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Abstract
Prostate cancer cells metastasize to the bones, causing ectopic bone formation, which results in fractures and
pain. The cellular mechanisms underlying new bone production are unknown. In a recent study, Lin and
colleagues, by using state-of-the-art techniques, including prostate cancer mouse models in combination with
sophisticated in vivo lineage-tracing technologies, revealed that endothelial cells form osteoblasts induced by
prostate cancer metastasis in the bone. Strikingly, genetic deletion of osteorix protein from endothelial cells
affected prostate cancer–induced osteogenesis in vivo. Deciphering the osteoblasts origin in the bone
microenvironment may result in the development of promising new molecular targets for prostate cancer therapy.
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Prostate cancer is one of the most common types of cancers among
male patients around the world, and it is anticipated that its incidence
will increase due to the population growth, especially the elderly [1].
The biggest problem that this pathology presents is the expansion of
malignant cells to distant organs [2]. Remarkably, prostate cancer cells
tend to metastasize in bones, which represent fertile ground for their
accommodation and growth [3]. This process results in bone lesions
due to tumor cells provoking increased bone formation through
osteoblasts activation [4]. This phenomenon is the result of the body's
attempt to produce bone repair; however, the result of this growth is
weak, aberrantly structured bone tissue [5,6]. Due to the poor quality
of the bone produced, patients with this condition suffer higher risk
of bone fractures and pain [7]. Additionally, accelerated bone growth
produces mineralized tissue containing malignant cells, which, in
turn, cause more osteoblastic lesions, creating a vicious cycle of
further cancerous growth [8]. Being that new bone accumulation is a
critical step in prostate cancer progression, the disruption of
osteoblasts generation is a way to decrease tumor burden in the
bone. Nevertheless, the cellular and molecular mechanisms that
underlie bone production after bone metastases are not completely
understood. Deciphering the osteoblasts’ origin in the bone
microenvironment may result in the development of promising
new molecular targets for prostate cancer therapy. (See Fig. 1).

Endothelial cells line the inner surface of blood vessels and play a
broad range of roles related to vascular homeostasis [9]. Since these
cells have been successfully isolated from a variety of tissues and
established in culture, several studies have explored other possible
functions for endothelial cells [10]. Evidence suggests that endothelial
cells are plastic and may form other cell types, including fibroblasts
[11], chondrocytes [12], and osteoblasts [13]. The inherent
osteogenic differentiation capacity of endothelial cells was not yet
explored in physiologic conditions in vivo, and it cannot be
discounted that modification of endothelial cells’ properties by
their manipulation in vitro may influence their fate decisions.
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Figure 1. Endothelial cells form osteoblasts in the metastatic prostate cancer bone. Prostate cancer metastases induce ectopic bone
formation, which cooperates with prostate cancer progression. Understanding the cellular mechanisms involved in this process is a
central question in prostate tumor biology. Lin and colleagues recently showed that endothelial cells, stimulated by malignant cells via
BMP4, generate osteoblasts [14]. Future studies may reveal the complexity of the bone microenvironment invaded by prostate tumor
cells in much greater detail.
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In a recent study inDevelopmental Cell, Lin and colleagues showed,
by using several mouse models of prostate cancer, in vivo gene
deletion, and genetic fate-tracing technologies, that endothelial cells
generate osteoblasts stimulated by prostate cancer metastasis in the
bone [14]. The authors demonstrated that after implantation of
patient-derived xenograft PCa-118b, prostate cancer cell line,
subcutaneously, mouse-derived cells participate in the ectopic bone
formation present in those tumors. Lin and colleagues investigated
the progeny of Tie2-expressing cells in these tumors by using
Tie2-Cre/TdTomato mice to label specifically endothelial-generated
cells. These genetic lineage tracing experiments unveiled that
endothelial cells participate in the formation of tumor-induced
osteoblasts [14]. Moreover, the authors demonstrated, by the use of
osteorix-knockout osteoblasts isolated from the calvaria, that osterix
expression is necessary for osteoblast differentiation. Based on this,
using state-of-the-art lineage-tracing Cre/loxP-mediated technologies,
the authors deleted osteorix protein specifically in endothelial cells.
Strikingly, those experiments revealed that osteorix in endothelial cells
is essential for prostate cancer–induced osteogenesis in vivo [14].
Interestingly, Lin and colleagues detected cells with coexpression of
endothelial and osteoblast markers in PCa-118b xenografts, as well as
in human bone marrow biopsies of patients with prostate cancer
metastasis. These hybrid cells could represent intermediate cells
produced in the transition between endothelial cells to osteoblasts.
Finally, by the use of viral vectors overexpressing several factors in
prostate tumors, the authors suggested that BMP4 induces ectopic
bone formation.
Here, we discuss the findings from this work and evaluate recent
advances in our understanding of the prostate cancer metastasis bone
microenvironment.

Perspectives/Future Directions
Lin and colleagues reveal that, in the metastatic prostate cancer
lesions, the bone arises partly from bone marrow endothelial cells.
This unpredictable plasticity of endothelial cells to form bone in the
bone marrow microenvironment may lead to the design of innovative
treatments to inhibit specifically these cells for the improvement in
the outcome of patients with bone metastasis.

