC-MS/MS system for separation and analysis.

Statistical Analysis
Non-compartmental analysis was performed using Drug 
and Statistics (DAS) version 3.2.8 software (The 
People’s Hospital of Lishui, China) to calculate the phar-
macokinetic parameters.23–25 Average plasma concentra-
tion-time curves were drawn according to the mean drug 
concentrations at each time point. The IC50 value was 
calculated using GraphPad version 8 software (GraphPad 
Software Inc., San Diego, CA, USA). Statistical analyses 
were performed using one-way analysis of variance (SPSS 
19.0, Chicago, IL, USA). A value of P <0.05 was regarded 
as statistically significant.

Results
Method Validation
After optimization of the incubation condition, UPLC-MS 
/MS analysis was performed to determine the metabolites 
present in one separation. This method was then validated by 
evaluating the linearity, accuracy, and inter-day and intra- 
day precision. As shown in Table 1, the correlation coeffi-
cients within the selected concentrations were all greater 
than 0.99. The accuracies were in the range of 85–115% 
with less than 15% inter-day or intra-day deviation. Typical 
UPLC-MS/MS chromatograms of blank matrix spiked with 
the probe substrates, their metabolites, and the diazepam 
internal standard are shown in Figures 2 and 3.
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In vitro Inhibitory Effect of Avitinib on 
CYP450 in RLMs and HLMs
An in vitro incubation system was used to calculate the IC50 

values of inhibitors, the equation is Y=100/(1+10^(X- 
LogIC50)). Serial concentrations of avitinib ranging from 1– 

100 μM were co-incubated with the probe substrates under the 
optimized incubation conditions to determine the IC50 values 
(Figures 4 and 5). The IC50 values of avitinib against the probe 
drugs were 6.39/22.64 μM for bupropion; 15.79/48.36 μM for 
phenacetin, 23.15/57.09 μM for chlorzoxazone; 27.64/ 59.6 

Table 1 Standard Curve Analysis of Six Probe Substrates and Their Metabolites

Drug Substrate Regression Equation r2

Hydroxychlorzoxazone y = 0.00633355*x + 0.000785026 0.9932
Hydroxymidazolam y = 2.645*x + 0.255964 0.9956

Hydroxytolbutamide y = 1.36572*x + 0.0433389 0.9984

Dextrorphan y = 3.54009*x + 0.43085 0.9930
Hydroxybupropion y = 7.11765*x + 0.391222 0.9929

Acetaminophen y = 1.08232*x + 0.0195744 0.9991

Chlorzoxazone y = 0.000137867*x + 0.000824906 0.9962
Bupropion y = 0.0661357*x + 0.0040144 0.9994

Phenacetin y = 0.0288824*x + 0.0601388 0.9971
Tolbutamide y = 0.00280173*x + 0.0102439 0.9964

Midazolam y = 0.017975*x + 0.00372133 0.9995

Dextromethorphan y = 0.0164994*x + 0.00453508 0.9980

Figure 2 Typical UPLC-MS/MS chromatograms of blank matrix spiked with hydroxychlorzoxazone, hydroxymidazolam, hydroxytolbutamide, internal standard diazepam, 
dextrorphan, hydroxybupropion, and acetaminophen.
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μM for midazolam; 42.18/6.91 μM for tolbutamide; 44.39/ 
56.57 μM for dextromethorphan, in RLMs and HLMs respec-
tively. These findings indicated that avitinib exhibited a weak 
inhibitory effect on the majority of CYP450 isoforms, includ-
ing cyp1a2, cyp2c11, cyp2d1, cyp2e1, and cyp3as in RLMs; 
CYP1A2, CYP2B6, CYP2D6, CYP2E1, and CYP3As in 
HLMs. For the cyp2b1 and CYP2C9, inhibition was 
moderate.

In vivo Inhibitory Effect of Avitinib on 
CYP450 in Rats
The metabolic activities of phenacetin, bupropion, tolbu-
tamide, dextromethorphan, chlorzoxazone, and midazolam 
were evaluated in order to examine the inductive potency 
of avitinib on CYP450 enzymes in rats. Plasma concentra-
tion-time curves of the probe substrates after oral 

administration, both with and without avitinib pretreat-
ment, are shown in Figure 6. Comparison of the main 
pharmacokinetic parameters of the three experimental 
groups of rats are shown in Tables 2Tables 3–4.

