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Abstract: FLT3-mutant acute myeloid leukemia (AML) is an aggressive form of leukemia with
poor prognosis. Treatment with FLT3 inhibitors frequently produces a clinical response, but the
disease nevertheless often recurs. Recent studies have revealed system-wide gene expression changes
in FLT3-mutant AML cell lines in response to drug treatment. Here we sought a systems-level
understanding of how these cells mediate these drug-induced changes. Using RNAseq data from
AML cells with an internal tandem duplication FLT3 mutation (FLT3-ITD) under six drug treatment
conditions including quizartinib and dexamethasone, we identified seven distinct gene programs
representing diverse biological processes involved in AML drug-induced changes. Based on the
literature knowledge about genes from these modules, along with public gene regulatory network
databases, we constructed a network of FLT3-ITD AML. Applying the BooleaBayes algorithm to this
network and the RNAseq data, we created a probabilistic, data-driven dynamical model of acquired
resistance to these drugs. Analysis of this model reveals several interventions that may disrupt
targeted parts of the system-wide drug response. We anticipate co-targeting these points may result
in synergistic treatments that can overcome resistance and prevent eventual recurrence.

Keywords: acute myeloid leukemia; Boolean model; drug resistance; network

1. Introduction

Acute myeloid leukemia (AML), characterized by the pathological accumulation of
myeloblast cells in blood or bone marrow, is a heterogeneous and aggressive form of
leukemia. About 30% of AML cases carry a mutation in the FLT3 gene, which encodes
a receptor critical for normal hematopoiesis [1]. By far the most common mutation is an
internal tandem duplication (FLT3-ITD), which occurs in about 25% of all AML cases [1], a
mutation placing patients in a poor prognosis category [2]. Highly specific FLT3 inhibitors
are therapeutically promising [1,2], though the disease often recurs.

Recent experimental results have suggested that while FLT3-inhibition can kill FLT3-
ITD cells, some cells survive and become drug tolerant persisters (DTPs) [3,4]. Targeting
the therapeutic vulnerabilities of drug-tolerant FLT3 mutant AML cells can enhance the
anti-leukemic efficacy of FLT3 inhibitors to eliminate minimal residual disease, mutational
drug resistance and relapse. The mechanisms underlying this phenotypic change are not
fully understood. A recent study found that DTPs exhibit the upregulation of inflammation
pathways, and combination treatment with quizartinib (a FLT3 inhibitor) and dexametha-
sone (a glucocorticoid that reduces inflammation) was synergistic [4]. This is an example
of reprogramming therapy, in which the phenotypes or gene expression patterns induced
by one drug are countered by another simultaneous intervention.

The idea of reprogramming cancer cells into drug-sensitive states [5–9] or even
non-malignant states [10,11] has become increasingly promising. Reprogramming drug-
sensitivity follows from the hypothesis that drug treatment induces reversible, system-wide
gene expression and epigenetic changes, causing cells to achieve a resistant or tolerant
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subtype [12,13]. Targeting these changes and reverting them may then reprogram the cells.
With this view, we seek to gain a systems-level understanding of the gene expression and
phenotypic changes of FLT3-ITD AML cells in response to drug treatment with quizartinib
and dexamethasone, and their evolution into DTPs.

To this end, we identified several modules of co-expressed genes that correspond
to different treatment conditions with quizartinib, dexamethasone, or their combination.
Based on genes within these modules, we built a network model of FLT3-ITD AML drug
response. Using data-driven tools, we derived a probabilistic, dynamical gene regula-
tory model that recapitulates the expression changes of AML cells following these drug
treatments and can be used to predict the effects of perturbations and interventions in the
cells. We focused on identifying interventions that downregulate modules associated with
drug resistance, and upregulate modules associated with cell death. The interventions
we identified represent promising strategies to improve response to FLT3 inhibitors in
FLT3-ITD AML.

2. Materials and Methods
2.1. Data Acquisition and Processing

RNAseq data of MV4-11 cells were collected by M. Gebru, as described in [4], and
previously made publicly available on GEO (GSE116432). Data consisted of triplicate
measurements, each of (1) 10 nM quizartinib treatment for 48 h, (2) 10 nM quizartinib
treatment for five days, (3) 100 nM dexamethasone treatment for 48 h, (4) combination
10 nM quizartinib + 100 nM dexamethasone for 48 h (we refer to this combination as
Quiz + Dex), (5) Quiz + Dex for five days (quizartinib for five days and dexamethasone
added on day 3 because the combination for 5 days would kill almost all cells), and (6)
DMSO (GEO: GSE116432). Data were transformed as log(1 + FPKM). Only transcripts with
a matched HGNC symbol were kept.

2.2. Weighted Gene Co-Expression Network Analysis

We used v1.69 of the WGCNA package in R v4.0.2. We used the pckSoftThresold
function with a “signed” network type to identify power = 10 as the smallest power that
achieved a scale-free R2 value >= 0.9 (Figure S1). We built a topological overlap matrix using
a signed adjacency matrix obtained from power = 10. Genes were hierarchically clustered
using the “average” method, and genes were assigned to co-expression modules using
WGCNA’s cutreeDynamic function with deepSplit = 2, pamRespectsDendro = FALSE,
and minClusterSize = 100. This analysis resulted in seven modules of co-expressed genes
(Figure 1A and Figure S1). Following WGCNA convention, the modules are denoted by
color: turquoise (7219 genes), blue, yellow, brown, green, black (164 genes).
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Figure 1. Differentially expressed modules respond differently to different treatment conditions. (A) WGCNA identified
seven gene co-expression modules from the DMSO and drug treated FLT3-ITD AML expression dataset, six of which are
differentially expressed across the six different treatment conditions. (B) Heatmap showing module eigengene expression
for each module in each sample. High module eigengene expression reflects high average expression of genes within
that module. (C) Qualitative model showing the effect of each drug on the expression of genes within each module.
Arrow-tipped edges indicate activation, while circle-tipped edges indicate repression. The dotted edge from quizartinib
to the black module reflects the observation that black module genes are upregulated at 48 h by quizartinib, but become
downregulated again by five days of treatment. The dotted edge from quizartinib to the green module reflects that the
green module is not upregulated after 48 h, but is after 5 days.

