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Abstract
Background  Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is 
a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated 
an interpretable machine learning (ML) model based on contrast-enhanced computed tomography (CECT) radiomics 
for preoperatively predicting PD-L1 expression status in patients with gastric cancer (GC).

Methods  We retrospectively recruited 285 GC patients who underwent CECT and PD-L1 detection from two medical 
centers. A PD-L1 combined positive score (CPS) of ≥ 5 was considered to indicate a high PD-L1 expression status. 
Patients from center 1 were divided into training (n = 143) and validation sets (n = 62), and patients from center 2 
were considered a test set (n = 80). Radiomics features were extracted from venous-phase CT images. After feature 
reduction and selection, 11 ML algorithms were employed to develop predictive models, and their performance in 
predicting PD-L1 expression status was evaluated using areas under receiver operating characteristic curves (AUCs). 
SHapley Additive exPlanations (SHAP) were used to interpret the optimal model and visualize the decision-making 
process for a single individual.

Results  Nine features significantly associated with PD-L1 expression status were ultimately selected to construct the 
predictive model. The light gradient-boosting machine (LGBM) model demonstrated the best performance for PD-L1 
high expression status prediction in the training, validation, and test sets, with AUCs of 0.841(95% CI: 0.773, 0.908), 
0.834 (95% CI:0.729, 0.939), and 0.822 (95% CI: 0.718, 0.926), respectively. The SHAP summary and bar plots illustrated 
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Background
Gastric cancer (GC) is the fifth most common malig-
nancy and the fourth leading cause of cancer-related 
death worldwide [1]. GC typically has a poor prognosis 
because it is often diagnosed at an advanced stage [2]. 
Despite several recent advancements in relevant surgi-
cal techniques, neoadjuvant chemotherapy, and targeted 
therapy, GC prognosis has remained poor, with age-stan-
dardized 5-year net survival remaining at 20–40% [3]. 
Therefore, novel, effective treatment strategies for GC 
applicable in clinical practice are warranted.

Immunotherapy with immune checkpoint inhibi-
tors targeting programmed death ligand 1 (PD-L1)/
programmed cell death protein 1 (PD-1) has great 
applicability in treating various cancers, including GC, 
melanoma, renal cell carcinoma, and lung cancer [4–9]. 
However, the immunotherapeutic response rate remains 
relatively low; thus, selecting patients who may benefit 
from anti-PD-1/PD-L1 therapy precisely is essential [10]. 
Tumor PD-L1 expression status is closely associated with 
the effectiveness of anti-PD-1/PD-L1 immunotherapy, 
and it is widely used as a feasible molecular biomarker 
for treatment efficacy prediction [11]. Currently, immu-
nohistochemistry (IHC) is the method most commonly 
used to evaluate PD-L1 expression status in GC; however, 
the tissue used for PD-L1 detection is derived from oper-
ations or endoscopic tissue biopsy. Tissue-based biopsy 
is a relatively expensive, invasive procedure associated 
with varying degrees of harm to the patient [12]. More-
over, if a biopsied tumor tissue is insufficient, precisely 
determining PD-L1 expression can be difficult because of 
tumor heterogeneity [13]. Therefore, accurate, noninva-
sive assessment of PD-L1 expression status is crucial to 
guiding treatment strategies.

Radiomics, a noninvasive technique for extracting 
high-dimensional quantitative data from medical images 
[14, 15], can reflect tumor heterogeneity and provide 
valuable insights into cancer diagnosis, prognosis, and 
individualized treatment [16–18]. Studies have indicated 
that the CT radiomics model with traditional logistic 
regression (LR) analysis may quantitatively predict PD-L1 
expression in several cancers including GC. However, the 
performance of CT radiomics models reported in these 
studies remains unclear [19–21].

Machine learning (ML) is being increasingly used 
in medicine because it can process large amounts of 
data accurately [22, 23]. However, although most stud-
ies have focused on improving the predictive accuracy 
of ML models, the interpretability of the predictive 
model remains unclear. Therefore, studies are increas-
ingly focusing on applying interpretable ML models in 
clinical decision support systems and medical research. 
Interpretable models allow clinicians to focus on rational 
decision-making, ensure appropriate model functional-
ity, and guide diagnosis or treatment decisions [24, 25]. 
Furthermore, rationalizing model decisions aids in pri-
oritizing major outcomes, facilitating the extraction of 
valuable insights, and enhancing confidence and accept-
ability of predictions related to PD-L1 expression.

