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Potentiation of TRPM7 Inward Currents by Protons

Jianmin Jiang, Mingjiang Li, and Lixia Yue

Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center,
Farmington, CT 06032

TRPM?7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at
+100 mV but a small inward current at voltages ranging from —100 to —40 mV under physiological ionic conditions.
Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular
pH, with an ~10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that
protons enhance TRPM?7 inward currents by competing with Ca?* and Mg?* for binding sites, thereby releasing
blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased
monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal
increase in TRPM7 currents when the external Ca?* and Mg?* concentrations were increased. Third, the apparent
affinity for Ca?t and Mg?* was significantly diminished at elevated external H* concentrations. Fourth, the
anomalous-mole fraction behavior of H* permeation further suggests that protons compete with divalent cations
for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca?* and Mg?*
bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H" concentrations, the affinity of
TRPM7 for Ca?* and Mg?* is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore,
we showed that the endogenous TRPM7-like current, which is known as Mg?*-inhibitable cation current (MIC) or
Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly
potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a
novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.

INTRODUCTION

TRPM7 is a ubiquitously distributed ion channel that
belongs to the long or melastatin-related transient
receptor potential (TRPM) ion channel subfamily
(Harteneck et al., 2000; Montell, 2001; Clapham, 2003;
Fleig and Penner, 2004). It is unique in being both an
ion channel and a protein kinase. Although the physio-
logical functions of the kinase are not well understood,
recent studies have suggested that TRPM7 plays impor-
tant roles in cellular Mg?* homeostasis (Schmitz et al.,
2003), anoxic neuronal cell death (Aarts et al., 2003),
cell proliferation and viability (Nadler et al., 2001;
Hanano et al., 2004), and diseases caused by abnormal
magnesium absorption (Schlingmann et al., 2002; Wal-
der et al., 2002; Chubanov et al., 2004).

TRPM7 produces pronounced outward currents at
nonphysiological voltages ranging from +50 to +100 mV
and small inward currents at negative potentials between
—100 to —40 mV when expressed heterologously in
mammalian cells (Nadler et al., 2001; Runnels et al.,
2001; Monteilh-Zoller et al., 2003; Schmitz et al., 2003).
Unlike some other TRP channels that are gated or
potentiated by activation of the PLC pathway (Clap-
ham, 2003), TRPM?7 is inhibited by depletion of PIP,

mediated by PLC activation (Runnels et al., 2002;
Aarts et al., 2003). The basal activity of TRPM?7 is regu-
lated by millimolar levels of intracellular MgATP and
Mg?*, so that TRPM7 is activated by depletion of intra-
cellular MgATP and Mg?*, and is inhibited by high con-
centrations of MgATP and Mg?" with an IC;, of ~0.6
mM (Nadler et al., 2001). The mechanism by which
Mg?* inhibits TRPM7, however, is not yet entirely clear
(Nadler et al., 2001; Hermosura et al., 2002; Prakriya and
Lewis, 2002; Runnels et al., 2002; Kerschbaum et al.,
2003; Kozak and Cahalan, 2003; Monteilh-Zoller et al.,
2003; Schmitz et al., 2003). Other divalent cations
have also been reported to inhibit TRPM7 (Kozak and
Cahalan, 2003).

Although inactivation of TRPM?7 has been extensively
investigated, the activation mechanism of TRPM7 un-
der physiological conditions remains unknown. Intra-
cellular Mg?* levels (0.5-1 mM) under physiological
conditions can inactivate >50% of TRPM7 channel
activities (Nadler et al., 2001; Kozak and Cahalan,
2003). Thus, the inward current amplitude, which is
usually 1/30 to 1/10 of the outward current amplitude
measured at +100 mV (Nadler et al., 2001; Runnels et
al., 2001; Schmitz et al., 2003), may be very small under
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physiological internal Mg?* levels in the native cells.
Given the potential important physiological functions
(Nadler et al., 2001; Runnels et al., 2002; Schlingmann
etal., 2002; Walder et al., 2002; Aarts et al., 2003; Ryaza-
nova et al., 2004; Schmitz et al., 2003; Chubanov et al.,
2004; Hanano et al., 2004), it is likely that TRPM7
inward current may be potentiated by physiological
or pathological stimuli. A recent study showed that
TRPM?7 is up- and down-regulated in a cAMP- and PKA-
dependent manner (Takezawa et al., 2004), with the
changes assessed by outward current amplitude. HyO,
was reported to increase TRPM7 inward currents by
one- to twofold after prolonged (30-50 min) incuba-
tion (Aarts et al.,, 2003). However, the mechanism by
which HyO, regulates TRPM7 remains unclear.

In the present study, we demonstrate that protons
markedly potentiate TRPM7 inward currents. Lowering
extracellular pH increases the inward current by ~10-
fold, whereas the outward current is only changed by
<30%. This transforms the normal outward rectifica-
tion of TRPM7 to rectification in both the inward and
outward directions. Further, our data suggest that pro-
tons enhance TRPM7 inward currents by competing
with external Ca®" and Mg?* for binding sites in the
TRPM7 pore. Therefore, the effect of acidic pH on
TRPM7 is more pronounced when extracellular Ca%*
concentration is decreased. Importantly, we show that
the well-characterized endogenous TRPM7-like current
MIC (Mg?"-inhibitable cation)/MagNuM (Mg nucle-
otide-regulated metal ion) in rat basophilic leukemia
(RBL) cells is similarly potentiated by a decrease in ex-
tracellular pH. As high proton concentrations (pH <
6) can be generated during various forms of injury, in-
cluding infection, inflammation, and ischemia (Jaco-
bus et al., 1977; Stevens et al., 1991; Steen et al., 1992),
the significant increase in TRPM7 inward currents by
protons suggests that TRPM7 may play a role under
acidic pathological conditions.

MATERIALS AND METHODS

Cell Culture

HEK-293 cells stably transfected with a FLAG-tagged murine
TRPM7 in pCDNA4/TO vector were provided by A. Scharenberg
(University of Washington, Seattle, WA). Cells were grown with
DMEM medium supplemented with 10% FBS, 100 U/ml penicil-
lin and 100 mg/ml streptomycin, blasticidin (5 wg/ml), and zeo-
cin (0.4 mg/ml). Expression of TRPM7 was induced 12-24 h be-
fore experiments by adding 1 wg/ml tetracycline to the culture
medium (Nadler et al., 2001; Schmitz et al., 2003). Unless other-
wise stated, experiments were conducted using TRPM7 express-
ing HEK-293 cells after tetracycline induction.