2.3. Molecular Biology of the Cell (MBCO) Ontology Analysis

MBCO analysis was completed using the source code from https://github.com/
SBCNY/Molecular-Biology-of-the-Cell/commit/9ff6c87 (accessed on 15 March 2020). The
background gene set consisted of all genes from the RNAseq dataset, and ontology analysis
was performed independently for each WGCNA gene module. Enrichment results are
given in Figures S2–S8 and File S2.

2.4. Network Construction

To build the network, we integrated interactions from multiple databases that aggre-
gated literature-based or predicted interactions, SIGNOR [14], TRRUST [15], and RegNet-
work [16], as well as published networks related to AML [14,17], NFKappaB signaling [17],
NOTCH signaling [18], tumor promoting inflammation [19,20], and apoptosis [20].

Many of these network resources have minor variations in gene names or use dif-
ferent aliases for different genes. We applied two methods to transform gene names
from different sources into a common space so that all interactions with a given gene
may be identified, even if the different sources use different names for that gene. First,
we considered that many sources use different capitalization, or interchangeably use “.”,
“-”, or “_” characters. To address this, we capitalized all characters in each gene name,
and removed all “.”, “-”, and “_” characters. Second, to match gene aliases across dif-
ferent network sources, we used three separate gene name alias data sources, including
Entrez Homo_sapiens gene info (https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz (accessed on 25 October 2020)), BioMart from
Ensemble (https://useast.ensembl.org/biomart (accessed on 25 October 2020)), and HGNC
(https://www.genenames.org/ (accessed on 25 October 2020)). Each source includes mul-
tiple aliases for each gene name. We constructed a gene name alias graph whose nodes
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represent gene names, and in which each edge represents that two nodes are aliases for the
same gene from one of those resources. Within this alias graph, if there exists a path from
one node to another, it indicates they refer to the same gene.

There were several properties we wanted the final AML network topology to have,
and the strategy we used to build the network was refined until we reached a network
that satisfied these properties. First, we wanted the network to be large enough to capture
enough regulatory details (e.g., more than about four nodes per module, or about 30 nodes
total), but not too large to be able to model or simulate well (e.g., fewer than about
200 nodes). Second, we wanted all seven gene co-expression modules to be similarly
represented, even though some modules are much larger than others (turquoise and
blue have thousands of genes each but green and black only have a few hundred genes
each). Third, we wanted the in-degree of nodes to not be too large (e.g., more than about
7 incoming edges). This is because a Boolean regulatory function with N inputs has
2N possible input conditions for which an output value must be specified. When inferring
Boolean functions of 7 or more variables using the BooleaBayes algorithm, the probability
that any given sample constrains a given input condition becomes extremely small, and
the resulting Boolean function becomes nearly completely stochastic.

The process we used to build the final network is shown in Figure S9. First, we merged
all the network sources (e.g., SIGNOR) into a single large network, wherein nodes that were
aliases of one another from different sources were merged into a single node. This network
contained 8614 nodes and 35,710 edges. Of the nodes, 2374 had non-zero out-degrees and
represented a gene from the RNAseq dataset. We then extracted subgraphs consisting of
only genes from the brown, red, green, yellow, and black modules. We focused on these
first as they are smaller modules than blue and turquoise, and we wanted to include as
many of these nodes as possible to ensure they are well represented in the final network.
We merged these five subgraphs together, which resulted in a disconnected graph. This
graph contained only two components with five or more nodes, one of which consisted
of 18 green nodes, the other consisted of 53 brown nodes. We hypothesized that nodes
from the red, yellow, or black modules may be connected into these components through
paths (successions of edges) containing nodes not in the brown, red, green, yellow, or black
modules. For example, no blue or turquoise nodes had been included at this point. We
searched for paths of no more than four nodes that could connect nodes from the red,
yellow, or black modules into the above-mentioned components (Figure S9B). Anytime
multiple paths were found, we only added the shortest path. If there were multiple equally
short paths, all were added.

We removed all sink nodes because they do not feed back into the dynamics of the
network, and thus cannot be drivers. The resulting graph contained 186 nodes and 888
edges. Of the nodes, 52 belonged to the brown module, 34 to turquoise, 23 blue, 21 yellow,
20 red, 15 green, and 9 black, while the others belonged to no module. This satisfied our
goals of having approximately equal representation of the different modules, and not too
few nor too many nodes. However, many nodes in the resulting graph had extremely high
in-degree. For example, RELA had 43 in-edges, TP53 had 37, and FOXO3 had 36. The
Boolean regulatory update function for RELA would then have 243 ~= 1012 conditions that
must be specified, which would be impractical, and impossible given available data.

To avoid such excessively high in-degree nodes in the network, we calculated an edge
score that we used to retain only the most confident edges. We set a threshold that must be
exceeded to include an edge, and made this threshold increase as more in-edges are added
to a node. This process preserves a node’s regulators if it has low in-degree, but provides
an increasingly strict criterion for edges to be included as the in-degree becomes larger.

The edge score was based on the following factors: (1) whether or not the source node
is a transcription factor (TF), (2) the number of references supporting the edge, (3) the
number of different databases (e.g., SIGNOR) or literature-based networks that included
the edge, and (4) the edge confidence given by the network resource, including “belief”
(networks from Indra) or “score” (SIGNOR, TRUUST). Regarding point (1), if the source
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node is a TF, the edge score is multiplied by TFMUL = 2. If not, TFMUL = 1. Regarding
point (4), for network resources that did not provide edge confidence, the confidence was
assumed to be 0. With these metrics, the edge score was calculated as:

score =

(
Nre f erences + Nresources + 10· con f idence

Nedges

)
·TFMUL

The minimum possible score was 2, as Nre f erences and Nresources were at least each
1 for every edge. For each node, all its incoming edges were scored and ordered from
highest to lowest. The (up to) three edges with the three highest scores were always
included. Following these, each subsequent edge was included if score > NIN−EDGES − 1.
For example, given five incoming edges with scores (5, 4.5, 4, 3, 2), the first three edges
(scores 5, 4.5, and 3) are automatically included. The next edge has score = 3, which is
greater than NIN EDGES − 1 = 3− 1 = 2, so it is included. The next edge has score = 2,
which is no longer greater than NIN EDGES − 1 = 4− 1 = 3, so it, and any lower score
edges, would not be included.