Traditional ML often lacks interpretability, which leads 
to the “black box” problem, making it unconducive to 
clinical application. The SHapley Additive exPlanations 
(SHAP), a method used for addressing an ML model’s 
interpretability, can illustrate the effects of features on the 
overall predictive model and visualize the decision-mak-
ing process for each patient. Recently, the SHAP method 
was successfully applied to explain various ML mod-
els, such as disease and therapeutic prognosis models 
[26–29]. To our knowledge, this method for ML model 
interpretation has not been used in predicting PD-L1 
expression status thus far. Therefore, here, we developed 
and validated 11 ML models based on CT radiomics for 
predicting PD-L1 expression status in GC and used the 
SHAP method to explain and visualize our models.

Materials and methods
Patients
Figure 1 illustrates the current patient recruitment flow. 
In this retrospective clinical study, we included data from 
consecutive patients diagnosed as having pathologically 
confirmed GC between March 2019 and August 2023 
at Affiliated Cancer Hospital & Institute of Guangzhou 
Medical University (center 1) or Meizhou People’s Hos-
pital (center 2). The inclusion criteria were (1) CECT 
examination performed within 2 weeks before surgery, 
(2) PD-L1 expression detection through IHC, and (3) 
complete clinical data. The exclusion criteria were (1) 
poor image quality affecting radiomics analyses, (2) 
tumor lesion size too small to be segmented, (3) receipt 

that a feature’s value affected the feature’s impact attributed to the model. The SHAP waterfall plots were used to 
visualize the decision-making process for a single individual.

Conclusion  Our CT radiomics–based LGBM model may aid in preoperatively predicting PD-L1 expression status in 
GC patients, and the SHAP method may improve the interpretability of this model.
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of previous treatment before CECT examination, and 
(4) history of other malignancies. Finally, 205 center-1 
patients (129 men and 76 women) aged 27–83 years 
(median age, 59 years) were randomly divided into train-
ing and validation sets at a ratio of 7:3. Moreover, 80 cen-
ter-2 patients (50 men and 30 women) aged 27–79 years 
(median age, 57 years) were included in the test set. The 
following clinical data were retrieved for each patient: 
sex, age, serum tumor markers [carcinoembryonic anti-
gen (CEA), carbohydrate antigen 19 − 9 (CA19-9), car-
bohydrate antigen 24 − 2 (CA24-2), and carbohydrate 
antigen 72 − 4 (CA72-4)], and TNM stage (AJCC, 8th edi-
tion). The threshold values for CEA, CA19-9, CA24-2, 
and CA72-4 levels were set at 5.0 µg/mL, 30 U/mL, 20 U/
mL, and 6.9 U/mL, respectively.

This study was approved by the Ethics Committee of 
Affiliated Cancer Hospital & Institute of Guangzhou 
Medical University, and the requirement for informed 
consent was waived considering the design of this study.

PD-L1 detection and expression classification
For PD-L1 expression detection, GC tumor tissue sec-
tions were subjected to standard IHC staining with a 
PD-L1 IHC 22C3 pharmDx assay kit (Agilent Technolo-
gies). PD-L1 expression was quantified based on the 
combined positive score (CPS), which was calculated 
as follows: CPS = [(PD-L1 membrane staining positive 
tumor cells + PD-L1 membrane staining positive tumor-
associated immune cells)/Total number of tumor cells] × 
100. The immunostained tissue sections were scored by 
two independent pathologists (X.H.X. and Y.L.C. with 

10 and 6 years of relevant experience, respectively). Both 
pathologists were blinded to the patients’ clinical data, 
and disagreements on CPS assessment were resolved 
through consensus 2 weeks after individual interpreta-
tions. CPSs of ≥ 5 and < 5 were considered to indicate 
PD-L1 high and low expression statuses, respectively 
[4, 6, 30]. Supplementary A1 presents additional details 
regarding the PD-L1 detection method and expression 
classification.