The main conclusions from this study are based on the data
acquired from Tie2-Cre/TdTomato and Tie2-Cre/osteorix floxed
mice [14]. Yet, although Tie2 gene is expressed in endothelial cells
[15,16], it is known that Tie2 expression is not restricted to these
cells, as it is also expressed in hematopoietic cells [17,18]. Thus,
Tie2-Cre mice display Cre recombinase activity in both endothelial
and hematopoietic cells [19–22]. During embryonic development,
endothelial cells and hematopoietic stem cells, which form all
hematopoietic cells, arise from the same shared precursor: hemogenic
endothelium [23–28]. Due to this, endothelial-specific promoters
with constitutively active Cre recombinase are not a great tool to
prevent Cre recombinase activity in hematopoietic cells. Therefore, it
is possible that the labeled osteoblasts, observed in the ectopic bone
induced by prostate cancer by Lin et al. (2017) [14], are derived from
hematopoietic cells, which would also be very important. Nonethe-
less, the clarification of what is the exact origin of osteoblasts in the
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metastatic bone is still needed. To achieve endothelial-specific tracking
and gene targeting, more specific mouse models should be used in
future experiments, such as VE-Cadherin-CreERT2 mice [29]. In
VE-Cadherin-CreERT2/TdTomato mice, it is possible to track the
endothelium's fate specifically, while in VE-Cadherin-CreERT2/
osteorix floxed mice, it will be possible to control osteorix protein
expression specifically in endothelial cells temporally.

Furthermore, the authors did not quantify the contribution of
Tie2-expressing cells to osteoblasts in the prostatic malignancy-
induced bone. Thus, it still needs to be addressed whether bone
marrow Tie2-expressing cells are the main source of osteoblasts in the
prostate cancer metastatic microenvironment. Also, it remains to be
revealed which are the other possible sources of osteoblasts in these
conditions. Interestingly, several cell populations with osteogenic
capacity have been described in the bone marrow [30,31], including
NG2+ pericytes [32–50], LepR+ cells [51,52], and Gli1+ cells [53].
Whether these cellular populations contribute to bone formation in
prostate cancer requires further investigations, and what is the exact
overlap between these cells with Tie2-expressing cells in their role as
sources for osteoblasts remains unknown. Additionally, the roles of all
stromal cellular populations and innervations [54] in the tumor-
induced ectopic bone formation as compared to physiologic bone
development remain unrevealed and should be evaluated in future
studies. Importantly, the authors showed that deletion of osteorix in
Tie2-expressing cells in mice not bearing prostate cancer does not affect
the skeletal phenotype [14], suggesting that Tie2+ cells do not form
osteoblasts during normal physiologic bone development.

Lin and colleagues suggest BMP4 as a specific molecule produced
by tumor cells that promote osteoblast formation in the metastatic
bone [14]. However, whether tumor cells–derived BMP4 is
important for this process to occur remains elusive, as BMP4 has
not been conditionally deleted from malignant cells or alternative
sources. Thus, there is no direct evidence that prostate tumor cells are
the only/main functionally important source of BMP4 for ectopic
bone formation. BMP4 preferentially binds to TGFβ type I receptors
[55], which may be expressed by endothelial cells [56]. Since these
receptors have not been conditionally deleted from endothelial cells in
the bone, there is also no direct evidence that endothelial cells may be
activated to differentiate into osteoblasts through these receptors in vivo.
Moreover, as the bone prostate tumor microenvironment produces
several soluble biologically active factors, future studies should explore
whether other molecules produced in this microenvironment in vivo
may be important in the regulation and/or promotion of new
osteoblasts formation in the metastatic bone.

Endothelial cells are not homogeneous in their distribution,
morphology, antigen composition, gene expression, and function.
These cells vary between different organs, as well as between the various
segments of the vasculature within the same organ [57,58]. It remains to
be elucidated, for example, whether bonemarrow endothelial cells from
sinusoids and arteries differ. Also, it is unclear whether Tie2+
endothelial cells are heterogeneous based on their role as a source for
osteoblasts in prostate cancer. Does the plasticity of endothelial cells
depend on their vascular bed of origin (sinusoid or arteriole)? Is the
capacity to form osteoblasts limited to only a specific subpopulation of
endothelial cells? Elucidating the molecular differences between
endothelial cells in the bone marrow may bring novel concepts about
the role of these cells in ectopic bone formation in neoplasic conditions.

A significant limitation in prostate cancer research is the lack of
appropriate preclinical models, which allow studying the cellular and
molecular processes involved in tumorigenesis. The xenograft and
allograft prostate tumor mouse models were used by Lin and
colleagues [14]. These models represent great tools to study some
aspects of prostate cancer; however, they present limitations related to
the immunosuppressed system of the host which is crucial in human
metastatic prostate tumor dissemination. Also, the use of cancer cell
lines bypasses several primordial stages involved in tumor develop-
ment, and the interaction with malignant microenvironment may be
altered. Thus, it will be interesting to evaluate whether ectopic
osteoblast formation occurs in the metastatic bone in genetically
engineered mouse models, e.g., C3(1)-Tag [59] or others, in which
prostate cancer progression is closely reproduced, representing a
better predictive mouse model.

In conclusion, understanding the cellular and molecular processes
involved in ectopic bone growth is a central question in the prostate
cancer metastatic microenvironment biology. The origin of all
osteoblasts that form ectopic bone remains unknown. Lin and
colleagues revealed endothelial cells as a source for malignancy-
induced osteoblasts in prostate cancer [14]. This new knowledge
advances our comprehension of the prostatic cancer microenviron-
ment and may result in the future in the development of promising
new molecular targets for prostate cancer therapy.
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