RBL-2H3 cells were provided by D. Clapham (Harvard Medi-
cal School, Boston, MA). Cells were cultured in DMEM supple-
mented with 10% FBS and 100 U/ml penicillin and 100 mg/ml
streptomycin. For electrophysiological experiments, cells were
plated onto glass coverslips and used 12 h thereafter.
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Electrophysiology

Whole-cell currents were recorded using an Axopatch 200B
(Axon Instruments, Inc.) amplifier. Data were digitized at 20 kHz
and low-pass filtered at 2 kHz. pClamp9 software was used for
data acquisition and analysis. Patch electrodes were pulled from
borosilicate glass and fire polished to a resistance of ~3 M()
when filled with internal solutions. Series resistance (R,) was
compensated up to 90% to reduce series resistance errors to <5b
mV. Cells in which R, was >10 M) were discarded (Yue et al.,
2002). All experiments were conducted at 22 * 2°C.

Voltage stimuli lasting 250 ms were delivered at 1- to 5-s inter-
vals, with either voltage ramps or voltage steps ranging from —120
to +100 mV. Unless otherwise stated, 3—5 min were allowed to let
TRPM?7 current develop and reach a steady state after break-in. A
fast perfusion system was used to exchange extracellular solu-
tions. A complete solution exchange can be achieved in ~1-3 s.

The internal pipette solution (P1) for whole cell current re-
cordings in HEK-293 cells stably expressing TRPM7 contained
(in mM) 145 Cs-methanesulfonate, 8 NaCl, 10 EGTA, and 10
HEPES, pH adjusted to 7.2 with CsOH. In some experiments,
Mg?* was added to the pipette solution and the free Mg** con-
centration was titrated to 3 mM (calculated with the MaxChela-
tor software, available at http://www.stanford.edu/~cpatton/
webmaxcS.htm). For current recordings in RBL cells, pipette so-
lution (P2) contained (in mM) 145 Cs-methanesulfonate, 8
NaCl, 1 EGTA, 0.084 Ca?*, 1 MgCl,, 5 ATP-Na,, 10 HEPES, pH
adjusted to 7.2 with CsOH. Free Ca?" and Mg*" concentrations
were estimated at ~15 nM and 26 puM, respectively (MaxChela-
tor). In experiments designed to diminish outward currents, pi-
pette solution (P3) contained (in mM) 120 NMDG, 108 glutamic
acid, 10 HEPES, 10 EGTA, 10 CsCl, pH adjusted 7.2 with NMDG.

The standard extracellular Tyrode’s solution contained (in
mM) 140 NaCl, 5 KCl, 2 CaCly, 20 HEPES, and 10 glucose, pH ad-
justed to 7.4 (NaOH). HEPES (20 mM) was used in the solutions
at pH 7.0 and 7.4, and was replaced by 10 mM HEPES and 10 mM
MES for the solutions at pH = 6 (Jordt et al., 2000; Askwith et al.,
2004; Yermolaieva et al., 2004). Divalentfree solution (DVF) con-
tained (in mM) 145 NaCl, 20 HEPES, 5 EGTA, 2 EDTA and 10 glu-
cose, with estimated free [Ca?*] < 1 nM at pH 7.4 and free
[Mg?*] = 10 nM at pH 7.4 (MaxChelator). HEPES (20 mM) was
replaced by 10 mM HEPES and 10 mM MES in DVF solutions at
pH 4.0, and the estimated free [Ca%"] was 7.7 pM and free [Mg?*]
was 9.9 uM in DVF at pH 4.0 (MaxChelator). Appropriate Ca®** or
Mg?* was added to the DVF at pH 7.4 to prepare solutions contain-
ing =10 uM Mg?* or Ca?* (Fig. 6). Solutions containing 1, 2, and
10 mM Mg?" or Ca®" at both pH 4.0 and 7.4 were prepared by
omitting EDTA and EGTA in the DVF solution, and by adding the
appropriate concentrations of Mg** or Ca?*. Isotonic Ca*" or Mg?*
solution contains 120 mM Ca®* or Mg®*, 10 mM HEPES, 10 mM
glucose, with pH adjusted to pH 7.4 or pH 4.0. Anomalous mole
fraction behavior of Ca*" permeation (Fig. 3 F) was evaluated in a
series of external solutions, including isotonic Ca%* (120 mM), 10
mM Ca’*, 2 mM Ca?*, 1 mM Ca?*, 100 uM Ca?*, and nominally
Ca?*free solution in which free Ca®* concentration was estimated
at 10 pM (Vennekens et al., 2000; Yue et al., 2001). The solutions
containing 100 pM to 10 mM Ca?* were prepared from normal Ty-
rode’s solution by adding appropriate concentration of Ca**, with
reductions in Na* concentration when necessary to keep the con-
stant osmolarity. The same method was used to prepare a series of
solutions containing various Mg?* concentrations for anomalous
mole fraction behavior of Mg?* permeation experiment shown in
Fig. 3 F. Cells were usually exposed to acidic solutions for ~30 s to
avoid desensitization unless otherwise stated. Current amplitude
was measured at —120 or +100 mV. Amiloride was added to the
perfusate as indicated in the text. All the chemicals for electro-
physiological experiments were from Sigma-Aldrich.
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Figure 1. Potentiation of TRPM7 inward currents by external

protons in HEK-293 cells stably expressing TRPM7. (A) Represen-
tative TRPM7 currents evoked by voltage ramps ranging from
—120 to +100 mV in the external Tyrode’s solutions at pH 7.4 and
pH 4.0. (B) Normalized outward (+100 mV) and inward currents
(—120 mV) at pH 4.0 and pH 7.4. The acidic external solution
(pH 4.0) was applied after the current amplitude reached a steady-
state (~5 min after break-in). Repetitive application of acidic
solution produced a similar increase in inward and outward
currents. (C and D) TRPM?7 currents elicited by voltage steps
ranging from —120 to +100 mV with an increment of 20 mV at
pH 7.4 (C) and pH 4.0 (D). Only inward current was significantly
increased at pH 4.0 (D). (E) Currents recorded at various time
points in a cell dialyzed with the pipette solution containing 3 mM
free Mg?*. a, immediately after formation of whole-cell configura-
tion; b, before the external solution was changed from pH 7.4 to
pH 4.0; c, the first time application of external solution at pH 4.0
induced an increase in inward current; d, the fifth time application

Data Analysis

Pooled data are presented as mean * SEM. Concentration—
response curves were fitted by an equation of the form: £ =
E,.{1/[1 + (EC5/ C)"]}, where Eis the effect at concentration C,
E, . 1s maximal effect, ECy, is the concentration for half-maximal

effect and n is the Hill coefficient (Yue et al., 2000). EC;, is re-
placed by IC; if the effect is an inhibitory effect. Statistical com-
parisons were made using two-way analysis of variance (ANOVA)
and two-tailed ¢ test with Bonferroni correction; P < 0.05 indi-
cated statistical significance.

