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Abstract

Determining the rate of protein evolution and identifying the causes of its variation across the genome are powerful ways to

understand forces that are important for genome evolution. By using a multitissue transcriptome data set from great tit (Parus

major), we analyzed patterns of molecular evolution between two passerine birds, great tit and zebra finch (Taeniopygia guttata),

using the chicken genome (Gallus gallus) as an outgroup. We investigated whether a special feature of avian genomes, the highly

variable recombinational landscape, modulates the efficacy of natural selection through the effects of Hill–Robertson interference,

which predicts that selection should be more effective in removing deleterious mutations and incorporating beneficial mutations in

high-recombination regions than in low-recombination regions. In agreement with these predictions, genes located in low-recom-

bination regions tend to have a high proportion of neutrally evolving sites and relaxed selective constraint on sites subject to purifying

selection, whereas genes that show strong support for past episodes of positive selection appear disproportionally in high-recom-

bination regions. There is also evidence that genes located in high-recombination regions tend to have higher gene expression

specificity than those located in low-recombination regions. Furthermore,more compactgenes (i.e., thosewith fewer/shorter introns

or shorterproteins) evolve faster than less compactones. In sum,our resultsdemonstrate that transcriptomesequencing is apowerful

method to answer fundamental questions about genome evolution in nonmodel organisms.

Key words: protein evolution, natural selection, Hill–Robertson interference (HRI), tissue specificity in gene expression, recom-

bination, RNAseq.

Introduction

It is well known that the rate of protein evolution varies across

the genome (Li 1997). Determining the causes of this variation

is a powerful way to quantify the relative importance of nat-

ural selection and genetic drift and to identify factors that are

important in shaping patterns of molecular evolution (Kimura

1983; Li 1997; Pál et al. 2006). When protein-coding DNA

sequences are analyzed, the rate of protein evolution is often

measured by the ratio o ¼ dn=ds, where dn and ds are, re-

spectively, the rates of nonsynonymous and synonymous sub-

stitutions (Li 1997; Nei and Kumar 2000; Yang 2006). By using

the ratio of dn to ds, o is expected to be less sensitive to

variation in mutation (Nei and Gojobori 1986; Goldman and

Yang 1994; Li 1997), which is known to exist in the genome

(Lynch 2010; Hodgkinson and Eyre-Walker 2011). Therefore,

variation in o is considered to reflect selective pressures on the

protein (Li 1997; Nei and Kumar 2000; Yang 2006).

Specifically, under the assumption that synonymous changes

are neutral, o < 1 is regarded as evidence of purifying selec-

tion acting on nonsynonymous mutations, o ¼ 1 reflects

neutral evolution, and o > 1 can be viewed as support for

past episodes of positive selection driving nonsynonymous

mutations to fixation (Li 1997; Nei and Kumar 2000; Yang

2006).

Estimates of o have been obtained from a large array

of different taxa. o is generally less than 1 when considering

the genome as a whole, reflecting the widely accepted

theory that most nonsynonymous mutations have harmful

effects on fitness and are therefore removed by purifying
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selection (Pál et al. 2006; Eyre-Walker and Keightley 2007).

However, o varies substantially across genes in the genome.

Attempts to understand biological/selective causes of this

variation have uncovered that o is associated with factors

such as protein dispensability, protein structure and stability,

the number of protein–protein interactions, developmental

timing, and patterns of gene expression (both in terms of

expression level and tissue specificity); the extensive literature

on these topics have been reviewed by Pál et al. (2006) and

Choi and Hannenhalli (2013) (see also Marais et al. 2005;

Parmley et al. 2007; Axelsson et al. 2008; Larracuente et al.

2008; Cai and Petrov 2010). Gene expression pattern ap-

pears to be a major correlate of protein evolutionary rate.

For instance, in multicellular organisms, broadly expressed

genes tend to have lower o than genes with high tissue

specificity in expression (Duret and Mouchiroud 2000;

Axelsson et al. 2008; Larracuente et al. 2008; Slotte et al.

2011). Furthermore, genes involved in certain biological pro-

cesses such as immunity and reproduction (e.g., spermato-

genesis) tend to evolve faster than other genes in the

genome and are often enriched for targets of positive selec-

tion, probably as a result of both inter- and intraspecies arms

races (Nielsen et al. 2005; Haerty et al. 2007; Axelsson et al.

2008; Kosiol et al. 2008; Obbard et al. 2009). In contrast,

genes with neural functions such as those expressed primar-

ily in the brain exhibit lower evolutionary rates, which is likely

to be a consequence of strong selective pressures to mini-

mize the damaging effects induced by protein misfolding

(Drummond and Wilke 2008). It should be noted that direc-

tion and intensity of correlations between o and the factors

mentioned above are sometimes inconsistent between spe-

cies (reviewed by Pál et al. 2006 and Choi and Hannenhalli

2013), highlighting the importance of investigating these

effects in distantly related species to verify their generality.

Variation in o can also be induced by heterogeneity in re-

combination rate across the genome (Smukowski and Noor

2011). Physical linkage between loci on the same chromo-

some may affect the rate of protein evolution through Hill–

Robertson interference (HRI), whereby any locus linked to

other loci subject to directional selection experiences a reduc-

tion in local Ne, the effective population size (Hill and

Robertson 1966; McVean and Charlesworth 2000;

Comeron et al. 2008; Sella et al. 2009; Charlesworth 2012;

Cutter and Payseur 2013). Because the efficacy of selection is

determined by Nes, where s is the selection coefficient

(Kimura 1983; Charlesworth B and Charlesworth D 2010),

tight linkage between selected sites hinders both the fixation

of beneficial mutations and the elimination of deleterious mu-

tations. Recombination reduces the interference by breaking

up the association between variants at different loci, which in

turn increases Ne, and hence the effectiveness of selection.

The HRI theory therefore predicts that adaptive substitutions

should appear more frequently in high-recombination regions,

whereas low-recombination regions may accumulate more

fixations of slightly deleterious mutations.