CECT image acquisition
Table S1 presents the CT scanners and image acquisition 
protocols at centers 1 and 2. After an unenhanced CT 
scan, all patients were injected with a nonionic iodinated 
contrast medium (Ioversol 320 iodine/mL from Jiangsu 
Hengrui Medicine or Ultravist 370 from Bayer Schering 
Pharma) at a dose of 1.5 mL/kg and an injection rate of 
3 mL/s with a high-pressure pump syringe. Arterial and 
venous-phase images were taken at 25 and 65 s after con-
trast agent injection, respectively.

Image segmentation and radiomics feature extraction
Two radiologists—named reader 1 (J.X.Y.) and reader 2 
(Y.F.T.) with 9 and 5 years of image processing experi-
ence, respectively—segmented the regions of interest 
(ROIs) by manually delineating GC lesion boundaries 
on each venous-phase image section depicting the maxi-
mum tumor area. First, reader 1 segmented the ROIs 
using ITK-SNAP (version 3.60; http://www.itksnap.org). 
After 1 month, 30 patients were randomly selected and 
resegmented by readers 1 and 2, and the intraobserver 

Fig. 1  Flow of patient recruitment. PD-L1, programmed death-ligand 1; CECT, contrast-enhanced computed tomography
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and interobserver agreements were assessed. Radiomics 
features were extracted using the Pyradiomics package 
of Pyradiomics (version 3.1.0; ​h​t​t​p​​s​:​/​​/​p​y​p​​i​.​​o​r​g​​/​p​r​​o​j​e​c​​t​
/​​p​y​r​a​d​i​o​m​i​c​s​s​s​/). To eliminate differences in image ​r​e​s​
o​l​u​t​i​o​n and pixel size generated by different CT equip-
ment, all CT images were resampled to a voxel spacing 
of 1 × 1 × 1 mm and discretized with a bin width of 25 HU 
before feature extraction. Table S2 lists the details of the 
obtained radiomics features.

Radiomics feature selection
Before feature selection, the radiomics features were 
standardized using the Z-score method. Four steps were 
performed for dimensionality reduction and selection of 
radiomics features in the training set: (1) Features with 
interclass and intraclass correlation coefficients > 0.75 
were retained. (2) Features with correlation coeffi-
cient > 0.9 were considered highly correlated, and one of 
every two features was discarded for redundancy with the 
other feature. (3) Univariate analysis was used to select 
features significantly associated with PD-L1 expression 
status, and features with p < 0.05 were reserved. (4) The 
least absolute shrinkage and selection operator (LASSO) 
regression with 10-fold cross-validation was used to 
select the most relevant features.

ML model construction and interpretation
To select the optimal model for predicting PD-L1 
expression status in patients with GC, 11 mainstream 
algorithms were selected to build models in the train-
ing set: LR, naïve Bayes (NB), support vector machine 
(SVM), K-nearest neighbors (KNNs), random forest (RF), 
extremely randomized trees (ExtraTrees), extreme gradi-
ent boosting (XGBoost), light gradient-boosting machine 
(LGBM), gradient-boosting regression (GBR), adaptive 
boosting (AdaBoost), and multilayer perceptron (MLP). 
The model with the highest area under the receiver oper-
ating characteristic (ROC) curve (AUC) in the valida-
tion set was considered the optimal model. The SHAP 
method was used to improve the optimal model’s inter-
pretability. SHAP summary and bar plots were drawn 
to illustrate the features’ importance and visualize their 
impacts on the model with SHAP values. Furthermore, 
the SHAP waterfall plots were used to explore individual-
based decision-making processes from a local explana-
tion perspective. Figure 2 illustrates the workflow of this 
study.

Statistical analyses
Statistical analysis was performed using R (version 4.12; 
https://www.r-project.org/) and Python (version 3.913; 
https://www.python.org/). A p-value of < 0.05 was ​c​o​n​s​i​
d​e​r​e​d to indicate statistical significance. Categorical vari-
ables, compared with the chi-square or Fisher’s exact test, 

Fig. 2  Current study workflow
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are expressed as ratios (percentages). The Kolmogorov–
Smirnov test was performed to test the normal distribu-
tion of continuous quantitative data. Continuous data are 
presented as means ± standard deviation (SD) or median 
(Q₁, Q₃). We compared normally and nonnormally dis-
tributed continuous data by using an independent t-test 
and the Mann–Whitney U test, respectively. The perfor-
mances of each ML model were evaluated by using ROC 
analysis, and the AUC, accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), precision, recall, and F1 score were calculated. 
Calibration curves were used to evaluate the agreement 
between the predicted and postoperative pathological 
IHC results in the training, validation, and test sets. The 
decision curve analysis (DCA) was performed to reveal 
the clinical utility of our ML models.