RESULTS

Potentiation of TRPM7 Inward Currents by Protons

TRPM?7 currents were elicited by voltage ramps or volt-
age steps ranging from —120 to +100 mV from a hold-
ing potential of 0 mV (Runnels et al., 2001). As previ-
ously reported, TRPM7 produced large outward cur-
rents and small inward currents (Fig. 1 A, red trace)
(Nadler et al., 2001; Runnels et al., 2001; Schmitz et al.,
2003). After break-in, 3-5 min was allowed to let
TRPM7 current amplitude reach a steady state (see
MATERIALS AND METHODS) before changing exter-
nal solutions. As the measurable outward current oc-
curs at nonphysiological range, we investigated
whether the TRPM7 inward current can be potentiated
by pathological stimuli. As shown in Fig. 1 A, the in-
ward current of TRPM7 was dramatically increased by a
decrease in the extracellular pH to 4.0. In the same cell
as shown in Fig. 1 A, a similar degree of increase in in-
ward current was observed upon a second application
of the external solution at pH 4.0, indicating that the
effect of pH 4.0 on TRPM7 was reversible and repro-
ducible (Fig. 1 B). While the inward currents were in-
creased by ~10-fold (at —120 mV) at pH 4.0, the out-
ward currents measured at +100 mV were only mildly
changed, showing an ~30% increase (Fig. 1 B, top).
The large increase in inward current compared with
the small change in outward current induced by acidic
pH was also evident in the currents elicited by voltage
steps ranging from —120 to +100 mV (Fig. 1, Cand D).

of external solution at pH 4.0 could not induce any change
because TRPM7 was completely blocked by intracellular Mg2*. (F)
In the same cell as shown in E, continuous changes in inward
(top) and outward (middle) currents measured at +100 mV and
—120 mV were plotted as a function of time. The inward currents
labeled 1, 2, 3, 4, 5, and 6 (middle) represent the time points when
the cell was exposed to the acidic external solution (pH 4.0).
(Bottom) Normalized inward current at pH 4.0 (filled circle, red)
superimposed with the normalized outward current at pH 7.4
(filled triangle, black). The green line obtained by fitting the
normalized outward current represents currents decay. (G)
TRPM?7 currents recorded at pH 7.4 and pH 4.0 with and without
200 pM amiloride (Ami), respectively. (H) Time-dependent
changes of the inward current induced by pH 4.0 in the presence
and absence of 200 uM amiloride (Ami).
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To test whether the changes elicited by low pH were
mediated by TRPM7, we studied the effects of acidic pH
solution on control cells. In HEK-293 cells without tetra-
cycline induction of TRPM7 expression, small endoge-
nous TRPM7-like currents were recorded. The endoge-
nous inward currents were also enhanced by ~10-fold at
pH 4.0 (n = 6; unpublished data). Although the out-
wardly rectifying I-V curve suggests that the endogenous
current in the HEK-293 cells is TRPM7-like current, we
cannot exclude the possibility that the current may be
from some leaky expression. To further confirm that
the pH 4.0-elicited increases in inward current are
through TRPM7, we did the following experiments. As
TRPM?7 is ubiquitously expressed in various cell types
(Nadler et al., 2001; Hermosura et al., 2002; Kozak et
al., 2002; Prakriya and Lewis, 2002; Runnels et al., 2002;
Aarts et al., 2003; Jiang et al., 2003; Kozak and Cahalan,
2003), including the HEK-293 cells used to create the
stable TRPM7 expressing cell lines (Nadler et al., 2001;
Takezawa et al., 2004), it is difficult to find a cell type
that does not have endogenous TRPM7 expression.
Therefore, we used a pipette solution containing 3 mM
free Mg?" to suppress TRPM7 currents and then mea-
sured the response of the cells to acidic pH. TRPM7 cur-
rents were apparent immediately after formation of the
whole-cell configuration (Fig. 1 E, a and b), but then
the current amplitude gradually decreased (Fig. 1 F).
Application of external solution at pH 4.0 induced dra-
matic increases in inward current with a small increase
in outward currents early after forming the whole cell
configuration (Fig. 1 E, ¢, and Fig. 1 F, 1(c)). Before the
current was completely inhibited by intracellular Mg?*,
exposing the cell to the external solution at pH 4.0 for a
second, third, and fourth time repeatedly induced sig-
nificant increases in TRPM7 inward currents (Fig. 1 F, 1,
2, 3, and 4). After TRPM7 was totally blocked by intra-
cellular Mg?*, pH 4.0 failed to induce any change in cur-
rent amplitude (Fig. 1 E, d, and Fig 1 F, 5 and 6). Simi-
lar results were observed in five other cells, suggesting
that pH 4.0-elicited increases in current amplitude are
through TRPM7. In addition, the normalized inward
current at pH 4.0 plotted as a function of time superim-
posed with that of normalized outward current at pH
7.4, indicating that the inward current at pH 4.0 and the
outward current at pH 7.4 decay at the same rate when
the pipette solution contains 3 mM free Mg?" (Fig. 1 F,
bottom), further indicating that the pH 4.0-induced in-
crease in inward current is mediated by TRPM7.

To rule out the possibility that proton-activated Na
channels (Waldmann and Lazdunski, 1998) were in-
volved in the increased inward current elicited by low
pH, amiloride (200 uM) was added to the external so-
lution. No significant difference was observed in in-
ward currents elicited by pH 4.0 in the presence and
absence of 200 uM amiloride (Fig. 1, G and H), sug-
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Figure 2. Concentration-dependent effects of protons on TRPM7

currents. (A-E) Potentiation of TRPM7 inward currents by protons
atpH 7.0 (A), pH 6.0 (B), pH 5.0 (C), pH 4.0 (D), and pH 3.0 (E).
Representative traces were elicited by voltage ramps ranging from
—120 to +100 mV in the external solutions with NaCl replaced
by NaSO3;CHs;. The y axis in each panel was scaled to illustrate
the changes in inward currents. (F) Concentration-dependent
changes in inward current amplitude measured at —120 mV from
the recordings elicited by voltage ramps at indicated pH. The
dashed line represents zero current levels. (G) The increase in
current amplitude at the indicated pH was normalized to the value
at pH 3.0. Best fit of the normalized data yielded an EC5, = 4.5 =
0.5 pH unit (mean * SEM, n = 8; Hill coefficient was 1).