Despite having clear theoretical predictions, the importance

of HRI in shaping protein evolution remains unclear (Webster

and Hurst 2012; Cutter and Payseur 2013). In fact, as pointed

out in a recent review, empirical studies have documented

“extreme disparities among species” (Cutter and Payseur

2013). In Drosophila melanogaster, o in regions that lack re-

combination (e.g., the fourth chromosome) is significantly

higher than in regions where crossing-over occurs, consistent

with relaxed purifying selection, but there is little difference in

o between regions with high, intermediate, and low crossover

frequencies (Haddrill et al. 2007; Larracuente et al. 2008). In a

recent analysis of the Drosophila Population Genomics Project

data (Campos et al. 2014), it was found that the efficacy of

natural selection, both positive and purifying, increases with

local recombination rate, which may explain the lack of dif-

ference in o within crossover regions, if the differential effects

of positive and purifying selection on substitution rates at se-

lected sites (the former elevates the rate and the latter

depresses it) balance out (Campos et al. 2014). In contrast,

in humans, recombination rate ando were found to be uncor-

related, and there is little evidence that the efficiency of selec-

tion varies across regions with different recombination

frequencies. This may be partly be explained by the small Ne

in humans (&104), which may render a general reduction in

efficacy of selection, which in turn makes detecting the effects

of HRI harder than in species with large Ne such as Drosophila

(&106; Bullaughey et al. 2008). As a third example, o and

recombination rate were found to be negatively correlated in

yeast (e.g., Connallon and Knowles 2007; Cutter and Moses

2011). However, this pattern appears to be mediated by var-

iation in gene expression, whereby slow-evolving, highly ex-

pressed genes tend to be located in high-recombination

regions. After controlling for differences in expression, no ev-

idence of substantial variation in selection efficacy across the

yeast genome was found (Pál et al. 2001; Weber and Hurst

2009). These disparities between species call for analysis of

data from species with different Ne and/or recombinational

landscape, so that the HRI theory can be further tested and

missing elements in the existing models identified (Webster

and Hurst 2012; Cutter and Payseur 2013).

There are approximately 10,000 species in the class Aves

(Jetz et al. 2012). Understanding how genome evolution

occurs in this group of organisms has been an important

topic in evolutionary genetics (reviewed by Ellegren 2013). In

light of the discussion presented above, comparative genomic

analysis of avian genomes will help to understand what fac-

tors, especially those characteristic of birds, correlate with o,

and whether these correlations are comparable to those ob-

served in other species. Despite recent progress (reviewed by

Ellegren 2013), important questions remain. For instance, it is

unknown whether gene compactness (i.e., intron number,

intron length, and protein length; reviewed by Choi and
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Hannenhalli 2013) is correlated with rates of protein evolution.

It is also unclear whether genes situated in different genomic

locations (e.g., subtelemeric versus central regions of macro-

chromosomes) tend to have different average specificity in

gene expression. Answers to these questions are important

for the study of HRI.

Avian genomes have a rather similar karyotype, with the

number of chromosomes being almost constant across spe-

cies (Griffin et al. 2007; Ellegren 2010; Skinner and Griffin

2012). A typical avian genome contains 40 pairs of chromo-

somes, of which, depending on definition, around a dozen are

large macrochromosomes, and the remainder are microchro-

mosomes. The lengths of macro- and microchromosomes can

differ by more than an order of magnitude, which is substan-

tially more than in, for example, mammals (reviewed by

Ellegren 2010). Because at least one crossing-over per chro-

mosome is needed for proper segregation during meiosis, a

consequence of the large difference in chromosome size is

that microchromosomes have substantially higher average re-

combination rates (&10 cM/Mb) than macrochromosomes

(0.5–2 cM/Mb), which has been confirmed by analyses of

genetic maps in several birds (Stapley et al. 2008, 2010;

Groenen et al. 2009; Backström et al. 2010; van Oers et al.

2014). This is more variable than average recombination rates

observed in humans (1.07-2.10 cM/Mb; Jensen-Seaman et al.

2004). These genetic maps also reveal that, within macrochro-

mosomes, the distribution of recombination frequency is

nonuniform, with the majority of recombination events clus-

tered in small regions close to telomeres. Although similar

“telomere effects” have also been observed in other organ-

isms such as humans (Jensen-Seaman et al. 2004), the clus-

tering in birds appears to be stronger. For instance, the

recombination rate drops very close to zero in regions

more than 15 Mb away from the telomeres of zebra finch

macrochromosomes (Backström et al. 2010; Stapley et al.

2010).

It has been suggested that HRI has probably played a role in

driving the negative correlation between recombination rate

(which is inversely related to chromosome size at a broad

scale) and o in birds (Axelsson et al. 2005; Nam et al. 2010;

Künstner et al. 2010; Balakrishnan et al. 2013). However, the

relative importance of positive and purifying selection to this

observation is unknown. To provide better support for the HRI

model, we intend to test 1) whether the elevation of o in

low-recombination regions is due to relaxed purifying selec-

tion, instead of enrichment of fast-evolving genes driven by

positive selection and 2) whether positively selected genes are

more likely to be found in high-recombination regions. In light

of the highly variable recombinational landscape within

macrochromosomes (Backström et al. 2010; Stapley et al.

2010; van Oers et al. 2014), it is essential to consider subte-

lomeric (i.e., ends) and central regions separately, which have

high and low recombination frequencies, respectively.

Here, we focus on sequence divergence in protein-coding

regions between two passerine birds, zebra finch and great tit

(Parus major), with the latter being a model organism for ad-

dressing key topics in evolutionary ecology (Drent et al. 2003;

Visser et al. 2003; Bouwhuis et al. 2010). By making use of a

multitissue transcriptome data set in great tits (Santure et al.

2011) and the zebra finch genome (Warren et al. 2010), we

seek to address the following questions: 1) How do variables

such as tissue specificity in gene expression, intron number,

intron length, and protein length correlate with o? 2) do

genes specifically expressed in different tissues evolve at dif-

ferent rates compared with other genes? and 3) is the efficacy

of natural selection higher in regions with more frequent re-

combination, as predicted by the HRI theory?