Finally, once again, all sink nodes, or nodes that do not belong to a component of at
least size = 4, were removed. The final network had 106 nodes and 270 edges.

2.5. Regulatory Function Inference using the BooleaBayes Algorithm

Using the transcription data from the RNAseq dataset, the node activation data
constructed as described in the next section, and the network topology, we inferred proba-
bilistic Boolean regulatory functions using the BooleaBayes algorithm as described in [6].
Briefly, BooleaBayes tries to find Boolean logic functions consistent with steady-state gene
expression data and a network topology. As BooleaBayes needs normalized expression,
RNAseq data for each gene were normalized between 0 and 1 by setting all values less
than the 20th percentile to 0, all values above the 80% to 1, and all values in-between were
linearly interpolated between 0 and 1.

BooleaBayes infers a probabilistic Boolean regulatory function for each node in the
network. For each function, all input regulators are assigned a significance value by
BooleaBayes, defined as the maximum possible (absolute value) difference in output value
the regulator can make if it switches from OFF to ON. We set a minimum threshold of
0.1 for this value. With this threshold, each regulator must, in at least one condition, mean
the difference between a 0.45 or less output, and a 0.55 or greater output.

When fitting the function for a node, if at least one regulator did not exceed this
threshold, the regulator with the lowest significance was removed, and the function was
inferred again using only the remaining regulators. This process was repeated until either
all regulators exceeded the minimum significance threshold, or no regulators remained. In
the latter case, the target node becomes a source node for later analyses.

2.6. Extension of BooleaBayes to Post-Translational Regulation

Unlike previous work with BooleaBayes, which focused purely on transcriptional
regulation, the AML network includes post-translational modifications. However, the
expression data only include transcription quantification. To apply the BooleaBayes algo-
rithm, we must separate the probability of a node being transcribed from the probability of
a node being active. For instance, if node A regulates node B, node A may be transcribed
but not active, in which case the input value of node A into node B’s Boolean function
should be OFF.

To this end, we first distinguished for each edge whether it represented transcriptional
regulation or post-translational regulation. An edge whose source node is a transcription
factor according to [21] was considered to be a transcriptional edge. All other edges
were considered as post-translational. Post-translational edges were assigned as positive
(activating) or negative (de-activating) based on edge annotations from the source network.
For example, SIGNOR and Indra edges indicate whether the regulator up-regulates or
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down-regulates the target. For edges with no consistent database annotation, edge weights
were obtained from literature search when possible, or assumed to be positive if no specific
supporting information could be found.

Any node that is only transcriptionally regulated is assumed to be active as long as
it is transcribed. All nodes that are post-translationally regulated (such as a node named
“X”) were split into transcript (X_T) and active protein (X_A) forms. Any outgoing edges
(regulatory effects) from nodes that have _T and _A forms are assumed to come only from
the _A form.

To fit BooleaBayes functions, the values from the RNAseq data are used directly for
X_T. Values for X_A for each sample must be determined prior to applying BooleaBayes, so
that the target nodes of X use X_A for their training data, instead of X_T. We assumed that
protein post-translational activation follows an inhibitory dominant form. For example, if
X_A is activated by nodes J and K, and deactivated by node M, we say

X_A = X_T and (J or K) and not M
(or J_A, K_A, or M_A, if any of those regulators require an activated form). As X_T,

J, K, and M are not strictly Boolean variables, but rather probabilities, we transform this
into a sloppy logic form by replacing “or” with “+”, “and” with “*”, and “not” with “1-”.
Further, each term is strictly held within 0 and 1. Thus

X_A = X_T * min(J+K, 1) * max(1-M, 0)
More generally, as long as X has at least one activator we say
X_A = X_T * min(sum(ACTIVATORS_X), 1) * max(1-sum(INHIBITORS_X), 0)
while, if X has no activators, we say
X_A = X_T * max(1-sum(INHIBITORS_X), 0)
This distinction prevents nodes that have no activators from always being inactive—

they are assumed to be active unless deactivated. We constructed such an equation for
every node that must be activated. These equations formed a system of nonlinear algebraic
equations which we solved numerically using the scipy.optimize.fsolve() function in Python
v3.8, with an initial guess for each node of X_A = X_T. The resulting values of X_A were
then added to the gene expression dataset to be used for inferring BooleaBayes functions
for any node regulated by an _A form of a regulator.

2.7. Identification of Pseudo-Attractors

Pseudo-attractors of a probabilistic discrete system are states, or collections of states,
that the system keeps revisiting. Expressed more technically, pseudo-attractors are col-
lections of states for which transitions into them are more likely than transitions out,
along every axis. The sum of forward and backward transition probabilities between two
BooleaBayes states always adds up to 1. Therefore, if a transition is more likely into a state
than out of a state, the out-transition will be less than 0.5. Thus, pseudo-attractors of a
BooleaBayes-inferred system will correspond to the attracting strongly connected com-
ponents of the state transition system, for which all transitions with probability less than
0.5 are removed. This corresponds exactly to the attractors of the closest approximating
deterministic Boolean system, obtained by rounding all probabilities to the nearest 0 or
1—all transitions in the probabilistic system with probability less than 0.5 are absent.

Thus, to identify pseudo-attractors of the probabilistic AML drug network, we ap-
proximated each BooleaBayes-inferred update function to its closest deterministic function.
We used the AttractorRepertoire module from the StableMotifs [22] python package to find
attractors of the deterministic system. The system has a very large number of source nodes
(nodes with no regulators), which allows many attractors. To isolate the attractors most
relevant to AML drug response, we determined the Boolean state of these source nodes for
each of the six experimental conditions by averaging their probability to be ON or OFF
from the data. For each node, if it was more likely to be ON across the three replicates, we
plugged in the value ON to the deterministic system and propagated its value through the
Boolean update functions, and likewise for OFF.
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2.8. Node Interventions

We sought to understand how interventions that target specific nodes influence the
stability of WGCNA gene modules. We considered two types of interventions: holding
a node in the OFF (0) state, akin to knockout (KO) and holding a node in the ON (1)
state, akin to constitutive activation (CA). We assumed that any intervention targeting a
gene that was separated into transcribed and active protein forms applied to both forms.
During simulations, the states of controlled nodes were held constant, and other nodes
were updated as in the WT system.