Results
Patient characteristics
Of all 285 patients included in this study, 143 (50.18%), 62 
(21.75%), and 80 (28.07%) were assigned to the training, 
validation, and test sets, respectively. In total, 70 (48.95%), 
31 (50.00%), and 34 (42.50%) patients in the training, vali-
dation, and test sets demonstrated PD-L1 high expres-
sion status, respectively. The baseline characteristics, 
including PD-L1 expression status, sex, age, serum tumor 
markers (CEA, CA199, CA142, and CA724), and TNM 
classification, did not differ significantly between the 
training, validation, and test sets. Table 1 summarizes the 
included patients’ clinical characteristics.

Radiomics feature selection
From each ROI, we extracted 476 radiomics features, of 
which 366 features with interclass and intraclass correla-
tion coefficients ≥ 0.75 were selected for further reduc-
tion. After Pearson or Spearman correlation analyses, 130 
features were retained. The independent-sample t-test 
or Mann–Whitney U test revealed 46 features with sig-
nificant differences between PD-L1 high and low expres-
sion groups in the training set. The LASSO LR model 
was used to reduce the number of features from 46 to 
9, with an optimal regulation weight (λ) of 0.0518 under 
the minimum criterion (Fig. 3a, b). Figure 3c presents the 
correlation heatmap of these nine features. A compari-
son of the selected features’ names and values between 
PD-L1 high and low expression groups in the training 
set is presented in Table  2; similar comparison results 
for the validation and test sets are detailed in Table S3. 
Fig. S2a and b illustrate the correlation heatmaps of these 
nine features in the validation and test sets, respectively. 
Table S4 lists the ICC coefficients for interobserver and 
intraobserver repeatability of radiomics features included 
in the final model.

Predictive performance of ML models
As presented in Table  3, all 11 predictive models dem-
onstrated good performance in classifying PD-L1 high 
expression status from PD-L1 low expression status in 
all sets; the AUC values were 0.734–0.961, 0.763–0.834, 
and 0.686–0.822 in the training, validation, and test sets, 
respectively. Of all 11 ML models, the LGBM model 
achieved the highest AUC of 0.834 (95% CI: 0.729, 0.939) 
in the validation set (Fig. 4a) and was thus identified as 
the optimal model for predicting PD-L1 expression sta-
tus. Figure  4b presents the ROC curves of the LGBM 
model for the training, validation, and test sets. The 
confusion matrices of the LGBM model in the training, 
validation, and test sets revealed that the model accu-
rately detected GC patients with high PD-L1 expression 
status (sensitivity: 0.743, 0.774, and 0.765, respectively) 
and effectively differentiate between patients with low 

Table 1  Patient clinical characteristics in training, validation, and 
test sets
Characteristic Training set 

(n = 143)
Validation 
set (n = 62)

Test set 
(n = 80)

P 
value

PD-L1 expression 
(No. %)

0.584

CPS < 5 73 (51.1%) 31 (50.0%) 46 (57.5%)
CPS ≥ 5 70 (49.0%) 31 (50.0%) 34 (42.5%)
Age* (years) 59.0 (29–83) 59.0 (27–81) 57.0 (27–79) 0.563
Sex (No. %) 0.636
Male 50 (35.0%) 26 (41.9%) 30 (37.5%)
Female 93 (65.0%) 36 (58.1) 50 (62.5%)
CEA (No. %) 0.084
< 5.0 µg/ml 103 (72.0%) 40 (64.5%) 46 (57.5%)
≥ 5.0 µg/ml 40 (28.0%) 22 (35.5%) 34 (42.5%)
CA199 (No. %) 0.314
< 30 U/mL 108 (75.5%) 46 (74.2%) 53 (66.3%)
≥ 30 U/mL 35 (24.5%) 16 (25.8%) 27 (33.7%)
CA242 (No. %) 0.107
< 20 U/mL 116 (81.1%) 51 (82.3%) 56 (70.0%)
≥ 20 U/mL 27 (18.9%) 11 (17.7%) 24 (30.0%)
CA724 (No. %) 0.304
< 6.9 U/mL 101 (70.6%) 44 (71.0%) 49 (61.3%)
≥ 6.9 U/mL 42 (29.4%) 18 (29.0%) 31 (38.7%)
TNM stage (No. %) 0.488
I 14 (9.8%) 9 (14.5%) 11 (13.8%)
II 34 (23.8%) 19 (30.7%) 25 (31.3%)
III 86 (60.1) 29 (46.8%) 37 (46.2%)
IV 9 (6.3%) 5 (8.1%) 7 (8.7%)
Note: Presented as No. %, and compared using the chi-square or Fisher’s exact 
test. *Presented as median (range), and compared using the Mann–Whitney U 
test