Materials and Methods

Pairwise Sequence Alignments

The great tit transcriptome sequencing data were obtained

from Santure et al. (2011). Briefly, in that article, normalized

cDNA was sequenced from eight tissues; cDNA was pooled

from ten different birds, all from Wytham Woods

(Oxfordshire, UK). We focused on 95,979 assembled contigs

with four or more reads. Because the contigs may contain

noncoding sequences originating from pre-mRNA, UTRs,

and other genomic parts, (e.g., due to leaky expression,

Santure et al. 2011), we identified coding regions by mapping

the contigs to cDNA of an outgroup species. We obtained

outgroup information for Gallus gallus (chicken),

Taeniopygia guttata (zebra finch), Anas platyrhynchos (mallard

duck), Ficedula albicollis (collared flycatcher), Meleagris gallo-

pavo (turkey), and Melopsittacus undulatus (budgerigar) from

Ensembl (Flicek et al. 2012) and Geospiza fortis (medium

ground finch) from Zhang et al. (2012). We used a nucleo-

tide-based alignment strategy to map the great tit contigs to

the corresponding regions of the outgroup genomes. First, we

conducted a whole-genome BLAT (Kent 2002) search of the

contigs against the cDNA of the outgroup species. For each

pairwise BLAT hit, we obtained a pairwise alignment using

bl2seq from BLASTALL (Altschul et al. 1990) and extracted

from this alignment the longest ORF (minimum size 300 nu-

cleotides) based on the outgroup sequence. The correspond-

ing protein sequence of great tit was obtained by adjusting for

frameshifts and stop codons, which were masked using

PAL2NAL (Suyama et al. 2006). Input files for PAML (Yang

2007) were generated. We used rumode =�2 with the F3x4

codon model to obtain dn=ds ratios using the codeml program

of the PAML suite. Because one contig can have hits in mul-

tiple outgroup loci, we used the hit with the lowest ds value.

We also discarded hits for which the overall substitution rate

was too high (tree length>1.2, which is likely the effect of

incorrect alignments). If one outgroup locus had several great
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tit hits, we combined the longest nonoverlapping stretches to

obtain dn=ds for this locus.

Multiple Sequence Alignments and PAML Analysis

To conduct site-specific analyses of substitution rates, we used

sequence triplets (3-way alignments) of chicken, zebra finch,

and the great tit contigs. First, we identified homologous

genes between chicken and zebra finch using Inparanoid

(Remm et al. 2001; Ostlund et al. 2010). We then excluded

those ortholog pairs, which either did not map or inconsis-

tently mapped to the great tit contigs based on the pairwise

sequence alignments. The remaining sequence triplets were

aligned using MUSCLE (Edgar 2004). Uncertain sequence po-

sitions were removed based on scores from ZORRO (Wu et al.

2012), and the final alignment was processed with PAL2NAL

(Suyama et al. 2006). The resulting alignments were used as

input for PAML (Yang 2007). Because alignment errors may

affect the downstream substitution rate analysis, to check the

robustness of our results, we also applied a different align-

ment strategy using PRANK (Löytynoja and Goldman 2005)

and GUIDANCE (Landan and Graur 2008; Penn et al. 2010).

Only a small proportion of alignments were different between

the two alignment strategies, and there was no difference in

alignment inconsistencies between recombination jungles and

deserts (G test, high vs. low/very low recombination rate and

inner macrochromosomes vs. outer macrochromosomes

and microchromosomes, P = 0.59 and P = 0.51), suggesting

that alignment quality is only a minor issue in our case.

PAML uses a maximum likelihood approach to obtain sub-

stitution rate estimates for the provided phylogeny based on

certain model assumptions. To obtain o (¼ dn=ds) for each

sequence triplet, we assumed a constant o across the tree

(model M0, one-ratio model). We also conducted site tests

to identify heterogeneity in o within genes (but not hetero-

geneity between branches). For this, the likelihood of a more

complex model was compared with a nested simpler model,

and significance was assessed using a likelihood ratio test. To

test for evidence of positive selection, we compared the site

models M7 and M8 (Yang et al. 1998, 2000). M7 and M8

assume that o among sites follows a bð0; 1Þ distribution,

but M8 additionally allows for sites with o > 1. To identify

genes with evidence for positive selection, we used a likeli-

hood ratio test comparing M7 and M8 assuming a �2 distri-

bution with df ¼ 2 and corrected for multiple testing using

the method of Benjamini and Hochberg (1995) with false dis-

covery rates (FDRs) ranging from 10% to 50%. Approximately

90% (depending on the applied FDR) of genes under positive

selection based on the PRANK alignments are also detected

when using MUSCLE alignments, suggesting that the majority

of positively selected genes are consistent between the two

alignment approaches. To test for the role of purifying selec-

tion for genes that did not show evidence of positive selection,

we extracted parameter estimates from model M1a in

PAML (Yang 2007), which allows a proportion of sites to be

neutrally evolving (i.e., o ¼ 1), and the remaining sites to be

subject to purifying selection (i.e., o < 1).

Physical Position and Estimates of Recombination Rate

Linkage maps constructed in several birds have consistently

shown that 1) microchromosomes tend to have much

higher per-site recombination rate than macrochromosomes

and that 2) for macrochromosomes, most of the recombina-

tion events take place in subtelomeric regions with a large

sections of the inner part of these chromosomes with much

lower recombination rates (the telomere effect; Groenen et al.

2009; Backström et al. 2010; Stapley et al. 2010). We inferred

the physical position of each gene using the zebra finch ge-

nome and classified genes into three categories:

Microchromosome (chromosomes 13–28), macrochromo-

some with telomeric location (chromosomes 1–12 and Z

within three megabases from the chromosome tip), and

macrochromosome within the inner 25% of the total chro-

mosome length. Our definition of microchromosomes fol-

lowed that of Backström et al. (2010), which was based

on the observation that recombination rates of chromosomes

less than 20 Mb in length appear to be high (i.e., comparable

to subtelomeric regions of macrochromosomes) and

uniform across the length of the chromosome.

Even though the karotype within birds is relatively stable

(Griffin et al. 2007), there were two major chromosomal fis-

sion and fusion events along the chicken and passerine line-

ages. We therefore excluded genes located at the beginning

of chromosomes 1 and 4 as well as genes located at the end

of chromosome 1A, where beginning and end are defined

according to the zebra finch genetic map (Stapley et al.

2008). We also excluded genes on chromosome 4A, which

is a microchromosome in the passerines but part of chromo-

some 4 (which is large) in chicken. We also classified genes

according to the local recombination rates inferred by com-

paring the physical map with the genetic map in zebra finch

(Backström et al. 2010). We defined three categories of genes

according to their estimates of recombination rate as follows:

Very low recombination (regions with no detected recombi-

nation events), low recombination (lower 25% of genes

with nonzero recombination rate estimates), and high

recombination (upper 75% of nonzero recombination rate

genes).