For phenacetin, when multiple-doses or a single-dose 
of 30 mg/kg avitinib was co-administered with the probe 
substrates, the area under the curve (AUC) (0-∞) values 
significantly increased 1.71-fold or 0.61-fold, respectively, 
the maximum plasma drug concentration (Cmax) values 
significantly increased 0.92-fold or 0.27-fold, respectively, 
and the mean residence time (MRT)(0-∞) values increased 
0.38-fold or 0.20-fold, respectively, compared with that of 
the control group. In addition, avitinib significantly 
decreased the apparent volume of distribution during the 
terminal phase (Vz/F) and apparent total clearance of the 
drug from plasma after oral administration (CLz/F) of 
phenacetin. Specifically, the Vz/F of phenacetin was 

Figure 3 Typical UPLC-MS/MS chromatograms of blank plasma spiked with chlorzoxazone, midazolam, internal standard diazepam, dextromethorphan, tolbutamide, 
bupropion, and phenacetin.
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reduced 63.09% and 49.62% for the multiple-doses and 
single-dose treatments, respectively, compared with that of 
the control group while the CLz/F was reduced 63.17% 
and 39.52%, respectively. However, no significant change 
in the half-time elimination (t1/2) values were observed.

For bupropion, when multiple-doses or a single-dose of 
30 mg/kg avitinib was co-administrated with the probe sub-
strates, the AUC (0-∞) values significantly increased by 1.41- 
fold and 1.5-fold, respectively, the Cmax values significantly 
increased 3.61-fold and 2.39-fold, respectively, compared with 
the control group. Again, avitinib significantly decreased the 
Vz/F and CLz/F of bupropion. Specifically, the Vz/F of bupro-
pion was reduced 62.74% and 64.59% for the multiple-doses 
and single-dose treatments, respectively, compared with that 
of the control group while the CLz/F was reduced 57.54% and 
53.96%, respectively. No significant changes were observed in 

the t1/2 values or the time to reach maximum plasma concen-
tration following administration (Tmax) values.

For dextromethorphan, when multiple-doses or a single- 
dose of 30 mg/kg avitinib was co-administrated with the probe 
substrates, the AUC (0-∞) values significantly increased 4.55- 
fold and 1.87-fold, respectively, the Cmax values significantly 
increased 3.13-fold and 1.21-fold, respectively, and the MRT 
(0-∞) values increased 0.39-fold and 0.09-fold, respectively, 
compared with that of the control group. Avitinib again sig-
nificantly decreased the Vz/F and CLz/F values of dextro-
methorphan. Specifically, the Vz/F of dextromethorphan was 
reduced 73.53% and 69.7% for the multiple-doses and single- 
dose treatments, respectively, compared with that of the control 
group while the CLz/F was reduced 82.22% and 67.78%, 
respectively. No significant changes in the Tmax values were 
observed.

Figure 4 IC50 values for avitinib against cytochrome enzymes in rat liver microsomes. (A) cyp1a2, (B) cyp2b1, (C) cyp2d1, (D) cyp2c11, (E) cyp3as, and (F) cyp2e1. Mean ± 
SD, n = 3.
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In reference to tolbutamide, chlorzoxazone, and mid-
azolam, the AUC (0-∞) values for the multiple-doses and 
single-dose treatments were significantly increased by 
2.36-fold and 1.34-fold (tolbutamide), 0.96-fold and 0.39- 
fold (chlorzoxazone), and 0.86-fold and 1.03-fold (mida-
zolam), respectively. No significant changes were 
observed in the MRT(0-∞), t1/2, or Tmax values for tolbuta-
mide. The Cmax values for chlorzoxazone were signifi-
cantly increased by 3.14-fold and 1.21-fold for the 
multiple-doses and single-dose treatments, respectively, 
compared with that of the control group. No significant 
difference in Cmax was observed for tolbutamide or mid-
azolam. These results indicated that avitinib was an inhi-
bitor of CYP450-related metabolism of the probe 
substrates.

Discussion
Clinically, patients with cancer are commonly adminis-
tered several drugs to treat their cancer and related dis-
eases. It has been reported that 20–30% of all adverse 
reactions observed in clinical trials are caused by drug- 
drug interactions. CYP450 enzymes are responsible for the 
metabolism of a variety of drugs in which drug-drug 
interactions often occurred.29 Inhibition or induction of 
CYP450 enzyme activity can lead to changes in plasma 
drug concentrations in patients, which in turn can affect 
the therapeutic efficacy and safety of the drugs.30 Cocktail- 
based methods are the most commonly used approach for 
evaluating CYP450 enzyme activity levels and can reflect 
the increases or decreases in enzymatic activity by mea-
suring the content of the remaining substrates or their 

Figure 5 IC50 values for avitinib against cytochrome enzymes in human liver microsomes. (A) CYP1A2, (B) CYP2B6, (C) CYP2D6, (D) CYP2C9, (E) CYP3As, and (F) 
CYP2E1. Mean ± SD, n = 3.
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metabolites.31 To better understand the potential effect of 
avitinib on the enzyme activity of CYP450, six different 
probe substrates were included in the cocktail used in the 
current study.