gesting that the pH 4.0-induced inward currents were
not due to acid-sensitive channels of the degenerin
family (Waldmann and Lazdunski, 1998). Similarly,
contamination by a proton-activated Cl~ current (Cherny
et al., 1997) was excluded because acidic pH-induced
increases in TRPM7 currents were not affected by re-
placement of NaCl with NaSO;CHj in the external so-
lution (see Fig. 2). All the above-mentioned results sug-
gest that the marked increases in inward currents
evoked by acidic pH in TRPMT7-overexpressing cells
were mediated by TRPM7 channels.
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We next studied concentration-dependent effects of
protons on TRPM7. A small increase in the inward cur-
rent was seen at pH 7.0 (Fig. 2 A); the increase was sig-
nificant at pH 6.0 and reached a maximum at pH 3.0
(Fig. 2, B-E). The concentration-dependent increase
of TRPM7 inward currents from the same cell is shown
in Fig. 2 F. At pH 3.0, the average inward current ampli-
tude measured at —120 mV was increased by 10.2 =
1.3—fold compared with the current amplitude at pH
7.4. The pH required for inducing half-maximal in-
crease in inward current was 4.5 (Fig. 2 G). Changes in

the outward current (measured at +100 mV) were
much smaller than those of the inward current. For ex-
ample, 13.1 = 1.1%, 23.1 = 2.5%, 23.3 = 3.1%, and
24.8 £ 3.4% increases were observed at pH 7.0, 6.0, 5.0,
and 4.0 (P < 0.05), respectively; whereas a 26.5 = 4.0%
(P < 0.05) decrease was seen at pH 3.0.

Protons Increase Monovalent Cation Permeability

through TRPM7

We previously reported that TRPM7 is a nonselective
cation channel that is permeable to both monovalent
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and divalent cations (Runnels et al., 2001). Monovalent
permeability in the presence of divalent cations was
also reported for the MIC channel in Jurkat cells
(Prakriya and Lewis, 2002). Other studies suggested
that TRPM7 is selective for divalent ions, and the in-
ward current was carried exclusively by divalent cations
in external solutions containing 10 mM Ca?" and 2 mM
Mg?* (Nadler et al., 2001). To test whether monovalent
cations contribute to TRPM7 inward currents under
physiological Ca?* (2 mM) and Mg?" (1 mM) concen-
trations, we compared the TRPM7 current amplitude
and reversal potentials in extracellular solutions con-
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those in test solutions with various monovalent
cation concentrations (mean = SEM; n = 6
[B]; n =7 [D]; n =9 [F]). * P < 0.05; *%*,
P < 0.01 in comparison with E, in 10 mM
Ca?t /NMDG.

taining different monovalent cations, with those in the
isotonic divalent cation solutions (Fig. 3 B). The P3 pi-
pette solution containing lowered Cs* concentration
(10 mM, see MATERIALS AND METHODS) was used
to minimize outward current amplitude (Fig. 3). In the
presence of 2 mM Ca?* and 1 mM Mg?*, changing the
external solution from nonpermeable NMDG (Jiang et
al., 2003; Kozak and Cahalan, 2003) to the solutions
containing 150 mM Na*, K*, or Cs* significantly in-
creased inward current amplitude and shifted rever-
sal potentials (Fig. 3, A, C, D, and E), indicating that
under physiological divalent cation concentrations,
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monovalent cationic currents contribute to TRPM7 in-
ward currents. We further studied the relative effects of
divalent cations on TRPM7 monovalent currents. Fig. 3
F shows anomalous mole fraction behavior of Mg?* and
Ca?* permeation (Fig. 3 F). The smallest current ampli-
tude was observed in the external solutions containing
10 mM Ca%* or 2 mM Mg?*, respectively.

We proceeded to study the monovalent conductance
under acidic conditions by using external solutions
containing different concentrations of Na*, K*, or Cs*
in the presence of 10 mM Ca?* (Fig. 4). The P3 pipette
solution was used in this experiment. Whole-cell con-
figuration was established in the 2 mM Ca?" Tyrode’s
solution at pH 7.4, and cells were then exposed to 0,
10, 30, 100, and 150 mM Na™*, K*, or Cs* solutions in
the presence of 10 mM Ca?* at pH 4.0 for 30-60 s. Con-
centration-dependent increases in current amplitude
and shift of reversal potentials at high monovalent cat-
ion concentrations at pH 4.0 were observed (Fig. 4, A,
C, and E, also see insets). These results (Fig. 4) indicate
that the proton-evoked increases in TRPM7 inward cur-
rents were attributed to the increased Na*, K*, and Cs*
conductance.

To ensure that protons enhance monovalent conduc-
tance without increasing divalent conductance, we eval-
uated the effects of acidic pH on divalent currents. At
physiological concentrations of Ca?* (2 mM) and Mg?*
(1 mM) in the presence of NMDG solution, protons
significantly decreased current amplitude measured at
—120 mV (Fig. 5, A and B). This result suggests that
protons may compete with divalent cations for binding
sites in the pore, so that low concentration of divalent
cations were outcompeted by protons, therefore the di-

level. (B) Averaged divalent current
density of TRPM7 measured at —120
mV in the external solutions as shown
in A (mean £ SEM, n = 8). Current
density at pH 4.0 was significantly
smaller than that at pH 7.4. (C) Current
amplitude of TRPM7 measured at
—120 mV in the isotonic Mg?* and
isotonic Ca?* solutions at pH 7.4 and
pH 4.0, respectively. Dashed lines rep-
resent zero current level. (D) Mean
current density at —120 mV in the
isotonic Mg®* or Ca?* solutions at pH
7.4 and pH 4.0, respectively (mean *
SEM, n = 6).

| S

120 Ca?*

valent current amplitude at pH 4.0 was smaller than
that at pH 7.4. In agreement with this notion, we found
that the isotonic Ca?" and Mg?" currents at pH 4.0 were
not significantly different from those at pH 7.4 (Fig. 5,
C and D). Thus, the acidic external solution—-induced
increase in inward currents was mediated by increasing
monovalent cation permeability through TRPM7.