Extraction of Gene Features

We retrieved information on expression specificity for

each gene from Santure et al. (2011) who followed the

approach of Mank et al. (2008) to account for small levels of

undetected expression. Expression specificity is measured by t
(Yanai et al. 2005), which ranges from 0 for genes with equal

expression in all tissues to 1 for highly biased genes for whom

most transcripts were found in only one tissue. Expression for
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each contig was standardized to the number of reads per

million (TPM, see Santure et al. 2011 for details) and t was

calculated as follows;

t ¼

XN

i¼1

�
1�

lnðTPMiÞ

lnðTPMmaxÞ

�

N � 1

where N is the number of tissues, TPMi is the level of expression

in tissue i, and TPMmax is the highest level of expression of a

given contig over all i tissues examined. The number and size of

introns, the size of exons, gene density (proportion of coding

sites per Mb), and the chromosome size were inferred from

the zebra finch genome (Warren et al. 2010). The proportion

of sites near intron–exon boundaries was calculated as the

number of introns divided by protein length.

Statistical Analysis

The statistical package R was used to carry out statistical tests

and generate box plots (using boxplot.stats function with de-

fault parameters). In a box plot, the box represents the range

between upper and lower quartiles, the horizontal line within

the box shows the median, and the whiskers show the most

extreme data point, which is no more than 1.5 times the

length of the box away from the box. To test for enrichment

of genes with different gene ontology (GO) classifications, we

used goatools (https://github.com/tanghaibao/goatools, last

accessed July 28, 2014).

Results

Mapping the Great Tit Transcriptome to Other Avian
Genomes

We investigated rates of protein evolution by using a great tit

(P. major) transcriptome data set based on RNA extracted

from eight different tissues (brain, heart, kidney, liver,

muscle, pancreas, skin, and testis/ovary; Santure et al.

2011). We mapped the contigs assembled by Santure et al.

(2011) to the seven bird species for which a reference genome

is available (see Materials and Methods). The median ds be-

tween zebra finch and great tit is &0:1 (fig. 1 and table 1; see

also supplementary fig. S6, Supplementary Material online),

comparable to estimates reported earlier between zebra finch

and other passerine birds (Künstner et al. 2010; Backström

et al. 2013; Balakrishnan et al. 2013). The median ds values

obtained from pairwise comparisons between great tit and

each of the four nonpasserine birds are also shown in figure

1 and table 1 (see also supplementary fig. S6, Supplementary

Material online). The observed levels of synonymous diver-

gence are consistent with the phylogenetic relationship of

these species (Hackett et al. 2008, table 1 and fig. 1). For o
(dn=ds) between zebra finch and great tit, the median and

mean are &0:1 and &0:16, respectively (supplementary

table S1 and fig. S6, Supplementary Material online), which

is again fairly close to the values reported for other passerine

birds (0.08–0.13, Künstner et al. 2010; Backström et al. 2013;

Balakrishnan et al. 2013).

Because the quality of annotation is best for the zebra finch

and chicken genomes, we used these two genomes as refer-

ences. Specifically, we analyzed 8,294 two-way alignments

between great tit and zebra finch; we were also able to

obtain orthologous sequences from the chicken genome to

construct three-way alignments for 5,460 genes. We focused

on factors that may affect patterns of protein evolution be-

tween the two passerines, great tit and zebra finch.

Correlates of Variation in Rates of Evolution in Passerines

We explored pairwise relationship between several genomic

features and evolutionary rates in passerines (o and ds) ob-

tained from our two-way alignments, so as to identify predic-

tors of evolutionary rates between the two passerines.

Consistent with previous studies (Pál et al. 2006; Axelsson

et al. 2008; Larracuente et al. 2008; Ekblom et al. 2010;

Choi and Hannenhalli 2013), there is a highly significant pos-

itive correlation between o and t, a commonly used measure

Great tit

Flycatcher

Zebra finch

Ground finch

Budgerigar

Duck

Chicken

Turkey

FIG. 1.—Phylogenetic relationship of great tit and seven bird species

(Hackett et al. 2008).

Table 1

Median Estimates of ds and dn=ds Based on Pairwise Alignment be-

tween the Great Tit Transcriptome and Each of the Seven Different

Bird Species (fig. 1)

Genome Reference ds dn=ds

Collared flycatcher (Ficedula albicolis)a 0.104 0.081

Zebra finch (Taeniopygia guttata)a 0.103 0.099

Medium ground finch (Geospiza fortis)a 0.111 0.083

Budgerigar (Melopsittacus undulatus)b 0.248 0.075

Mallard duck (Anas platyrhynchos)b 0.318 0.073

Chicken (Gallus gallus)b 0.339 0.074

Turkey (Meleagris gallopavo)b 0.346 0.071

aPasserine.
bNonpasserine.

Efficacy of Natural Selection in Birds GBE

Genome Biol. Evol. 6(8):2061–2075. doi:10.1093/gbe/evu157 Advance Access publication July 24, 2014 2065

s
i
-
https://github.com/tanghaibao/goatools
arus
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
/
b
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu157/-/DC1
-
Since
s


of tissue specificity (Yanai et al. 2005), which ranges from 0

(equal expression in all tissues) to 1 (highly biased expression

with most transcripts found in only one tissue) (table 2).

Because both t and o are significantly correlated with GC3

(GC content at 3rd codon positions), it is possible that the

relationship between o and t is simply a by-product of

these correlations. However, a partial correlation analysis sug-

gests that this is not the case and that o and t are significantly

positively correlated after variation in GC3 was controlled for

(table 3, Case 1). To further rule out the possibility that the

pattern is driven by a small number of genes with very high

sequencing coverage (which may therefore have more accu-

rate estimates of t and potentially fewer assembling/

sequencing errors), we introduced read depth as a second

covariate and found that the positive correlation remains sig-

nificant (table 3, Case 2).

The pairwise relationship between o and several measures

of gene compactness including the number of introns, total

length of introns, and the length of the protein sequence are

all significantly negative, in agreement with previous analysis

of nonavian species (table 2, Larracuente et al. 2008; Choi and

Hannenhalli 2013). Partial correlation analyses suggest (table

3, Cases 3–5) that none of these correlations were driven by of

the apparent pairwise covariation between these gene fea-

tures with GC3 (which covariates with o) and chromosome

size (which covariates with measure of gene compactness).