2.9. Definition and Calculation of Influence Index

Systematic in silico intervention experiments require a significant number of com-
putational resources, thus we wanted to prioritize the most likely candidates for up- or
down-regulating a target module. To this end, we calculated an “influence index” for
each node-intervention-module tuple, for example the tuple “GSK3B, KO, blue module”.
The influence index is designed to estimate how likely it is that the influence of a node-
intervention on the node’s direct targets aligns with the up- or down-regulation goal of a
specified module.

The influence index is based on the concepts of necessary and sufficient regulation.
If node A = ON is necessary for node B = ON, this means that A = OFF implies B = OFF.
Conversely, if node A = ON is sufficient for node B = ON, this means that A = ON implies
B = ON [23]. For each edge we developed scores quantifying the likelihood that the edge
represents necessary regulation or sufficient regulation. In total we calculated four scores
for each edge: (1) the source is necessary for the target to be ON (called NON), (2) the source
is sufficient for the target to be ON (called SON), (3) the source is necessary for the target
to be OFF (called NOFF), and (4) the source is sufficient for the target to be OFF (called
SOFF). These scores are based on the average value of the probabilistic function output
when the node at the source of the edge is ON (avgON), or the source node is OFF (avgOFF).
For example, consider a node C whose regulatory function is f (A, B). For the edge A→B,
avgON = f (1,0)+ f (1,1)

2 while avgON = f (0,0)+ f (0,1)
2 .

Using this definition of avgON and avgOFF, NON , SON , NOFF, and SOFF were calculated
as follows:

If an edge represents overall positive regulation (meaning that switching the source
node from OFF to ON increases the likelihood that the target turns on)

NON = 1− avgOFF
SON = avgON

NOFF = 0
SOFF = 0

Conversely, if an edge represents overall negative regulation (meaning that switching
the source node from OFF to ON decreases the likelihood that the target turns on)

NON = 0
SON = 0

NOFF = avgOFF
SOFF = 1− avgON

To illustrate these definitions, consider a node D with deterministic Boolean update
function f(A,B,C) = A or (B and C). This function means that node D will turn on if A is ON
or if B and C are simultaneously ON. For the edge A→ D, we can calculate

avgON = f (1,0,0)+ f (1,0,0)+ f (1,1,0)+ f (1,1,1)
4 = 1

avgOFF = f (0,0,0)+ f (0,0,0)+ f (0,1,0)+ f (0,1,1)
4 = 0.25

A is a positive regulator of D, so NON = 1− 0.25 = 0.75, SON = 1, and NOFF = SOFF = 0.
This means that in 75% of input conditions A would be necessary to turn D ON (only when
B=C=1 does D turn ON without A). Conversely, A is sufficient to turn D ON in all input
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conditions. Finally, A is never sufficient nor necessary to turn D OFF, as A is a positive
regulator of D.

With this, we define the influence index of each node-intervention-module tuple using
one of the following formulas:

Source node intervention: KO; Target module goal: DOWN

In f luenceIndex = ∑[(NON − NOFF) + 0.5·(SON − SOFF)]

Source node intervention: KO; Target module goal: UP

In f luenceIndex = ∑[(NOFF − NON) + 0.5·(SOFF − SON)]

Source node intervention: CA; Target module goal: DOWN

In f luenceIndex = ∑[(SOFF − SON) + 0.5·(NOFF − NON)]

Source node intervention: CA; Target module goal: UP

In f luenceIndex = ∑[(SON − SOFF) + 0.5·(NON − NOFF)]

where in each case the sum is over all target nodes of the perturbed node that are in the
target gene module. The higher weight on necessary edges in KO interventions reflects the
fact that turning OFF a necessary regulator is sufficient to control its output. The higher
weight on sufficient edges in CA interventions reflects the fact that turning ON a sufficient
regulator is sufficient to control its output.

2.10. Analyzing the Effect of Node Interventions

In contrast to attractors of deterministic systems, our stochastic model can evolve away
from pseudo-attractors (i.e., pseudo-attractors are not trap spaces). We start simulations
from a system state that corresponds to the average state of all pseudo-attractors associated
to a given experimental condition, and examine how many steps are required for a given
module’s overall expression to increase or decrease relative to its start state.

To accomplish this, we quantify a module’s “activation” as the fraction of nodes in the
module that are ON. For the purpose of this calculation, we exclude all source nodes, as
those nodes cannot be activated or silenced based on interventions of other nodes, and are,
therefore, insensitive to any perturbation. During simulations we very rarely observed a
module achieve more than 3/4 of non-source nodes becoming ON. We thus considered
switches between states that have low module activation (fewer than 1/4 non-source nodes
are ON) and intermediate module activation (between 1/4 and 3/4 non-source nodes
are ON).

We simulated the dynamics of the WT system by starting from a pseudo-attractor and
updating a single, randomly selected node at each time step [6]. For modules that start
in the low activation state, we counted how many steps were required for the module to
switch to the intermediate state for the first time. For modules that start in the intermediate
state, we instead counted how many steps were required to switch to the low activation
state for the first time. We repeated these simulations, restarting from the start state,
100 times. For each simulation, we updated the system 5000 times. If a module did not
switch within that time, we assigned a value 5001. For subsequent statistical analyses, we
used a non-parametric ordinal test, so in most cases it does not practically matter how
much above 5001 it really would have been.

We then chose a set of interventions to test, based on analysis of the network and
influence index of various nodes. We considered single node KO or CA, or combinations of
multiple nodes individually controlled. As in the WT system, we performed 100 iterations
of 5000 steps, counting how many steps were required for a module to switch for the first
time. We used a two-sided Mann–Whitney U test to test whether the average number of
steps from the intervention simulations was statistically different from the WT. All p-values
were FDR-corrected using the Benjamini–Hochberg (BH) method, and the threshold for
significance was defined as BH-adjusted p < 0.05.