We investigated the potential drug-drug interactions 
in vitro using RLMs/HLMs and in vivo by performing 
UPLC-MS/MS analysis to detect the probe substrates and 
their metabolites in the plasma of rats. We then calculated 
the IC50 values of avitinib for the six probe substrates. The 

in vitro results indicated that avitinib had a direct inhibi-
tory effect on all the probe substrates in this study by using 
the RLMs/HLMs incubation system. Our experimental 
in vitro approach was relatively simple to perform and 
the results to a certain extent reflected the inhibitory 
effects among drugs and avoided the interference of var-
ious internal factors. To further clarify the in vitro experi-
ment results, an in vivo experiment in rats was also 
conducted using a combination of various avitinib 

Figure 6 Concentration-time curves of probe substrates in experimental groups of rats. (A) phenacetin, (B) bupropion, (C) tolbutamide, (D) dextromethorphan, (E) 
midazolam, and (F) chlorzoxazone. Group A (●), Group B (■), and Group C (▲) rats. Mean ± SD, n = 6. Group A, multiple-dose avitinib group; Group B, single-dose avitinib 
group; Group C, control group.
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treatments and the probe substrates. We determined that 
avitinib in rats also exhibited inhibitory effects on the 
pharmacokinetics of some P450 enzymes. The main phar-
macokinetic parameters (AUC(0-t), and AUC(0-∞)) of phe-
nacetin, bupropion, dextromethorphan, tolbutamide, and 
chlorzoxazone all increased significantly in the Group 
A animals compared with those in Group C. Meanwhile, 
the CLz/F and Vz/F of phenacetin, bupropion, dextro-
methorphan, chlorzoxazone, and midazolam decreased, 
indicating that avitinib may have affected them by 
prolonging exposure time and reducing their clearance 
rates. All these results indicated that avitinib was able to 
inhibit metabolism of the probe substrates in vivo.

Our findings provided a fundamental basis for the 
rational decision to combine the use of avitinib and other 

drugs in clinic. The in vivo experiment in rats indicated 
that avitinib exhibited various degrees of inhibitory effects 
on the six probe substrates, indicating avitinib would espe-
cially impact drugs that are metabolized by liver drug 
enzymes CYP2B6, CYP2D6, and CYP3As. Consistent 
with previous reports, we speculate that the inhibitory 
effects of avitinib on these P450 enzymes may have been 
caused by other proteins that were able to increase the 
expression of CYP450 enzymes.32,33 In addition, avitinib 
also exhibited inhibitory effects on CYP2B6 and CYP1A2. 
Therefore, mutual inhibition of metabolism may occur 
in vitro when avitinib is incubated with many drugs that 
are substrates or inhibitors of CYP2B6 and CYP1A2.34 

Inhibitory effects of drug interaction often improve drug 
efficacy and can likely cause clinical adverse reactions and 

Table 2 Pharmacokinetic Parameters of Cyp1a2 and Cyp2b1 Enzymes on Probe Substrates Phenacetin and Bupropion in Group a, 
Group B and Group C Rats

Parameters Phenacetin Bupropion

Group A Group B Group C Group A Group B Group C

AUC(0-t) (μg/h*L) 9010.48 ± 3692.39* 5368.77 ± 1888.98* 3332.3 ± 1329.53 189.23 ± 46.69* 195.77 ± 77.54* 78.36 ± 26.85
AUC(0-∞) (μg/h*L) 9037.90 ± 3711.77* 5381.64 ± 1888.01 3336.01 ± 1329.56 197.36 ± 47.56* 202.16 ± 77.53* 84.96 ± 25.03

MRT(0-t) (h) 1.96 ± 0.15* 1.69 ± 0.24 1.42 ± 0.29 2.67 ± 0.33* 2.82 ± 0.27* 3.37 ± 0.42

MRT(0-∞) (h) 1.98 ± 0.15* 1.71 ± 0.23 1.43 ± 0.29 3.27 ± 0.37 3.33 ± 0.48 4.63 ± 1.53
t1/2z (h) 0.84 ± 0.06 0.86 ± 0.14 0.80 ± 0.15 3.13 ± 0.95 2.71 ± 1.62 3.39 ± 1.42

Tmax (h) 1.17 ± 0.41* 0.58 ± 0.34 0.63 ± 0.31 0.25 ± 0.00* 0.33 ± 0.13* 1.00 ± 0.55

Vz/F (L/kg) 1.48 ± 0.47* 2.59 ± 1.00 4.01 ± 2.02 238.87 ± 84.25* 227.05 ± 151.30* 641.15 ± 341.52
CLz/F(L/h/kg/) 1.23 ± 0.39* 2.02 ± 0.56* 3.34 ± 1.10 53.35 ± 13.53* 57.84 ± 27.30* 125.64 ± 33.24