Table 3

Partial Correlation Analyses Based on Kendall’s t to Investigate the Effect of Variation in Various Covariates on the Correlation between the Two

Variables of Interest

Case Variables Covariates Kendall’s q

1 o, t GC3 0.047***

2 o, t GC3, read depth 0.033***

3 o, intron length GC3, chromosome size �0.031***

4 o, intron number GC3, chromosome size �0.098***

5 o, protein length GC3, chromosome size �0.028**

6 ds, chromosome size GC3 �0.031***

7 o, genomic locationa GC3, gene density, t, intron number, protein length 0.02*1

8 o, genomic locationb GC3, gene density, t, intron number, protein length 0.023NS

9 o,c genomic locationa GC3, gene density, t, intron number, protein length 0.075***

10 p,d genomic locationa GC3, gene density, t, intron number, protein length 0.047***

11 �ln L,e genomic locationa GC3, gene density, t, intron number, protein length �0.13*2

NOTE.—NS, not significant.
aOuter parts of macrochromosomes and microchromosomes versus inner parts of macrochromosomes.
bOuter parts of macrochromosomes versus microchromosomes.
co at nonneutral sites (nearly neutral model M1a, fig. 3).
dProportion of neutral sites (nearly neutral model M1a, fig. 3).
eLog-likelihood difference (model M7 vs. M8, test for positive selection, genes with P <1.0).

***P � 0:001.

**P � 0:01.

*1P =0.032.

*2P =0.027
NSP> 0.05.

Table 2

Pairwise Correlation Coefficients (Spearman’s r) for Variables Covary with the Rates of Protein Evolution in Passerines

dn=ds GC3 q Intron Number Intron Length Protein Length Chromosome Size Gene Density

ds �0.04*** 0.22*** 0.10*** NS �0.10*** NS �0.10*** 0.09***

o ¼ dn=ds – �0.17*** 0.06*** �0.07*** �0.14*** �0.05*** 0.07*** NS

GC3 – 0.19*** �0.13*** �0.19*** �0.12*** �0.35*** 0.29***

t – 0.06*** 0.11*** 0.10*** NS NS

Intron number – 0.66*** 0.79*** �0.10*** 0.13***

Intron length – 0.57*** 0.04*** �0.11***

Protein length – �0.09*** 0.11***

Chromosome size – �0.55***

NOTE.–ds and dn=ds were estimated using pairwise alignments between great tit and zebra finch. GC3, GC content at third codon position; t, expression specificity; NS,
not significant.

***P< 0.001.
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The positive relationship between intron length and chromo-

some size is consistent with the fact that microchromosomes

are more compact (International Chicken Genome

Sequencing Consortium 2004; Nam and Ellegren 2012). We

also found a negative correlation between o and the propor-

tion of sequences near exon–intron boundaries (Spearman r
¼ �0:06 and P< 0.001), as reported in humans (Parmley

et al. 2007).

Our analysis of the two-way alignments also unearths the

following patterns, which have been reported in earlier studies

of other bird genomes, confirming the high quality of our data

and the generality of these patterns (Axelsson et al. 2005;

Nam et al. 2010; Künstner et al. 2010; Balakrishnan et al.

2013; reviewed by Ellegren 2013). First, smaller chromosomes

tend to have higher divergence at synonymous sites (table 2,

ds versus chromosome size). Interestingly, the correlation be-

tween ds and chromosome size remains significantly nega-

tively correlated after controlling for GC3 (table 3, Case 6),

implying that the correlation was not entirely due to the pos-

itive relationship between GC3 and substitution rates (table 2;

Webster et al. 2006). It is possible that smaller chromosomes

may have higher mutation rates (Axelsson et al. 2005; Nam

et al. 2010; Künstner et al. 2010). Secondly, there is a signif-

icant positive relationship between o and chromosome size

(table 2). This pattern is unlikely to be driven by the fact that

smaller chromosomes tend to have higher gene density, as o
and gene density are not statistically correlated (table 2); nor

does it seem probable that gene expression specificity, which

is uncorrelated with chromosome size (table 2), has played a

major role. In a later section, we will go beyond previous

studies and investigate whether the dramatic variation in re-

combination rate among different genomic regions has con-

tributed to this correlation through the process of HRI.

Heterogeneity in o between Genes Involved in Different
Biological Functions

We have shown that the rate of molecular evolution varies

substantially in passerine birds across the genome. It is, how-

ever, unclear whether genes with issue-specific expression

also have different o’s. To answer this question, we extracted

tissue-specific genes for the eight tissues included in the tran-

scriptome sequencing, and compared their o values (fig. 2).

The median o value for genes specifically expressed in the

brain is 0.051, which is significantly lower than the genome-

wide median of 0.1 (Mann–Whitney U test [MWU], P = 0.005)

and the median value of other tissue-specific genes (MWU,

P = 0.021). This could be explained by the theory put forward

by Drummond and Wilke (2008, see Introduction). In contrast,

testis/ovary-specific genes have significantly increased evolu-

tionary rates when compared with other tissue-specific genes

(MWU, P = 0.027), consistent with the intra- and interspecific

arms race theory. Interestingly, genes specifically expressed in

the heart had the highest median o= 0.129, which is compa-

rable to that of the testis/ovary-specific genes (MWU,

P = 0.15). This is different from humans whose heart-specific

genes have significantly lower median o (0.07) than testis-

specific genes (0.103) (Winter et al. 2004). The cause of this

difference is unclear and warrants investigation in future.

We further tested whether genes with very low (smaller

than the 10th percentile, likely to contain many genes under

dn/ds (great tit vs. zebra finch)

brain

heart

kidney

liver

muscle

pancreas

skin

testes/ovaries

0.0 0.1 0.2 0.3 0.4 0.5 0.60.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2.—Boxplots of evolutionary rates for subsets of genes specifically expressed in certain tissues; boxes in blue and red denote significantly reduced

and increased dn=ds values, respectively. Whiskers were drawn as implemented in the R-function boxplot (see Materials and Methods).
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strong selective constraints) or very high (larger than the 90th

percentile, likely to include genes either under relaxed con-

straints or fast-evolving genes driven by recurring episodes of

positive selection) o values are enriched for particular GO cat-

egories. Seven GO terms have significantly more low-o genes

than expected by random chance (Fisher’s exact test with

Bonferroni correction P<0.01, supplementary table S2,

Supplementary Material online); these include genes involved

in core cellular functions such as ribosomal complexes or met-

abolic regulation. Genes associated with at least one of these

seven GO terms tend to have lower expression specificity

(MWU, P<0.001), which is expected for housekeeping

genes (Zhang and Li 2004). For genes with elevated o, we

did not observe significant over- or underrepresentation in any

GO terms. However, in light of the potential problems of GO-

based analysis (Pavlidis et al. 2012), these results should be

regarded as exploratory.