Protons Increase TRPM7 Currents by Competing with Ca2*
and Mg?* for Binding Sites

To investigate the mechanism by which protons potenti-
ate TRPM7 monovalent inward currents, we studied the
effects of protons on TRPM7 currents in the presence
of various external Ca?* or Mg?* concentrations. At pH
4.0, protons induced a maximal increase in inward cur-
rent in the external solution containing 0.5 mM Ca%*,
but only ~30% of maximal response in the external so-
lution containing 10 mM Ca?* (Fig. 6 A). The ECs, for
protons was changed from pH 5.1 to 4.5 and 3.4 when
the external Ca®?* concentration was increased from 0.5
mM to 2 and 10 mM (Fig. 6 B), respectively. Similarly,
pH 3.5 elicited a maximal increase in inward current in
the external solution containing 1 mM Mg?*, but only
~b50% maximal increase in TRPM7 inward current in
the external solution containing 10 mM Mg?*. The EC;,
was changed from pH 4.6 to pH 3.6 when the external
Mg?* concentration was increased from 1 to 10 mM
(Fig. 6, C and D). The 1.1 and 1.7 pH unit change in
EC;, when external Ca?* was changed from 0.5 to 2 and
10 mM and 1 pH unit change in EC;, when external
Mg?* was increased from 1 to 10 mM indicate that
increasing external Ca?* or Mg?* concentrations de-
creases the affinity of TRPM?7 for protons, and suggests
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Figure 6. Protons increase TRPM7 inward
currents by competing with Ca%* and Mg?** for
binding sites. Current recorded in 2 mM Ca®*
Tyrode’s at pH 7.4 (red) is shown in A, C, E,
and G as a reference. (A) Representative
traces of TRPM7 currents recorded in 0.5 and
10 mM external Ca?* at pH 4.0. (B) Normal-
ized increase in TRPM7 inward currents at
indicated pH in the external solutions con-
taining 0.5 and 10 mM Ca?*. The dotted lines
represent the results obtained in 2 mM exter-
nal Ca?* as shown in Fig 2. The pH values for
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in 1 and 10 mM external Mg?*, respectively
(mean * SEM, n = 6 for each group). (E)
Representative currents elicited by voltage
ramps in 100 uM external Ca®* at pH 7.4 and
pH 4.0. (F) Normalized current amplitude at
pH 4.0 and pH 7.4 was plotted as a function
of external Ca?" concentrations. The Ca?*
concentration required to block 50% of the
monovalent currents was 47.1 + 7.2 pM at pH
7.4 and 5.6 = 0.7 mM at pH 4.0 (n = 6). (G)
Original recordings of TRPM7 in 9.9 and 10
M external Mg?* at indicated pH values. (H)
Normalized current plotted as a function of
Mg®* concentrations at pH 7.4 and pH 4.0.
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that protons compete with Ca?* and Mg?* for the bind-
ing sites in the TRPM?7 pore.

We observed that protons produced different effects
on outward currents under different external divalent
cation conditions. For example, compared with the
currents at pH 7.4 in 2 mM external Ca%*, the outward
current amplitude at pH 4.0 measured at +100 mV was
changed by +41.1 = 5.4% (n = 6), +276.7 £ 35.3%
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3 0
Log [Mg**1, (M)

The 1G5, was 5.9 = 1.2 mM at pH 4.0, and
54 £ 0.5 uM at pH 7.4 (mean = SEM, n =
6), respectively.

(n=106), —22.0 +22% (n=06), +24.8 £ 3.4% (n=8),
and +26.2 = 8.9% (n = 6) in the external solutions
containing 1 mM Mg?*, 10 mM Mg?*, 0.5 mM Ca?*, 2
mM Ca?*, and 10 mM Ca?*, respectively (see Fig. 6,
A and C, but the entire outward currents were not
shown). The increase in outward current by low pH was
larger in the external solutions with higher divalent
concentrations; and the effect of protons on outward
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Figure 7. Currents carried by protons through TRPM7 channels.

(A) Original recordings in isotonic NMDG solution at pH 7.4 and
pH 4.0 using P3 pipette solution (note the inward current induced
at pH 4.0, red), and in 10 Ca?*/NMDG solution at pH 4.0 (green)
in a HEK-293 cell overexpressing TRPM7. The proton current was
largely blocked by 10 mM Ca?*. (B) Averaged proton current at
various test pH. Protons carry measurable currents at pH 5.0, and
pronounced currents at pH 4.0 and 3.0 were observed (mean =
SEM, n = 6). *, P <0.05; **, P < 0.01. (C and D) Anomalous mole
fraction behavior of H* permeation at pH 4.0. Current amplitude
measured at —120 mV at indicated Ca®* or Mg?" concentration
was normalized in reference to the current amplitude at 10 pM
extracellular Ca?* or Mg?* (mean = SEM, n = 7).

TRPM7 current was more pronounced in Mg?*-con-
taining than in Ca®?*-containing external solutions. This
is presumably due to the fact that, at normal pH (7.4),
Mg?* exhibits a stronger block on TRPM7 outward cur-
rent than that of Ca®>" (Kerschbaum et al., 2003; Mon-
teilh-Zoller et al., 2003). Therefore, when the Mg**
block is removed by protons, larger changes in TRPM7
outward current are observed. These results are in
agreement with the notion that protons compete with
Ca?t and Mg?" for binding sites in the TRPM7 pore.

If protons and divalent cations compete for binding
sites, and the binding of protons to the external sites
of the channel pore allows monovalent ions to pass
through TRPM7, one would expect that the inhibitory
effects of Ca?* and Mg?*" on monovalent currents
should be influenced by proton concentrations. We
therefore studied the inhibitory effects of Ca?* and
Mg?* on TRPM7 monovalent currents at pH 7.4 and pH
4.0. At pH 4.0, the free Ca?" concentration was 7.7 pM
and the free Mg?* concentration was 9.9 uM, although
the same concentrations of EDTA and EGTA can de-

crease free Ca?" and Mg?" concentrations to <1 or 10
nM at pH 7.4 (see MATERIALS AND METHODS). Fig.
6 E shows representative recordings of TRPM7 in the
presence of 100 uM Ca?* at pH 4.0 and 7.4, respectively.
IC5o was 47.1 pM Ca?* at pH 7.4 and 5.6 mM Ca?* at pH
4.0. Similarly, 10 uM Mg?" produced more inhibition
on TRPM7 at pH 7.4 than that at pH 4.0 (Fig. 6 G). The
IC; of Mg?* at pH 4.0 (5.9 mM) is about 1,000-fold dif-
ferent from that at pH 7.4 (5.4 uM) (Fig. 6 H). The sig-
nificantly decreased Ca?* and Mg?* affinities (Fig. 6, F
and H) to TRPM7 channels in the acidic external solu-
tions further indicate that protons compete with diva-
lent Ca?* and Mg?* for binding sites, thereby allowing
monovalent cations to pass through TRPM7 channels.