Following intervention, if a module requires more steps before it switches from low to
intermediate activation, or vice versa, compared to WT, then the module’s original state
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was stabilized by the intervention. If the module began in the low state, we then classified
the intervention as down-regulating. If the module began in the high state, we classified the
intervention as up-regulating. Conversely, if an intervention makes a module require fewer
steps to switch, then the module’s original state was destabilized by the intervention. If the
module began in the intermediate state, we classified the intervention as down-regulating.
If the module began in the low state, we classified the intervention as upregulating.

3. Results
3.1. Identification of Gene Co-Expression Modules Associated with Distinct Treatments

We analyzed an RNAseq dataset [4] consisting of MV4-11 cells (a FLT3-ITD AML
cell line) exposed to six different treatment conditions. These included triplicate mea-
surements each of (1) 10 nM quizartinib treatment for 48 h, (2) 10 nM quizartinib treat-
ment for five days, (3) 100 nM dexamethasone treatment for 48 h, (4) combination 10 nM
quizartinib + 100 nM dexamethasone for 48 h (we refer to this combination as Quiz + Dex),
(5) Quiz+Dex for five days (quizartinib for five days and dexamethasone added on day
3), and (6) DMSO (GEO: GSE116432). Previous work found that dexamethasone and
quizartinib in combination were synergistic in FLT3-ITD cells [4].

Applying weighted gene co-expression network analysis (WGCNA) [24] to this gene
expression dataset, we identified seven modules of co-expressed genes (Figure 1A and
Figure S1). WGCNA assigns color names to each module. The modules we identified
ranged in size from 164 genes (black module) up to 7219 genes (turquoise module). The
genes in each module are given in File S1.

Given a WGCNA gene module, the module’s eigengene (defined as the first principal
component) is commonly used as a single metric capturing the overall expression of all
genes within that module. Based on module eigengene expression, we found that six
modules were statistically differentially expressed across treatment conditions (Figure 1A,
Kruskal–Wallis test, BH-adjusted p-value < 0.05): the yellow, red, brown, blue, turquoise,
and black modules.

Of these modules, we find that the yellow module is upregulated (relative to DMSO)
by all treatments, most significantly by the combination of dexamethasone + quizartinib
(Figure 1B). The red module is upregulated by dexamethasone, with or without the addition
of quizartinib, while we detected no response of this module to quizartinib alone. The blue
module is upregulated by quizartinib, with or without the addition of dexamethasone,
while we detected no response of this module to dexamethasone alone. Opposite to blue,
the turquoise module is downregulated by all treatments, including quizartinib. Finally,
the black module is upregulated after 48 h of treatment with quizartinib (with or without
dexamethasone) but returns to DMSO levels after 5 days of treatment. Though the green
module was not significantly differentially expressed, we noticed that, within the triplicate
measures in both DMSO and dexamethasone treatment, one sample of each appears to be a
clear outlier in the green module eigengene expression (Figure 1B). Without those samples,
the green module is upregulated following quizartinib treatment for 5 days. Thus, the
green module may still be relevant to understanding AML drug response, and we consider
its possible role later. These results are summarized as interactions between the drugs
and modules in Figure 1C, which shows that dexamethasone reverses quizartinib-induced
upregulation of the brown module but does not reverse other modules that are affected
by quizartinib.

3.2. Ontology Analysis Reveals Biological Processes Unique to Each Module

To uncover the biological character of each gene module, we performed ontology
enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO) method [25].
This analysis searches not only for enriched sub-cellular processes, but enriched relation-
ships between processes. The results of MBCO analysis are reported in Figures S2–S8,
and in File S2. These analyses revealed several biological processes and pathways that
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become activated by different drug treatments, that may play critical roles in mediating
AML drug response.

We found the yellow module was enriched for cell–cell communication, especially
via NOTCH signaling, as well as extracellular matrix homeostasis. The red module was
strongly enriched for extracellular matrix homeostasis, including collagen biosynthesis and
crosslinking. The brown module was enriched for immune response activation and actin
and lamellipodium structure. Collectively, these three modules thus may be responsible
for mediating the tumor microenvironment response through cell–cell communication,
structural changes, and immune activation.

The blue module, which is upregulated by quizartinib, was highly enriched in drug
export and cellular detoxification, indicating a potentially essential role in mediating
cell survival following treatment with quizartinib. The turquoise module was highly
enriched in cell-cycle progression, suggesting a possible role in mediating proliferation.
Treatment with quizartinib downregulates the turquoise module, which is consistent with
the prior hypothesis that DTPs slow down their growth in the presence of drug [3,26,27].
Quizartinib’s simultaneous activation of the blue module, and downregulation of the
turquoise module may be able to quickly lead to the emergence of DTPs, allowing cells
to then acquire other changes, or change their environment, leading to more favorable
cancer-cell survival. Dexamethasone treatment did not reverse the effect of quizartinib on
these DTP-associated modules (Figure 1C).

The black module was found to be enriched in transcription and translation. The black
module is upregulated by quizartinib in the short term, but returns to untreated levels by
5 days of treatment. This suggests that, early on in treatment, cells may quickly activate
several gene transcription programs, but the activation of new programs may relax by day
five as cells reach a new equilibrium.

Finally, though it was not significantly differentially expressed across subtypes, the
green module was highly enriched in the regulation of apoptosis. As noted above, exclud-
ing two outlier samples, the green module is upregulated following quizartinib treatment
for 5 days.

3.3. Network Analysis
3.3.1. Construction of Gene Regulatory Network Governing AML Drug Response

To understand how cells mediate these drug-induced gene expression changes, we
constructed a gene regulatory network model of highly differentially expressed genes from
within each module. The full details of network construction are presented in Methods
Sections 2.4–2.6 and an overview is in Figure S9. Briefly, we aggregated interactions from
the public databases SIGNOR [14], TRRUST [15], and RegNetwork [16]. Based on the
ontology analysis that implicated cell–cell communication, inflammation, and apoptosis,
we also integrated published networks related to AML [14,17], NFKappaB signaling [17],
NOTCH signaling [18], tumor promoting inflammation [19,20], and apoptosis [20]. The
final network (Figure 2 and Figure S10) was constructed with the aim of avoiding over- or
under-representation of any single module.