Evidence of More Effective Natural Selection in Regions
with Frequent Recombination

We first tested whether variation in local recombination rates

contributes to the covariation between o and chromosome

size. Given the pronounced telomere effect observed in

macrochromosomes and the substantial differences in aver-

age recombination rate between macro- and microchromo-

somes, we defined three sets of genes: 1) genes in central

parts of macrochromosomes (low recombination frequency);

2) genes located near ends of macrochromosomes (i.e.,

subtelomeric regions, highly recombining); and 3) genes in

microchromosomes (highly recombining). The ends of macro-

chromosomes and microchromosomes are often referred to

as recombination jungles, and central parts of macrochromo-

somes as recombination deserts (e.g., Backström et al. 2010).

Using the MWU, we found that the genes in recombinations

deserts have significantly higher o values than the other two

sets (fig. 3a; P = 0.002). Because the MWU cannot control for

the effects of covariates, we used a partial correlation method

to test whether o was positively correlated with a genomic

location variable, which took the value of 0 or 1 for genes

located in recombination jungles or deserts, respectively. We

chose GC3, gene density, expression specificity, intron

number, and protein length as covariates but did not consider

chromosome size. This is because recombination jungles and

deserts were defined mainly in light of the fact that micro-

chromosomes have, on average, much higher recombination

rates per base pair than macrochromosomes, but this relation-

ship would disappear if chromosome size was held constant.

After controlling for covariates,o was found to be significantly

lower in recombination jungles (table 3, Case 7). Interestingly,

o is not statistically different between the two high-recombi-

nation sets (fig. 3a; MWU, P = 0.13), and this remains the case

when covariates were controlled for (table 3, Case 8).

To check whether the above results are robust to how re-

gions with frequent and infrequent recombination are de-

fined, we estimated local recombination rates by comparing

the zebra finch genetic map with its reference genome, and
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FIG. 3.—Box plots of evolutionary rates for subsets of genes according

to their (a) chromosomal positions and (b) recombination rate estimates.

Whiskers are drawn as implemented in the R-function box plot (see

Materials and Methods). The bar plots show the proportion of sites esti-

mated to be evolving under neutrality and the median dn=ds value for sites

inferred to be evolving under purifying selection by the nearly neutral

(model M1a) in PAML. Error bars indicate median absolute deviations

(MDA). ���P � 0:001 under the MWU.
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defined high-, low-, and very low-recombination regions

(Backström et al. 2010; Warren et al. 2010, see Materials

and Methods). Genes in high-recombination regions show a

reduction regarding their median o value when compared

with either very low- or low-recombination regions (MWU,

P = 0.001 and P = 0.002, respectively), which is consistent

with the pattern found above. No significant difference in o
was found between regions with low and very low recombi-

nation rate estimates (MWU, P = 0.2). Given the fact that the

majority of the genes estimated to have low- and very low-

recombination rates were not located at the ends of macro-

chromosomes or microchromosomes (2,607 out of 2,767,

&94%), these results suggest that o and local recombination

rates are negatively correlated and that the overall difference

in o between macro- and microchromosomes (e.g., o versus

chromosome size in table 2) may be in part driven by high o in

low-recombination regions of macrochromosomes (i.e., re-

combination deserts).

Next we asked whether purifying selection is less effective

in regions with infrequent recombination, as predicted by the

HRI theory (see Introduction). To increase statistical power, we

used three-way alignments including orthologous genes from

the chicken genome in this analysis. We also excluded genes

showing evidence of positive selection according to a “site

model” implemented in PAML (at an FDR level of 10%; see

Materials and Methods). We used PAML to estimate, for each

locus, 1) the proportion of neutrally evolving sites and 2) o at

sites that are under purifying selection. As above, genes were

assigned to three different groups according to their recom-

bination rates. Compared with genes found in the recombi-

nation jungles, genes located in recombination deserts have a

significantly higher proportion of neutral sites (fig. 3a; MWU,

P = 0.001 and P< 0.001 for comparisons with ends of macro-

chromosomes and microchromosomes, respectively) and sig-

nificantly higher o at sites under purifying selection (fig. 3a;

MWU, P = 0.002 and P<0.001). After controlling for the co-

variates mentioned above, o for nonneutral sites and the pro-

portion of neutral sites were found to be significantly lower in

recombination jungles (table 3, Cases 9 and 10)

Similar patterns can be seen when genes in either low- or

very low-recombination regions were compared with those in

high-recombination regions (fig. 3b; P<0.005 for all compar-

isons). These patterns are consistent with relaxed selective

constraints in regions where recombination is infrequent.

Interestingly, microchromosomes and ends of macrochromo-

somes have very similar median values of the proportion of

neutral substitutions and o for nonneutral substitutions

(fig. 3a; MWU, P>0.1). Similarly, no statistically significant

difference was found between low- and very low-recombina-

tion regions (fig. 3b; MWU, P>0.1).

Finally, we examine whether positive selection is also more

efficient in regions with higher recombination frequencies.

Support for positive selection was determined by using a site

model implemented in PAML (see Materials and Methods).

Among the 1,333 genes in recombination jungles, ten show

evidence for positive selection, which is significantly more fre-

quent than genes in recombination deserts where 2 out of

1,131 genes have experienced positive selection (table 4; with

an FDR level of 10%; G test, P = 0.03). Because the G test

cannot take into account covariates, we carried out the fol-

lowing analyses. If high local recombination rates facilitate the

fixation of beneficial variants, then the M8 model should, on

average, fit the data better than the M7 model, and therefore

difference in ln likelihood between the two models (�lnL)

should be larger in high-recombination regions. Indeed, con-

trolling for covariates, model M8, which includes positive se-

lection, fitted the data from high-recombination regions

better (table 3, Case 11).