Abbreviations: PD-L1, programmed death-ligand 1; CPS, combined positive 
score; CEA, carcinoma embryonic antigen; CA199, carbohydrate antigen 19 − 9; 
CA72, carbohydrate antigen 72 − 4; CA242, carbohydrate antigen 24 − 2; TNM, 
tumor node metastasis
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Fig. 3  Radiomics feature selection using least absolute shrinkage and selection operator (LASSO) regression and features correlation heatmaps. (a) Tun-
ing parameter selection (λ) in the LASSO model via 10-fold cross-validation based on minimum criteria. Optimal values of the LASSO tuning parameter (λ) 
are indicated using dotted vertical lines. A λ value of 0.0518 was selected. (b) When λ = 0.0518, LASSO regression reduced the number of features to nine. 
(C) Correlation heatmap of the nine radiomics features in the training set
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Table 2  Comparison of radiomics features between PD-L1 high and low expression groups in training set
Features Radiomics feature value (Z-score normalization)

PD-L1 low
Expression (n = 73)

PD-L1 high
Expression (n = 70)

P value

wavele_HH_glcm_Idn 0.25 ± 0.99 -0.26 ± 0.95 0.002
wavele_HL_gldm_Dependence-Entropy 0.21 ± 0.98 -0.22 ± 0.97 0.009
wavele_HL_glszm_LargeAreaLowGrayLevelEmphasis -0.18 ± 0.70 0.19 ± 1.21 0.005
wavele_LL_firstorder_Kurtosis 0.25 ± 1.24 -0.26 ± 0.56 0.009
wavele_LL_firstorder_Minimum -0.29 ± 1.04 0.30 ± 0.87 < 0.001
wavele_LL_glcm_Idn 0.28 ± 0.96 -0.29 ± 0.97 < 0.001
wavele_LL_glcm_JointEntropy 0.25 ± 0.95 -0.27 ± 0.99 0.002
wavele_LL_glcm_Maximum-Probability -0.22 ± 0.77 0.23 ± 1.16 0.015
wavele_LL_ngtdm_Busyness -0.25 ± 0.73 0.26 ± 1.17 0.009
Note: Data are presented as mean ± standard deviation, and compared using an independent t-test

Abbreviations: CPS, combined positive score; glcm, gray level cooccurrence matrix; glszm, gray level size zone matrix; ngtdm, neighboring gray tone difference 
matrix

Table 3  Performance of 11 ML models for PD-L1 expression status prediction
Model Set AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV Precision Recall F1 Score
SVM Training set 0.812 (0.739–0.885) 0.755 0.743 0.767 0.754 0.757 0.754 0.743 0.748

Validation set 0.806 (0.698–0.915) 0.758 0.742 0.774 0.767 0.750 0.767 0.742 0.754
Test set 0.768 (0.663–0.873) 0.725 0.500 0.891 0.773 0.707 0.773 0.500 0.607

KNN Training set 0.791 (0.722–0.862) 0.664 0.386 0.932 0.844 0.613 0.844 0.386 0.529
Validation set 0.778 (0.661–0.895) 0.613 0.29 0.935 0.818 0.569 0.818 0.290 0.429
Test set 0.686 (0.567–0.805) 0.663 0.588 0.717 0.606 0.702 0.606 0.588 0.597

RF Training set 0.914 (0.868–0.960) 0.853 0.814 0.890 0.877 0.833 0.877 0.814 0.844
Validation set 0.804 (0.693–0.915) 0.742 0.774 0.710 0.727 0.759 0.727 0.774 0.750
Test set 0.754 (0.643–0.865) 0.750 0.559 0.891 0.792 0.732 0.792 0.559 0.655