3.3.2. Inference of Predictive Dynamic AML Drug Resistance Network Model and
Drug-Induced Pseudo-Attractors

We next sought to understand how the genes in the AML drug response network
interact. To this end, we applied the BooleaBayes algorithm [6] to infer probabilistic
regulatory functions for each node in the network (File S3). Briefly, BooleaBayes tries
to find Boolean logic functions consistent with steady-state gene expression data and a
network topology. In our case, the gene expression data are derived from normalization
of the 18 AML RNAseq samples (see Methods Section 2.5) and the network topology is
that of Figure 2. The inferred logic functions use binary values. For example, f(nodeA,
nodeB) = nodeA AND nodeB, where nodeA and nodeB have binary (ON or OFF) values.
BooleaBayes produces probabilistic functions indicating the probability that the target
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node will be ON or OFF, depending on the ON/OFF status of its regulators, where a value
0 indicates 100% confidence the target node is OFF, a value 1 indicates 100% confidence the
target node is ON, and a value 0.5 indicates equal chance of being ON or OFF. See Figure 3
for an example showing how BooleaBayes finds these values.

Figure 2. Gene regulatory network of FLT-ITD AML quizartinib and dexamethasone response. Nodes are genes and are
colored by the WGCNA module to which they belong. Edges ending in arrows represent net positive regulation, while
edges ending in circles indicate net negative regulation. Edge regulation sign is determined using the BooleaBayes algorithm
(see Methods Sections 2.5 and 2.6). The nodes in this network combine the transcript and the protein encoded by the same
gene. For example, the node JUN has transcriptional regulators (FOS, CREB1, and MEF2A) and a posttranslational regulator
(GSK3B). For nodes like this with post-translational modifications, the full network, shown in Figure S10, has separate
nodes corresponding to their transcript and active protein.

Unlike previous work with BooleaBayes, which focused exclusively on transcription
factors, the AML network also includes post-translational regulation. For nodes with
post-translational regulation, we distinguish between the transcription of the gene, and
the activation of the protein product. Protein activation is assumed to follow inhibitory
dominant Boolean rules, which means that at least one activator is required, but any
inhibitor is enough to prevent activation. Full details of how this was implemented into
BooleaBayes are available in Section 2.6.

With a deterministic Boolean model, one may search for its attractors, which represent
long-term stable behaviors of the system. Once the system reaches an attractor, it can no
longer escape it without an external intervention. As BooleaBayes is a probabilistic system,
it has no inescapable attractors. Nevertheless, there are states which the system is more
likely to enter than to leave, termed pseudo-attractors.

We asked whether the AML network has pseudo-attractors corresponding to the
drug-treatment conditions. To find these, we approximated the probabilistic BooleaBayes
regulatory functions by finding their closest-matching deterministic Boolean functions
(File S4). The network has 65 source nodes (nodes without regulators), which can be 0 or
1 with no constraints, indicating that there will be at least 265 ~= 1019 possible attractors (at
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least one per source node configuration), and even more pseudo-attractors. Not all of these
pseudo-attractors necessarily correspond to true attractors of the system, but may instead
reflect uncertainty of BooleaBayes functions far from the observed data. To specifically
find pseudo-attractors associated with the drug-response, we plugged into the source
nodes their respective observed values in each of the drug conditions, and propagated
those substitutions to find simplified systems for each drug state. Attractors of these
simplified systems were found using the StableMotif [22] Python package (Figure 4). These
attractors of the simplified deterministic system correspond to pseudo-attractors of the
probabilistic BooleaBayes functions. Pseudo-attractors for the 5-day Quiz+Dex treatment
have three oscillating nodes: ABL1_active, CBL_active, and INSR_active, driven by a
negative feedback loop between CBL_active and INSR_active. All other pseudo-attractors
are steady states. Many modules have clear consensus of the activity of their genes, in
which almost all of them are ON or almost all are OFF. For example, almost all yellow
nodes and almost all red nodes are OFF in pseudo-attractors corresponding to quizartinib
treatment (either for two days or for five days). This agrees with the low module eigengene
expression (pink color) on Figure 1B. Other modules are more split. For example, nearly
half of the brown and green module nodes are ON and nearly half are OFF in pseudo-
attractors corresponding to combination treatment for five days. These also agree with the
module eigengene expressions (white color). Overall, there is a good agreement between
all modules’ average activation in pseudo-attractors and their eigengene expression shown
in Figure 1B.

Figure 3. Examples demonstrating BooleaBayes regulatory function inference. Left: the inferred function for JUN tran-
scription. JUN_T has three regulators: FOS, CREB1_active, and MEF2A_active. A Boolean function of 3 regulators has
23 = 8 possible input configurations (e.g., FOS = 0, CREB1_active = 0, MEF2A_active = 0). Each column of the figure corre-
sponds to one of the possible regulator configurations, from all regulators being OFF (left-most column) to all regulators
being ON (rightmost column). Each row corresponds to one of the 18 AML samples. The red and blue colors along the far
left show whether JUN_T (the target node) is ON or OFF in each sample. The white-black color scale shows how closely
each sample (row) corresponds to a given input configuration (column). For example, the top three samples (rows) are most
likely to correspond to FOS = 1, CREB1_active = 1, MEF2A_active = 0, as is shown by the black and dark grey cells in the
first three rows of that column. In both samples, JUN_T is likely to be OFF (indicated by the blue color). Thus, the inferred
regulatory function for JUN_T (bottom row) says that if FOS = CREB1_active = MEF2A_active = 0, JUN_T is very likely to
turn OFF. Right: inferred function for EP300 transcription. Unlike JUN_T, there are many conditions for which there was no
observed data, such as RBPJ_active = 0, TP53_active = 0, TCF7_active = 0, and EPAS1_active = 1 (second condition from the
left). In these cases, the inferred rule has a near 50% chance for EP300_T to turn ON or OFF, as there are no data indicating
what should happen in these cases.
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Figure 4. Pseudo-attractors corresponding to DMSO and drug-treated AML, which are also the attractors of the deterministic
approximation of the BooleaBayes network. The values of the network’s 65 source nodes are fixed to match one of the six
treatment conditions, including DMSO, and attractors of the reduced systems are shown above. Each row is one attractor,
and columns are nodes of the network. Columns are grouped and colored based on the module the node belongs in. The
vertical orange lines delimit the nodes of each module.