Anomalous-mole Fraction Behavior of H* Permeation

As protons compete with divalent cations for binding
sites in the channel pore, we tested whether protons
pass through TRPM7 channels at low external divalent
cation concentrations. No current was observed in the
isotonic NMDG solution at pH 7.4, 7.0, or 6.0 (Fig. 7, A
and B). However, inward currents were observed in iso-
tonic NMDG solutions at pH 5.0, 4.0, and 3.0. Since
NMDG is nonpermeant (Jiang et al., 2003; Kozak and
Cahalan, 2003), it seems that the inward current is car-
ried by protons. This notion is supported by the fact
that current amplitude increased with increasing pro-
ton concentrations (Fig. 7 B). A high intracellular free
Mg?* concentration (3 mM), which inactivates TRPM?7
channels, prevented the development of proton cur-
rents in TRPM7-expressing cells (unpublished data),
suggesting that the proton-carried current was medi-
ated by TRPM7 channels. Fig. 7 (C and D) shows anom-
alous mole fraction behavior of H* permeation. The
largest current amplitude was observed at 10 uM extra-
cellular Ca?* or Mg?*, whereas the smallest current am-
plitude occurred at 10 mM extracellular Ca?* or Mg?™.
These anomalous-mole fraction effects further indicate
that protons compete with Ca*" and Mg** for binding
sites in the external pore of TRPM7, consistent with the
results shown in Fig. 6.

Effects of Protons on the Endogenous TRPM7-like Current
MIC/MagNuM in RBL Cells

Endogenous TRPM7-like currents MIC/MagNuM have
been identified in a variety of cells (Nadler et al., 2001;
Hermosura et al., 2002; Kozak et al., 2002; Prakriya and
Lewis, 2002; Runnels et al., 2002; Aarts et al., 2003; Jiang
et al., 2003). Since MIC/MagNuM in RBL cells have
been well characterized (Hermosura et al., 2002; Kozak
et al., 2002; Kozak and Cahalan, 2003, 2004), we chose
to use RBL cells to study whether protons regulate en-
dogenous MIC/MagNuM channels. As high concentra-
tion of intracellular Ca?" blocks TRPM7 (Monteilh-
Zoller et al., 2003), a pipette solution containing 15 nM
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Ca?* with weak buffering (1 mM EGTA) was used in this
experiment. A low intracellular Ca?* buffering condi-
tion (1 mM EGTA) was reported to be able to deactivate
Icrac after its activation (Zweifach and Lewis, 1995) and
was used for recording of TRPM7-like MIC/MagNuM
currents in Jurkat cells (Prakriya and Lewis, 2002). We
also included 5 mM CsCl in the external solution to
eliminate the endogenous potassium current. NaCl was
replaced by NaSO4CHj in the Tyrode’s solution at pH
4.0 to prevent contamination from proton-activated CI~
currents. After break-in, a voltage ramp protocol was
used to monitor current for 10 min to ensure the com-
plete deactivation of Icpse (Prakriya and Lewis, 2002)
and full activation of TRPM7 (Kozak et al., 2002). Simi-
lar to TRPM7 currents in the heterologous expression
system, the MIC/MagNum currents in RBL cells were
increased dramatically when the pH of the external Ty-
rode’s solution changed from 7.4 to 4.0 (Fig. 8 A). The
increase elicited by low pH was not affected by adding
200 uM amiloride (unpublished data), suggesting that
the increase in MIC/MagNuM current was not due to
proton-activated Na* channels. A best fit of normalized
concentration-dependent increases in inward current
(Fig. 8, B and C) yielded an EC;, of pH 4.2 * 0.4 (Fig.
8 D), which is similar to the pH value required to in-
duce 50% of maximal response in the heterologously
expressed TRPM7 currents (see Fig. 2 G). The similar
response of TRPM7 and MIC/MagNuM to acidic pH
provides further evidence that MIC/MagNuM is en-
coded by TRPM7.

DISCUSSION

We have shown that low extracellular pH significantly
enhanced TRPM7 inward current by increasing the
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Figure 8. Effects of protons on MIC/MagNuM in RBL
cells. Experiments were performed in external solutions
with NaCl replaced by NaSO3;CH;. (A) Representative MIC
currents elicited by voltage ramps ranging from —120 to
+100 mV in the external solutions at pH 7.4 (red) and 4.0
(black) in a RBL cell. (B) Concentration-dependent effects
of protons on MIC inward currents in a representative RBL
cell. The y axis was scaled to illustrate inward currents.
(C) Inward current amplitude measured at —120 mV at
different test pH. External solution was changed to Tyrode’s
solution at pH 7.4 after each application of low pH external
solution. (D) Concentration-dependent effects of protons
on MIC currents. Best fit of the normalized change yielded
an EC;, = 4.2 £ 0.4 (mean = SEM, n = 6; Hill coefficient
factor was 1).

monovalent cation permeability. The mechanism by
which protons increase monovalent currents is likely to
be through competition with divalent cations for bind-
ing sites in the external pore of TRPM?7, thereby remov-
ing the divalent cation block on the monovalent cur-
rents. The pH sensitivity of TRPM7 and native MIC/
MagNuM channels suggests that TRPM7 may play an
important role under acidic pathological conditions.

TRPM?7 Is an Acid-sensitive lon Channel

Previous studies have shown that TRPM7 exhibits many
unique features (Nadler et al., 2001; Runnels et al.,
2001; Monteilh-Zoller et al., 2003; Schmitz et al., 2003),
including the observation that it conducts small inward
current at physiological voltages (—100 to —40 mV)
and large outward current at +100 mV, producing
the characteristic outwardly rectifying I-V. The present
study extends our understanding about TRPM7 by
showing that TRPM7 is also a pH-sensitive ion channel.
We show that a decrease in external pH evokes a
marked increase in TRPM7 inward currents, with an
~10-fold increase at pH 4.0 and ~1-2-fold increase
at pH 6.0 in the presence of a physiological external
Ca’* concentration (2 mM). The dramatic increase in
TRPM7 inward current by pH 4.0 transforms the nor-
mally outwardly rectifying I-V curve to a double-rectify-
ing IV shape. We found that the increase in TRPM7
current by protons was more pronounced when the ex-
ternal Ca?* and Mg?* concentrations were decreased.
Although the physiological function of TRPM7 is not
completely understood, it has been shown that TRPM7
plays an important role in neuronal cell death caused
by anoxia (Aarts et al., 2003). Given that native TRPM7
is only active to a small degree in the presence of physi-
ological intracellular Mg?*, an approximately one- to



twofold increase in TRPM7 inward current at pH 6.0
suggests that TRPM7 may play an important role under
acidic pathological conditions in which extracellular
pH may decrease to pH 6.0 (Jacobus et al., 1977;
Stevens et al., 1991; Steen et al., 1992).