ExtraTrees Training set 0.807 (0.735–0.879) 0.762 0.714 0.808 0.781 0.747 0.781 0.714 0.746
Validation set 0.779 (0.661–0.897) 0.742 0.774 0.710 0.727 0.759 0.727 0.774 0.750
Test set 0.740 (0.624–0.856) 0.750 0.559 0.891 0.792 0.732 0.792 0.559 0.655

XGBoost Training set 0.961 (0.933–0.989) 0.909 0.900 0.918 0.913 0.905 0.913 0.900 0.906
Validation set 0.793 (0.680–0.907) 0.742 0.645 0.839 0.800 0.703 0.800 0.645 0.714
Test set 0.782 (0.675–0.889) 0.763 0.618 0.870 0.778 0.755 0.778 0.618 0.689

LGBM Training set 0.841 (0.773–0.908) 0.804 0.743 0.863 0.839 0.778 0.839 0.743 0.788
Validation set 0.834 (0.729–0.939) 0.823 0.774 0.871 0.857 0.794 0.857 0.774 0.814
Test set 0.822 (0.718–0.926) 0.813 0.765 0.848 0.788 0.83 0.788 0.765 0.776

NB Training set 0.737 (0.654–0.820) 0.727 0.786 0.671 0.696 0.766 0.696 0.786 0.738
Validation set 0.764 (0.638–0.890 0.742 0.806 0.677 0.714 0.778 0.714 0.806 0.758
Test set 0.780 (0.674–0.887) 0.738 0.735 0.739 0.676 0.791 0.676 0.735 0.704

AdaBoost Training set 0.875 (0.819–0.931) 0.797 0.943 0.658 0.725 0.923 0.725 0.943 0.820
Validation set 0.714 (0.584–0.844) 0.694 0.581 0.806 0.75 0.658 0.750 0.581 0.655
Test set 0.748 (0.636–0.861) 0.725 0.471 0.913 0.800 0.700 0.800 0.471 0.593

GBR Training set 0.936 (0.898–0.975) 0.874 0.886 0.863 0.861 0.887 0.861 0.886 0.873
Validation set 0.759 (0.635–0.883) 0.726 0.677 0.774 0.750 0.706 0.750 0.677 0.712
Test set 0.731 (0.619–0.843) 0.713 0.647 0.761 0.667 0.745 0.667 0.647 0.657

LR Training set 0.734 (0.650–0.817) 0.720 0.743 0.699 0.703 0.739 0.703 0.743 0.722
Validation set 0.778 (0.661–0.896) 0.726 0.710 0.742 0.733 0.719 0.733 0.710 0.721
Test set 0.789 (0.686–0.892) 0.713 0.882 0.587 0.612 0.871 0.612 0.882 0.723

MLP Training set 0.750 (0.669–0.832) 0.741 0.743 0.740 0.732 0.75 0.732 0.743 0.738
Validation set 0.763 (0.637–0.888) 0.742 0.710 0.774 0.759 0.727 0.759 0.710 0.733
Test set 0.772 (0.665–0.880) 0.750 0.706 0.783 0.706 0.783 0.706 0.706 0.706

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NPV, negative prediction value; PPV, positive predictive value; LR, 
logistic regression; NB, naïve Bayes; SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest; ExtraTrees, extremely randomized trees; XGBoost, 
extreme gradient boosting; LGBM, light gradient boosting machine; GBR, gradient boosting regression; AdaBoost, adaptive boosting; MLP, multilayer perceptron
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Fig. 4  Prediction performance of ML models. (a) ROC curves of 11 ML models in the validation set. (b) ROC curves of the LGBM model in the training, 
validation, and test sets (c-e) Confusion matrices for the (c) training, (d) validation, and (e) test sets. (f-h) Calibration curves for the (f) training, (g) valida-
tion, and (h) test sets. (i-k) Decision curves for the (i) training, (j) validation, and (k) test sets. ML, machine learning; LGBM, light gradient boosting machine; 
ROC, receiver operating characteristic
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PD-L1 expression status (specificity: 0.863, 0.871, and 
0.848, respectively; Fig. 4c-e). The LGBM model calibra-
tion curve also demonstrated good agreement between 
the predicted and postoperative pathological IHC results 
in all sets (Fig. 4f-h). The DCA curves revealed that the 
LGBM model had overall net benefits for predicting 
PD-L1 expression status, with the majority of the range 
of reasonable threshold probabilities in all sets (Fig. 4i-k). 
Fig. S2 displays the ROC curves for all 11 models in the 
training and test sets.