3.3.3. Identification of Intervention Targets That Disrupt AML Drug Resistance Modules

With the dynamic model of AML drug response, there are many possible questions
one could pursue. We focus on identifying interventions that we hypothesize may be
able to reprogram DTP cells into drug susceptible states. Specifically, we previously
showed that dexamethasone increases cell death of quizartinib-induced DTPs in FLT3-ITD
AML [4]. However, there remain gene expression modules that dexamethasone does not
reverse ( Figures 1 and 4), including some that are natural markers of DTPs. To identify
additional targets that may be able to improve combination quizartinib and dexamethasone
treatment, we thus focus on the pseudo-attractors corresponding to combination treatment
with Quiz + Dex for 5 days, compared to the attractors in DMSO. As discussed above,
several differentially expressed modules are enriched in biological functions that may
be responsible for mediating drug resistance. Of greatest interest, the blue module is
enriched in detoxification and drug export, the green module is enriched in regulated cell
death and apoptosis, and the turquoise module is enriched in cell cycle progression. We
hypothesize that downregulating the blue module may prevent the emergence of resistance
mechanisms. Activating the turquoise module may enhance proliferation, preventing cells
from entering the DTP state. Activating the green module may enhance apoptosis. It is also
of note that the yellow and red modules are more highly expressed following Quiz + Dex
treatment than DMSO. We hypothesize that reverting these modules to the DMSO state
may improve therapy response. Collectively, these changes may extend the efficacy of
combination Quiz + Dex treatment.

To this end, we picked control objectives of downregulating the blue, red, and yellow
modules, and upregulating the turquoise or green modules. Upregulation of the green
module was chosen due to its enrichment in apoptosis, even though this would push the
green module further away from the DMSO state. We first quantified the stability of the
gene expression modules near the Quiz + Dex 5-day pseudo-attractors. To accomplish
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this, we simulated 100 random walks of 5000 steps (see Methods Section 2.10) from an
initial state determined by the average of the Quiz + Dex 5-day pseudo-attractors. For
each step along the walk, we quantified the fraction of nodes from each module that are
ON to get an overall module activation score. We characterized modules with fewer than
1/4 active nodes to be in a low state, between 1/4 and 3/4 to be in an intermediate state,
and above 3/4 to be in a high state. These ranges were chosen to ensure each module
began sufficiently far from the boundary. With these definitions, all modules began in
either the low or intermediate states. We then quantified how long it took for each random-
walk simulation to cross from low to intermediate activation, or from intermediate to low
activation, for the first time (we only rarely observed a cross from intermediate to high
activation, so this transition was excluded). The distributions of the crossing times in
Figure 5A capture the baseline stability of each module.

Figure 5. Targeted interventions of driver nodes cause up- or down-regulation of gene modules. (A) Distribution of the
number of steps required for the module to switch between low and intermediate activation. The distributions in beige
show the dynamics of the system with no manipulations, while the colored distributions show the manipulated systems.
For modules transitioning from low to intermediate activation, an intervention shifting the distribution to a longer time to
switch (rightward shift) maintains the module in the downregulated state, while a leftward shift upregulates the module.
For modules transitioning from intermediate to low, a rightward shift indicates the module is maintained in an upregulated
state, while a leftward shift indicates downregulation. (B) Heatmap showing the up- or down-regulation of statistically
significant interventions (two-sided Mann–Whitney U Test, FDR-adjusted p-value < 0.05) compared to control for each
module. Only significant interventions are colored. Colors are scaled so that a value of +/−1 indicates a 100% relative shift
in mean transition time compared to control.

We then asked which interventions shift the module distributions to lower or higher
numbers of steps. If a module starts in the intermediate state and transitions into the low
state, then interventions shifting the distribution to a higher number of steps stabilize the
more active state of the module. Conversely, interventions shifting the distribution to a
lower number of steps downregulate the module. The opposite interpretation holds for
modules starting in the low state and transitioning to the intermediate state: a shift to a
lower number of steps indicates upregulating the module, while a shift to a higher number
of steps indicates maintaining the module in the low state.

Nodes targeted by in silico intervention were fixed as either ON or OFF, and not
allowed to update during the simulation. We prioritized nodes to target by (1) analysis



J. Pers. Med. 2021, 11, 193 15 of 19

of the regulatory paths in the network (Figure 2 and Figure S10), and (2) calculation of
an influence index for each possible node interventions and each module (see Methods
Section 2.9 for details). Briefly, the influence index considers the most likely effect an
intervention of a given node will have on the nodes it targets. A positive influence index
indicates that those effects are likely to align with our control objectives, while a negative
influence index indicates that those effects are likely to contradict our objectives. Influence
indices for each intervention are given in File S5.

We tested the interventions shown in Figure 5 by simulation. For each intervention, we
quantified how the distribution of steps required to cross the low-intermediate threshold
shifts relative to the baseline control. We determined significant upregulating or down-
regulating shifts using a two-sided Mann–Whitney U test (see Methods Section 2.10). The
most significant regulators for each module are shown in Figure 5B.

We predict several interventions that may lead to the downregulation of the blue
module, which is enriched in genes related to drug resistance. The most significant are
knockout of GSK3B, IFNGR1, CREB1, SIRT1, or MAP3K11. Investigating these further,
GSK3B inhibition has previously been proposed as a differentiation-inducing therapy for
AML [28,29]. Nevertheless, it has also been found in a CRISPR screen that GSK3B KO leads
to the reactivation of FGF/Ras/ERK and Wnt signaling that can confer resistance to quizar-
tinib monotherapy in FLT3-ITD AML [30]. CREB1 overexpression has been associated with
poor outcome in AML patients [31], and SIRT1 activation has been previously associated
with drug resistance of FLT3-ITD AML stem cells [32].

For the green module, which is enriched in apoptosis regulation, we find JUN con-
stitutive activation leads to activation of the green module, while JUN knockout inhibits
it. Previous work has found that JUN KO increased apoptosis in AML cells [33]. JUN
is a master regulator of apoptosis, but also involved in AML cell survival via inflamma-
tory pathways, indicating it may have dual roles. Expanding the network to include
relevant downstream JUN activity may better elucidate how these competing effects may
be activated or controlled.