Potentiation of TRPM7 inward currents by external
protons is a novel feature of TRPM7. A previous study
showed that a decrease in intracellular pH (pH;) inhib-
its monovalent Na* currents through MIC channels in
Jurkat T lymphocytes (Kerschbaum and Cahalan, 1998)
and RBL cells (Braun et al., 2001). It is proposed that
inhibition of MIC or TRPM7 by internal Mg?*, other
polyvalent cations, and H* represents a general electro-
static cationic screening process (Kozak and Cahalan,
2003, 2004). We did not study how intracellular low pH
affects TRPM7 in the present study, because the intra-
cellular pH should not be changed due to the high
concentration of HEPES buffering under our experi-
mental conditions. The marked increase in TRPM?7 in-
ward current by external acidic pH shown in the
present study and the inhibitory effects on TRPM7 out-
ward currents by pH; as previously reported (Kersch-
baum and Cahalan, 1998; Braun et al., 2001; Kozak and
Cahalan, 2003, 2004) indicate that TRPM7 is an acid-
sensitive ion channel.

Potential Mechanism by which Protons Potentiate TRPM7
Inward Currents

We showed that both Ca?* and Mg?* exhibit anoma-
lous mole-fraction effects at normal physiological pH.
The apparent affinity of TRPM7 is 47.1 pM for Ca?*
and 5.4 wM for Mg?*, similar to the previously reported
Ca’* (20 pM, at —120 mV) (Fomina et al., 2000) and
Mg?* affinity (3 pM, at —120 mV) to native MIC/Mag-
NuM channels (Kerschbaum et al., 2003). Under nor-
mal physiological Ca?* (2 mM) and Mg?* (0.7-1.1 mM)
concentrations (Konrad et al., 2004), we showed that
monovalent cations contribute to the inward currents
of TRPM7 (Fig. 3), and the contribution of monovalent
currents becomes more pronounced under acidic con-
ditions (pH 4.0, Fig. 4).

Several lines of evidence shown in the present study
indicate that external protons increase TRPM7 inward
currents by competing with divalent cations for binding
sites in the TRPM7 pore, thereby enhancing monova-
lent cation permeability. First, there was a concentra-
tion-dependent increase in monovalent cation conduc-
tance and reversal potential for Na*, K*, and Cs* at pH
4.0, indicating that the enhanced inward TRPM?7
currents resulted from an increased monovalent cat-
ion permeability. Second, the half-maximal pH was
changed toward acidic pH direction by 0.6 and 1.7 pH
units when the extracellular Ca?* was increased from
0.5 to 2 and 10 mM, respectively; similarly, an increase
of external Mg?" concentration from 1 to 10 mM

shifted the half-maximal pH toward acidic pH direction
by 1.0 pH unit (Fig. 6). The decreased proton affinity
to TRPM7 at higher extracellular divalent concentra-
tions indicate that protons compete with Ca?* and
Mg?* for the same binding sites, therefore, at higher
concentrations of divalent cations, more protons are
required to induce 50% of maximal response. Third,
high proton concentrations significantly decreased the
affinity of Ca?* and Mg?" to TRPM7. The Ca%" affinity
to TRPM7 was decreased by ~100-fold and the Mg?* af-
finity was decreased by ~1,000-fold when the external
pH was changed from 7.4 to 4.0. Fourth, anomalous
mole fraction permeation of protons indicate that pro-
tons compete with Ca?" and Mg?* for the binding sites
in the external pore of TRPM7 (Fig. 7). Taken to-
gether, it seems that at physiological pH, TRPM7 only
permeates a small inward current due to the Ca?* and
Mg?* block on the monovalent current; whereas at
acidic pH, Ca?" and Mg?" are outcompeted by protons,
which relieves the block on the monovalent current
and elicits a large inward current carried by monova-
lent cations.

Where are the binding sites for divalent cations and
protons? A high affinity site for binding Mg*" within
the electric field and two low-affinity sites have been
proposed for MIC channel by Kerschbaum et al. (2003)
using the Eyring rate model. Kerschbaum et al. also
proposed that the internal Mg?" inhibits MIC in a
voltage-independent manner, suggesting that internal
Mg?* is unable to access the pore from the inside (Kersch-
baum et al., 2003). Our results show that external
protons elicit a marked increase in TRPM7 currents
at hyperpolarized potentials but only a small increase
at positive potentials. These voltage-dependent effects
suggest that protons can access the TRPM7 pore and
compete with Mg?* and Ca%" for binding. The anoma-
lous mole fraction behavior of Ca**, Mg?* (Fig. 3 F),
and H" permeation (Fig. 7, C and D) indicates that
they can bind to the TRPM7 pore, and compete for
binding sites within the pore (Fig. 6).

Proton competition for Ca’?* binding sites and the
consequent channel opening has been proposed as the
gating mechanism for ASIC3 (Immke and McCleskey,
2001, 2003), a proton-activated Na* channel of the
degenerin family (Waldmann and Lazdunski, 1998;
Immke and McCleskey, 2003). Immke and McCleskey
(2003) showed that the Ca%" affinity was changed from
Ky =12 pM at pH 7.4 to K; = 100 pM at pH 7.0, such
that Ca?* is released from a binding site and Na* can
pass through the channel at millimolar Ca®* concentra-
tions. The authors predict that, like the Ca?* chelator
EGTA (with four titratable acid groups), the titratable
Ca?* binding site of ASIC3 is able to bind four protons
(Hill coefficient is 4). Our data suggest that protons en-
hance TRPM7 current by a similar competing mecha-
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nism, such that binding of protons to TRPM7 relieves
the blockade of Ca?* and Mg?*, thereby allowing Na*
to pass through TRPMY7. Since the dose-response
curves can be best fitted by sigmoidal does—response
equation (see MATERIALS AND METHODS) with the
Hill coefficient factor of 1, we assume that there is
probably one binding site. We do not know if the bind-
ing site is a specific amino acid residue or a site formed
by several amino acid residues. It was reported that pro-
tonation of voltage-gated Ca?" channels requires multi-
ple carboxylates of the glutamic acid (Glu) residues to
form a single high affinity site (Chen and Tsien, 1997).
The Glu residues are also important for proton regula-
tion on TRPV1 (Tominaga et al., 1998; Jordt et al.,,
2000; Ryu et al., 2003) and TRPV5 (Yeh et al., 2003).
There are seven negatively charged Glu and Aspartic
acid (Asp) residues between transmembrane domain 5
(TM5) and TM6 of TRPM?7, which may be involved in
Ca?*, Mg?", or H* binding. The halfmaximum pH
(pH 4.5) for TRPM7 is also close to the pKa of free Glu
(~pH 4.0) and Asp (~pH 3.8). Thus, it is possible that
Glu or Asp in the TRPM7 pore may serve as the bind-
ing sites for external Ca?* and Mg?", and are also able
to bind to protons, so that monovalent cations can
readily pass through when the binding sites are occu-
pied by protons. Alternatively, instead of competitive
binding, protons may titrate away the block of Ca** and
Mg?* on monovalent current by causing conforma-
tional changes. Further studies are required to eluci-
date the proton binding sites and detailed mechanisms
by which protons increase TRPM7 inward monovalent
currents.