Model interpretation
The SHAP method was used to obtain quantitative expla-
nation for the LGBM model. In the global visualization, 
we drew a SHAP summary plot (Fig. 5a), indicating the 
relationship between each feature’s value and its impact 
on the model, as well as the positive or negative effects 
of each feature on the prediction probability. We also 
drew a SHAP bar plot (Fig. 5b), which demonstrated the 
mean of the absolute average SHAP values for the nine 
radiomics features. The top four influential features were 
wavelet_LL_ngtdm_Busyness, wavelet_HH_glcm_Idn, 
wavelet_LL_glcm_Idn, and wavelet_LL glcm_JointEn-
tropy, with absolute average SHAP values of 0.23, 0.13, 
0.1, and 0.1, respectively.

In the local visualization, Fig.  6 displays two typi-
cal examples of correctly predicted PD-L1 high and low 
expression. Our SHAP waterfall plot was drawn to dem-
onstrate the impact of each feature on the prediction, 
with the red and blue bars indicating positive and nega-
tive impacts, respectively. The base value (E[f(x)]) rep-
resents the average SHAP value across all predictions, 
whereas f(x) represents the final SHAP value. For patient 
1, the final SHAP value of 0.818 was larger than the base 
value (− 0.096), indicating that the model accurately clas-
sified this patient into the PD-L1 high expression group, 

and the feature with the highest contribution was wave-
let_LL_ngtdmt_Busyness, with SHAP value = 0.44. In 
contrast, for patient 2, the final SHAP value of − 0.665 
was lower than the base value (− 0.096), suggesting that 
this patient was accurately categorized into the PD-L1 
low expression group. The Wavelet_LL_glcm_JointEn-
tropy demonstrated the greatest negative impact on the 
prediction outcome, with SHAP value = − 0.21.

Discussion
In the present study, we developed and validated 11 ML 
models based on CECT radiomics to predict PD-L1 
expression status in patients with GC. All our models 
demonstrate potential for predicting PD-L1 expression 
status. Nevertheless, our LGBM model demonstrated the 
best performance with AUCs of 0.841, 0.834, and 0.822 
in the training, validation, and test sets, respectively. Fur-
thermore, by using the SHAP method, we enhanced the 
interpretability of this model. In general, these results 
demonstrated that our interpretable LGBM model based 
on CECT radiomics may provide a noninvasive, reli-
able method for predicting PD-L1 expression status in 
patients with GC.

In this study, we used wavelet transform to enhance 
image contrast, improve edge detection, and reduce 
noise. As such, we could extract wavelet features bet-
ter representing the image texture and capture tumor 
heterogeneity more accurately [31]. Here, we identified 
nine wavelet-transformed features significantly associ-
ated with PD-L1 expression status in GC. For instance, 
Zheng et al. [20] developed a model comprising nine CT 
radiomics features to predict PD-L1 expression in head 
and neck squamous cell carcinoma; of them, seven fea-
tures were wavelet-transformed features. The authors 
reported AUCs of 0.852 and 0.802 in the training and 
validation sets, respectively. Similarly, Jiang et al. [21] 

Fig. 5  SHAP summary and bar plots. (a) SHAP summary plots demonstrating the distribution of effects of each feature on the LGBM model outputs. Red 
and blue denote high and low feature values, respectively. The x-axis represents the effects of the SHAP values on the model output. The larger the value 
on the x-axis, the greater was the probability of PD-L1 high expression. (b) SHAP bar plot displaying the distribution of importance of nine features in the 
LGBM model. The value to the right of each red bar is the contribution coefficient of the feature to the model, which is the absolute value of the aver-
age of the SHAP value of each feature. SHAP, Shapley additive explanation; LGBM, light gradient boosting machine; PD-L1, programmed death ligand 1
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demonstrated that eight (88.9%) of nine selected fea-
tures for a CT-based radiomics signature were wavelet-
transformed features. The signature yielded an AUC 
of 0.96 for the prediction of PD-L1 expression status in 
non–small-cell lung cancer. The aforementioned find-
ings are consistent with our results: the radiomics fea-
tures significantly associated with PD-L1 expression in 
our ML models were all derived from wavelet transfor-
mation. Here, wavelet_LL_ngtdm_Busyness, in which 
wavelet transform analysis of low-frequency components 
(LL) were integrated with texture characterization via the 
neighborhood gray-tone difference matrix (NGTDM), 
demonstrated the highest predictive contribution in our 
LGBM model. This hybrid approach captured multiscale 
spatial information through frequency decomposition 
(distinguishing high-frequency edges from low-fre-
quency morphology) and quantified textural complexity 
via NGTDM-derived busyness—a metric reflecting local 
intensity variations. These factors may be associated with 
tumor heterogeneity and tumor immune microenviron-
ment changes associated with PD-L1 expression status.