Cmax (μg/L) 3320.91 ± 1285.48* 2194.85 ± 278.68* 1732.31 ± 447.86 93.49 ± 25.73* 68.88 ± 21.29* 20.30 ± 4.28

Notes: N = 6, *P <0.05, there is statistical significance between Group A, Group B and Group C. Group A, multiple-dose avitinib group; Group B, single-dose avitinib group; 
Group C, control group. 
Abbreviations: AUC, area under the curve; MRT, mean residence time; t1/2z, the apparent elimination half-life; Tmax, maximum plasma concentration; Vz/F, apparent 
volume of distribution; CLz/F, apparent total clearance; Cmax, the maximum plasma drug concentration.

Table 3 Pharmacokinetic Parameters of Cyp2d1 and Cyp2c11 Enzymes on Probe Substrates Dextromethorphan and Tolbutamide in 
Group A, Group B and Group C Rats

Parameters Dextromethorphan Tolbutamide

Group A Group B Group C Group A Group B Group C

AUC(0-t) (μg/h*L) 528.54 ± 203.95* 283.95 ± 53.36* 98.74 ± 38.58 69,246.07 ± 17,188.27* 53,448.80 ± 11,999.02* 31,763.24 ± 2849.57

AUC(0-∞) (μg/h*L) 556.74 ± 207.73* 288.27 ± 54.72* 100.40 ± 39.54 125,226.57 ± 56,483.83* 87,092.94 ± 23,760.89* 37,274.32 ± 2968.84

MRT(0-t) (h) 3.10 ± 0.29* 2.83 ± 0.41 2.57 ± 0.46 10.52 ± 1.01* 10.49 ± 0.44* 8.43 ± 0.34

MRT(0-∞) (h) 3.84 ± 0.58* 3.01 ± 0.42 2.77 ± 0.53 21.47 ± 4.44* 24.81 ± 2.58* 12.79 ± 3.60

t1/2z (h) 2.98 ± 0.67* 1.91 ± 0.41 2.02 ± 0.36 14.66 ± 3.1* 16.65 ± 1.64* 8.40 ± 3.46

Tmax (h) 0.54 ± 0.25 0.46 ± 0.10 0.54 ± 0.25 8.00 ± 3.35* 6.33 ± 3.39 3.33 ± 0.82

Vz/F (L/kg) 86.18 ± 38.25* 98.64 ± 28.33* 325.53 ± 117.90 0.24 ± 0.08 0.29 ± 0.07 0.32 ± 0.12

CLz/F(L/h/kg/) 19.78 ± 6.04* 35.85 ± 7.36* 111.28 ± 36.30 0.01 ± 0.005* 0.012 ± 0.004* 0.027 ± 0.003

Cmax (μg/L) 186.83 ± 103.34* 99.85 ± 33.92* 45.14 ± 18.57 4056.45 ± 1169.27 3239.97 ± 879.06 2972.225 ± 340.64

Notes: N = 6, *P <0.05, there is statistical significance between Group A, Group B and Group C; Group A, multiple-dose avitinib group; Group B, single-dose avitinib group; 
Group C, control group. 
Abbreviations: AUC, area under the curve; MRT, mean residence time; t1/2z, the apparent elimination half-life; Tmax, maximum plasma concentration; Vz/F, apparent 
volume of distribution; CLz/F, apparent total clearance; Cmax, the maximum plasma drug concentration.
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may even be life-threatening for drugs with a narrow 
therapeutic window. Based on our current findings, we 
propose that attentions should be paid in clinical practice 
when administering avitinib with other drugs metabolized 
by P450 enzymes. However, this study still has some 
limitations, multiple-dose or administration route of aviti-
nib are still needed in the future. Moreover, we only used 
RLMs/HLMs and animal models to simulate drug-drug 
interaction, it is not sufficient information to guide the 
clinical medication due to interspecific differences. 
Further human studies including clinical patients are 
needed to confirm our results and help avoid cute adverse 
reactions caused by combination therapy including 
avitinib.

Conclusion
In this study, an in vitro incubation system of RLMs and 
an UPLC-MS/MS method for the detection of six CYP450 
enzyme probe substrates (phenacetin, bupropion, dextro-
methorphan, tolbutamide, midazolam and chlorzoxazone) 
and their metabolites were developed and evaluated. 
Through these methods, avitinib was found to exhibit 
inhibitory effects on CYP450 enzymes in vitro. Results 
from the rat model showed that avitinib exhibited the same 
inhibitory effects on the six CYP450 probe drugs used in 
our study. Our results provide a theoretical basis for the 
combined application of avitinib and other CYP450- 
mediated drugs in the clinic.
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