Potential Significance

It has been suggested that TRPM7 plays an important
physiological role in Mg?" homeostasis, neuronal cell
death, and cell viability (Nadler et al., 2001; Schling-
mann et al., 2002; Walder et al., 2002; Aarts et al., 2003;
Schmitz et al., 2003; Chubanov et al., 2004). We dem-
onstrated here that acidic pH 6.0 increases TRPM7 in-
ward current by approximately one- to twofold. Such
an acidic condition (pH < 6) can occur during various
forms of tissue injury (Jacobus et al., 1977; Stevens et
al,, 1991; Steen et al., 1992), or during repetitive nerve
activities, ischemia, and seizures (Siesjo, 1988; Chesler
and Kaila, 1992), suggesting that TRPM7 may play a
role under acidic pathological conditions. However,
without knowing the real physiological functions of
TRPM7, it is difficult to predict a potential role of
TRPM7 under acidic conditions. We have investigated
if there are other factors that may change the pH sensi-
tivity of TRPM7 closer to physiological pH. With 20 uM
PIP, in the pipette solution, the EC5, was pH 4.7 * 0.7
(mean = SEM, n = 6, Hill coefficient 1.0; unpublished
data), which is not significantly different from the EC;,
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obtained without PIP, in the pipette solution (Fig. 2).
In addition, with normal physiological intracellular
Mg?* concentrations in a native system, the MIC/Mag-
NuM channel is only active to a small degree. Further
studies are required to elucidate the physiological and
pathological roles of TRPM7 under normal and acidic
conditions.

Like TRPM7, the native MIC/MagNuM current in
RBL cells showed a similar acidic potentiation to that
seen for TRPM7 currents in the heterologous expres-
sion system (Fig. 8), indicating that MIC/MagNuM is
encoded by TRPM7. A recent study by Gwanyanya et al.
(2004) showed that MIC in cardiac myocytes and RBL
cells were inhibited by acidic pH. It is not clear why
there is a discrepancy between our and their results.
One difference is that they evaluated pH effects on
MIC in divalent-free solutions, whereas we used physio-
logical external solutions containing divalent cations in
the present study.

Protons have been reported to regulate channel ac-
tivities in different channel superfamilies (Hille, 2003;
Holzer, 2003), including TRP channel superfamily. It
has been shown that TRPVI and TRPV4 are enhanced
by low pH, whereas TRPV5 (Yeh et al., 2003) and
TRPM5 (Liu et al., 2005) are inhibited by protons. We
show here that protons dramatically potentiate TRPM?7
inward current by competing with divalent cations for
binding sites. The pH sensitivity is a novel feature of
TRPM7, and the results in the present study not only
provide a clue as to the potential functions of TRPM7
in vivo, but also may help to identify the amino acid res-
idues that are important in the ion selectivity of TRPM7
channels.

Potential Limitations

Proton permeation has been observed for voltage-
gated Na* channels when the external solution is free
of Na* (Mozhayeva and Naumov, 1983; Hille, 2003).
We showed anomalous mole fraction behavior of H*
permeation in the external solutions free of permeant
monovalent cations (Fig. 7). In 2 mM Ca?*/NMDG/
pH 4.0 solution, the proton carried current is 4.4 pA/
pF, corresponding to 17% of the current amplitude ob-
tained in 10 uM Ca?"/NMDG/pH 4.0 (Fig. 7 C). This
proton current amplitude is similar to the value shown
in Fig. 5 B (6.5 pA/pF, pH 4.0), indicating that the cur-
rent at pH 4.0 (Fig. 5 B) is mainly carried by protons,
and consistent with the notion that protons compete
with divalent cations and therefore almost blocked all
the divalent cation current under the conditions shown
in Fig. 5 (A and B).

It is possible that in the normal Tyrode’s solution at
pH 4.0, protons may pass through TRPM7 along with
Na* or K*. If this were the case, proton-carried current
may have contributed to the inward monovalent cur-



rents at pH 4.0. However, given that the current ampli-
tude (6.5 pA/pF, Fig. 5 B) in NMDG solution at pH 4.0
is only ~2.5% of the inward current amplitude (247
pA/PpF, Fig. 2) obtained in normal Tyrode’s solutions at
pH 4.0, contribution of proton-carried inward currents
in the normal Tyrode’s solutions at pH 4.0 should be
<2.5%, and should not contaminate the experimental
results.

At pH 3.0, the I-V curve of TRPM? elicited by voltage
ramps seems different from those at pH >3.0 (Fig. 2
E), and the TRPM7 outward currents were inhibited by
pH 3.0. In addition, a strong inactivation or desensitiza-
tion was observed (Fig. 2 F) when cells were continu-
ously exposed to the external solution at pH 3.0. The
following potential mechanisms may account for the
above observations. First, TRPM7 is desensitized at pH
3.0; second, protons may pass through TRPM7, result-
ing in low intracellular pH, which inhibits TRPM7
outward current (Kozak and Cahalan, 2004); and
third, protons may exhibit complex effects on TRPM7.
Further studies are required to reveal the detailed
mechanisms.

Conclusion

In conclusion, we have demonstrated that acidic pH
significantly increases TRPM7 inward monovalent cur-
rents by competing with divalent cations for binding
sites. The pH sensitivity represents a novel feature of
TRPM?7. We showed that MIC/MagNuM currents were
similarly potentiated by protons, suggesting that MIC/
MagNuM is encoded by TRPM7. The large TRPM7 in-
ward current elicited by low pH suggests that TRPM7
may play a role under acidic pathological conditions.
Further studies are required to elucidate the mecha-
nism by which protons potentiate TRPM7, as well as the
potential significance of TRPM7 under acidic patholog-
ical conditions.
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