A similar enrichment of positively selected loci is also found

in high-recombination regions, relative to low recombination

regions (table 4; G test, P ¼ 0:02). These results (as well as

those presented earlier in this section) are robust to different

definitions of regions with different recombination frequen-

cies and different FDR thresholds (supplementary table S3,

Supplementary Material online) and the use of a different

combination of sequence aligner and alignment processing

algorithm (PRANK and GUIDANCE; see Materials and

Methods; supplementary table S4, Supplementary Material

online) or a more robust but less powerful model comparison

to detect positive selection (PAML; M1a vs. M2a, supplemen-

tary table S5, Supplementary Material online). Thus, in agree-

ment with the HRI theory, elevated local recombination

reduces interference between linked selected sites and facili-

tates both the spread of beneficial mutations and the removal

of deleterious mutations.

Discussion

In this study, we used a multitissue transcriptome data set in

great tits, together with the reference genomes of the zebra

finch and the chicken, to study patterns of molecular evolu-

tion along the two passerine lineages. By contrasting patterns

Table 4

Location of Genes with Evidence for Positive Selection

FDR Recombination

Region

Positively

Selected

Not

Positively

Selected

P (G Test)

10% High 8 1,782

Low 0 659 0.02

10% Junglea 10 1,323

Desertb 2 1,129 0.03

NOTE.—Genes were classified according to their genomic locations (recombi-
nation jungles and deserts) or their estimated local recombination rate (high- and
low/very low recombination, see Materials and Methods). Comparisons were con-
ducted between genes located in different recombinational environments using G
tests.

aOuter parts of macrochromosomes and microchromosomes.
bInner parts of macrochromosomes.
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of sequence divergence between genes in high- and

low-recombination regions of the genome and by analyzing

genes with and without evidence of positive selection sepa-

rately, we obtained evidence that the efficacy of both positive

and negative selection is higher in regions with more frequent

recombination, as predicted by the HRI theory (fig. 3 and table

4). We also showed that more compact genes with fewer

introns, shorter introns, and shorter proteins tend to evolve

faster (table 2) and that genes with a larger proportion of

exon–intron boundaries have lower o. The latter two results

have not previously been examined in birds (Parmley et al.

2007; Choi and Hannenhalli 2013). These analyses demon-

strate that transcriptome sequencing is a powerful way to

address fundamental questions about genome evolution in

organisms such as great tits where genomic resources are

relatively limited.

Gene Expression Pattern as a Major Predictor of Protein
Evolution

Gene expression pattern can be viewed as encompassing both

expression level and tissue specificity of expression. Although

it is well known that gene expression level is a key predictor of

o (reviewed by Pál et al. 2006 and Choi and Hannenhalli

2013), this factor was not considered in this study because

our cDNA libraries were normalized prior to sequencing

(Santure et al. 2011), which means that read depth is probably

an unreliable measure of gene expression level. Nonetheless,

when read depth was used as a proxy of expression level, we

did find a significant negative correlation between o and ex-

pression level (Spearman’s r=�0.06, P< 0.001), which is in

the same direction as reported previously in many organisms

(reviewed by Pál et al. 2006 and Choi and Hannenhalli 2013).

Our finding of a positive correlation between tissue speci-

ficity in expression (t) and o should be conservative in the

presence of library normalization, as this procedure suppresses

differences in expression level, and is therefore expected to

homogenize differences between tissues (Ekblom et al. 2012).

This may explain why the pairwise correlation between t and

o reported in table 2 is somewhat weaker than those pre-

sented in previous studies (e.g., 0.3 in Drosophila, 0.24 in

mice, 0.12 in humans; Larracuente et al. 2008; Park et al.

2012). Evidence for this homogenization is provided by an

analysis conducted on contigs assembled from at least 50

reads (combined across all tissues), the correlation increased

to 0.11, which may reflect that estimates of tissue specificity

were more accurate when more reads were available. A pos-

sible biological explanation of the relationship between t and

o is increased pleiotropy: Proteins that are expressed in many

tissues may tend to have more interacting partners, which

lead to more constraints on the function and/or structure of

the protein, and a corresponding reduction in evolutionary

rate (Pál et al. 2006). There is evidence that t and expression

level are highly correlated in some species (Lercher et al. 2002;

Subramanian and Kumar 2004) including birds (Ekblom et al.

2010). In mammals, tissue specificity seems to explain more of

the variation in rates of protein evolution than expression level

(Pál et al. 2006). It is possible that the positive correlation we

observe here may be in part driven by variation in gene ex-

pression level. Better data are needed to establish the relative

importance of the breadth and level of expression in deter-

mining evolutionary rates in passerines.

Although genes with high tissue specificity in expression

tend to evolve faster as a whole, the distribution of o is

highly heterogeneous among tissues (fig. 2). Specifically,

genes expressed mainly in the brain have, on average, the

lowest o, which is consistent with findings in metazoans

(Axelsson et al. 2008; Drummond and Wilke 2008), and is

probably due to the fact that neuronal tissues are particularly

sensitive to the damaging effects of mistranslation-induced

protein misfolding. Therefore, these genes are under strong

selective constraints because of the rarity of well-adapted se-

quences with high translational accuracy and robustness

(Drummond and Wilke 2008). On the other hand, genes ex-

pressed in testis/ovary have accelerated rates of molecular

evolution. This pattern, which has been observed in other or-

ganisms such as humans (Nielsen et al. 2005) and Drosophila

(Zhang et al. 2004), can potentially be caused, either individ-

ually or in some combination, by sperm competition, sexual

selection, and sexual conflict (Swanson and Vacquier 2002),

all of which are common in birds (Birkhead and Moller 1992).

Additional research is needed to clarify the relative importance

of these factors in birds.

HRI as a Determinant of Protein Evolution in Birds

Our analysis of patterns of protein evolution in the two pas-

serine lineages suggests that HRI is likely to have played an

important role in determining variation in o. In particular, re-

gions with reduced recombination tend to be more prone to

the accumulation of slightly deleterious substitutions, whereas

the fixation of beneficial mutations is more likely to take place

in high-recombination regions (fig. 3 and table 4). These re-

sults are insensitive to different definitions of high- and low-

recombination regions and FDR cutoffs. Intrachromosomal

rearrangements, which have occurred between the three

bird species considered (reviewed by Ellegren 2010, 2014;

see also van Oers et al. 2014), should not make the test coun-

terconservative. This is because, for macrochromosomes,

shuffling genes between the ends and the central parts is

expected to homogenize differences in recombination fre-

quency, whereas for microchromosomes, genetic maps in all

species studied to date suggest recombination rates are

roughly constant along the length of the chromosome

(Backström et al. 2010; Stapley et al. 2010; van Oers et al.