For the turquoise module, which is enriched in cell cycle progression, we found
activation of TNF, TP53, or AP2A1 support upregulation of the turquoise module. TNF-
alpha is highly upregulated in AML patients, and has been shown to induce proliferation
of leukemic blasts [34,35]

We additionally tested combination interventions to simultaneously control multiple
gene modules. The combined knockout of TBK1 and JUN and found that it leads to
downregulation of both the red and yellow modules. Simultaneous constitutive activation
of FOS with knockout of CREB1 led to downregulation of the brown and blue modules,
and stabilization of the green module.

Focusing on modules other than blue, green, and turquoise, we predict that GRB10
KO strongly downregulates the yellow module, which is upregulated by both quizartinib
and dexamethasone treatment, and GRB10 overexpression has previously been associated
with aggressive phenotypes in FLT3-ITD AML [36]. ROCK1 KO downregulates both the
yellow and red modules, and ROCK inhibition has been shown to inhibit cell growth in
FLT3 mutant AML patient-derived blasts [37]. We predict that TBK1 KO downregulates
the red module; it has previously been suggested as a therapeutic target in AML due to its
activation of MYC-dependent survival pathways [38].

Four interventions had relatively high influence indices but did not lead to a statisti-
cally significant shift: KO of EP300, ZFYVE9, PML, or IRS2. Of these, ZFYVE9 and IRS2 KO
have a large effect on their direct targets, but that effect clearly will not propagate through
the network. For instance, ZFYVE9 is a necessary regulator for two blue module genes:
SMAD2 and SMAD3, which BooleaBayes did not detect significant regulatory functions
for in this network, and thus they became sink nodes. IRS2 is necessary for PIK3CA
to activate, and PIK3CA_A only regulates a single target node, PTK2B_T. PTK2B_T is
also regulated by SRC, and SRC has a much stronger regulatory influence than PIK3CA
(File S3). The remaining two interventions, EP300 and PML KO, have multiple downstream
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paths, but nevertheless our full simulations of the network did not detect upregulating or
downregulating influences of these interventions on any module.

The concordance of our identified interventions with previous work from the literature
supports the validity of our findings. Furthermore, we make several additional novel
predictions. For example, we predict the blue module can be downregulated by the KO
of IFNGR1 or MAP3K11. The turquoise module can be upregulated by CA of AP2A1 or
TP53. The validation of these novel predictions is needed as a next step in establishing the
predictive value of this model and is the subject of future work in our labs. Collectively,
we anticipate that these interventions would synergize with combination quizartinib and
dexamethasone treatment in patients with FLT3-ITD AML.

4. Discussion

Here we constructed a dynamic model of a gene regulatory network relevant to
FLT3-mutant acute myeloid leukemia. The model integrates multiple types of information:
RNAseq data consisting of MV4-11 cells exposed to drug treatment and several databases
of signal transduction and gene regulation. Model development included multiple state of
the art analysis methodologies: weighted gene co-expression analysis, ontology analysis,
inference of regulatory relationships using BooleaBayes, attractor analysis, and control
theory. We also developed new capabilities for BooleaBayes, and new confidence scores to
prioritize interactions to be included in the network and new influence scores to prioritize
interventions. Overall, this work illustrates the challenges and capabilities of computational
systems biology analysis in cancer research and the potential for this type of analysis to
advance personalized medicine.

The model attractors recapitulate the activation of the modules (compare Figure 4
to Figure 1B), and the most significant predicted model interventions match well with
literature reports on drivers of proliferation, survival, and drug resistance (Figure 5).
Collectively, these results strongly support the model’s validity. Nevertheless, there are
several possible avenues for further model improvement. This model was derived from
data in MV4-11 cells treated with quizartinib and dexamethasone. We previously showed
that the gene expression profile of MV4-11 cells was predictive of sensitivity of multiple
FLT3-ITD cell lines and patient cells to treatment with quizartinib and dexamethasone [4].
Nevertheless, including data collected from other cell lines, or cells treated with other
drugs, such as other FLT3 inhibitors or glucocorticoids may reveal alternative pathways and
processes involved in mediating drug resistance. Finding common resistance mechanisms,
as well as system-specific resistance mechanisms, may lead to a more generalizable model.
Furthermore, during network construction we removed sink nodes to focus on nodes that
contribute feedback into the network dynamics. Nevertheless, those sink nodes may be
valuable phenotypic markers, or could be regulators of other nodes we may include in the
future. Additionally, the large number of source nodes (65) should eventually be decreased.
Many of these became source nodes because BooleaBayes was not able to determine
a significant role for their regulators, and so those edges were removed. Additional
expression datasets, or literature knowledge, may elucidate functional forms of those
interactions. Additionally, more nodes may be added by including more AML-specific
literature knowledge (e.g., MCL as downstream target of GSK3B, downstream targets of
JUN to further elucidate the dual effect of its inhibition on apoptosis and inflammation).

In Figure 5 we showed four interventions that had high influence indices, but this did
not translate into significant up- or down-regulation of any modules. In at least two cases,
we determined that these interventions led to sink nodes, or nodes with weak influence,
explaining why the influence index was not predictive of overall impact. To address
this, the influence index of a node may be extended to consider the influence index of its
downstream targets. Further, nodes can have conflicting downstream effects, and resolving
these may improve the predictive value of influence index.

The dynamic model may eventually be used to answer other fundamental questions,
such as how does drug treatments lead to the resistant state. To this end, the network
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could be extended by integrating known drug targets, though in practice drugs often
have multiple off-target effects. One possible way to overcome this would be to prioritize
adding drug targets that can induce the changes between the status of the source nodes
in the untreated and drug-treated conditions. Future work is focused on expanding and
improving the network model by incorporating information about drug targets, additional
cell lines, and additional drug perturbation datasets. We are also working to validate the
model’s novel predictions, such as combining Quiz+Dex treatment with KO of IFNG1 or
MAP3K11, or CA of AP2A1.

Finally, we anticipate that data-driven predictive modeling, as demonstrated in this
work, may eventually help accelerate patient-specific precision treatments. The dynamics
of the AML model emerged from the expression data we used to train it, thus incorporating
patient-specific data may help reveal patient-specific drug resistance pathways or targets.
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WGCNA modules, File S2.xlsx: MBCO enrichment, File S3.txt: BooleaBayes fit probabilistic update
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