2014).

There is evidence that GC content is not at statistical equi-

librium in multiple avian lineages and that GC-biased gene
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FIG. 4.—Box plots of (a) GC content at 3rd positions (GC3), (b) expression specificity t, (c) ds, and (d) dn for subsets of genes according to their

chromosomal positions. Whiskers are drawn as implemented in the R-function box plot (see Materials and Methods). ���P � 0:001, ��P � 0:01, �P � 0:05.
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conversion (gBGC) may have contributed to this (Webster

et al. 2006; Nabholz et al. 2011; Mugal et al. 2013).

However, our results should also be robust to variation in

GC content and the action gBGC, which can upwardly bias

estimates ofo and lead to false detection of targets of positive

selection (reviewed by Duret and Galtier 2009). First, we used

the site models in PAML, which analyzed substitution patterns

over the entire phylogenetic tree in the search of positively

selected genes. A recent analysis has shown that results pro-

duced by this approach are unlikely to be affected by gBGC

(Ratnakumar et al. 2010). Second, if substitutions of slightly

deleterious mutations were driven by gBGC (Galtier et al.

2009), we expect this effect to be stronger in regions with

higher recombination rates and GC content, which are often

used as proxies of the intensity of gBGC (Duret and Galtier

2009). Contrary to this prediction, in regions with reduced

recombination, where o is higher, GC content is lower (figs.

3 and 4a), and evidence of relaxed constraints on nonsynon-

ymous sites also comes from these regions (fig. 4d).

There is little evidence that the systematic difference in o
displayed in figure 3 is driven by a similar difference in tissue

specificity in gene expression (Case 7 in table 3). As shown in

figure 4b, regions with frequent recombination actually have

significantly higher t than those with reduced recombination.

A similar relationship between t and recombination has been

observed in humans (Necsulea et al. 2009) and Drosophila

(Weber and Hurst 2011). We currently do not have data to

ascertain whether gene expression level differ between these

genomic regions. However, as mentioned above, if we were

to assume that there is a strong negative correlation between

t and expression level (Lercher et al. 2002; Subramanian and

Kumar 2004; Ekblom et al. 2010), then expression level would

be lower in regions with frequent recombination and there-

fore would not be the main driver of the difference in o.

Because o is defined as the ratio of dn to ds, it may be

inflated when ds is unusually small either due to random

chance or selective constraints on synonymous sites, resulting

in false detection of positive selection. A recent analysis based

on three-species alignments of chicken, turkey, and zebra

finch has reported evidence that synonymous sites may be

under significant constraints (Künstner et al. 2011).

However, our results, which are based on comparisons of

the number of selected genes detected by PAML between

different classes of genes, should be robust. First, Künstner

et al. (2011) found no evidence of regional variation in selec-

tive pressure on synonymous sites and suggested that differ-

ence in ds between regions reflect variation in mutation rate.

Second, the median ds values of the positively selected genes

(at an FDR level of 10%) and the other genes were 0.39 and

0.4, respectively, which were not significantly different

(MWU, P = 0.25). Third, as shown in figure 4c, regions with

high recombination rates tend to have much higher ds than

those with infrequent recombination. These three observa-

tions suggest that genes in high-recombination regions

should not be more prone to false detection of positive selec-

tion. Hence, it seems unlikely that our results can be explained

by selection at synonymous sites.

Our results therefore extend previous analyses of the neg-

ative correlation between recombination rate and o in birds

(Axelsson et al. 2005; Nam et al. 2010; Künstner et al. 2010;

Balakrishnan et al. 2013) by showing that 1) higher o in low-

recombination regions is due to relaxed purifying selection

rather than enrichment of fast-evolving genes driven by pos-

itive selection, 2) that frequent recombination facilitates the

incorporation of new beneficial mutations, and 3) that micro-

chromosomes and ends of macrochromosomes show very

similar patterns of protein evolution as a consequence of fre-

quent recombination. The positive relationship between the

efficacy of selection and recombination rate appears to be

consistent with the observation that diversity at putatively neu-

tral sites (a proxy of local Ne; Charlesworth 2009) increases

with local recombination rates in several birds (reviewed by

Ellegren 2013). However, further research is needed to test

whether evidence of HRI indeed exists both within and be-

tween species.

There are differences between the passerines and other

organisms in terms of observations related to HRI. For in-

stance, in Drosophila, differences in o are most visible be-

tween regions that lack recombination (e.g., the fourth

chromosome) and those where crossing-over occurs, whereas

within the crossover regions, little difference in o was found

between regions with high, intermediate, and low crossover

frequencies (Haddrill et al. 2007; Larracuente et al. 2008).

However, in our case, o appears to be more variable within

the crossover regions, with regions with low, but nonzero,

recombination rates having significantly higher o than high-

recombination regions (fig. 3b). The enrichment of targets of

positive selection in high-recombination regions also contrasts

with the lack of such enrichment in humans (Bullaughey et al.

2008). It is possible that the highly variable recombinational

landscape in birds has made the effects of HRI more obvious

across genomic regions. It is also possible that selection is

more effective in birds than in humans, which may make it

easier to detect HRI in the former (Bullaughey et al. 2008).

Evidence of more effective selection in birds than in humans

can be seen from the observation that a higher proportion of

nonsynonymous substitutions in birds may be driven to fixa-

tion by positive selection than in humans (Eyre-Walker 2006;

Axelsson and Ellegren 2009) and that birds have lower aver-

age o (&0:15) than humans (&0:33; Zhang et al. 2013;

supplementary table S1, Supplementary Material online).

However, as pointed out by Cutter and Payseur (2013) (see

also Connallon and Knowles 2007; Webster and Hurst 2012),

predictions of HRI depend in a complicated way on parame-

ters such as recombination rate, distribution of fitness effects

of new mutations, and effective population size. More analysis

is necessary to characterize these parameters in birds, which

shall in turn facilitate comparisons with other species.
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Supplementary tables S1–S4 and figures S1–S8 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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