Studies have highlighted the potential of CT radiomics 
as a noninvasive method for predicting PD-L1 expression 
status in patients with GC [19, 32], but these predictive 
models were built with a single ML algorithm and did not 

compare the performance of different ML algorithms. In 
contrast to these studies, we systematically incorporated 
11 ML algorithms to construct predictive models, each 
offering distinct methodological advantages: the linear 
LR provided simplicity and interpretability for linear rela-
tionships, the probabilistic NB excelled at high-dimen-
sional tasks such as text classification, SVM leveraged 
kernel tricks for nonlinear separability in high-dimen-
sional spaces, KNN offered instance-based flexibility for 
small datasets, RF and ExtraTrees reduced overfitting 
through randomization, XGBoost and LGBM optimized 
speed and accuracy for structured data, GBR handled 
nonlinearity with gradient boosting, AdaBoost focused 
on hard-to-classify samples, and finally, the highly flex-
ible MLP captured complex patterns in data. These 
algorithms have been validated in similar medical imag-
ing studies [33, 34]. We also comprehensively compared 
these ML algorithms to identify the best one to predict 
PD-L1 expression in GC to guide clinical treatment 
decisions. We ulitimately found that the LGBM model 
had the highest prediction performance, yielding AUCs 
of 0.841 and 0.834 in the training and validation sets, 
respectively. Second, we included more cases and evalu-
ated LGBM model performance by using independent 
external data (i.e., test set) and noted that this model also 

Fig. 6  Individual visualization of the mode through SHAP. Patients 1 and 2 are examples of correctly predicted PD-L1 high (CPS = 8) and low (CPS = 0) 
expression cases, respectively. Legend for each patient shows CT images of GC in the venous stage, manual tumor segmentation, hematoxylin–eosin-
stained sections, Immunohistochemistry image presenting PD-L1 expression (magnification: 200×), and the SHAP waterfall plot. SHAP, Shapley additive 
explanation; PD-L1, programmed death ligand 1; CPS, combined positive score
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demonstrated good discriminative ability for classifying 
PD-L1 expression status, with an AUC of 0.822. In partic-
ular, studies using an LR model [19] and a deep learning 
model [32] for predicting PD-L1 expression status in GC 
reported AUCs of 0.774 and 0.784 in the validation set, 
respectively. Our LGBM model appeared to improve the 
prediction efficiency, with an AUC of 0.834 in the valida-
tion set. Thus, LGBM may be an optional, effective ML 
algorithm to classify PD-L1 expression status in patients 
with GC.

LGBM is a gradient-boosting framework based on tree-
based learning algorithms [35], and several studies have 
demonstrated its favorable predictive value in medicine. 
For instance, Dong et al. investigated the occurrence of 
sarcopenia in patients with advanced non–small cell lung 
cancer by combining CT radiomics features with the 
LGBM classifier and noted AUCs of 0.940 and 0.889 in 
the training and validation sets, respectively [36]. Leng 
et al. developed five ML models based on CT radiomics 
to preoperatively predict epithelial ovarian cancer stages 
and demonstrated that the LGBM model had notable 
prediction efficiency and robustness, yielding AUCs of 
0.83, 0.80, and 0.68 in the training, internal validation, 
and external validation cohorts, respectively [37]. In the 
current study, LGBM was optimized for computational 
efficiency through a histogram-based algorithm, which 
significantly reduced processing time and memory use 
and prevented overfitting through built-in regulariza-
tion. As a gradient-enhanced tree model, LGBM could 
effectively capture the nonlinear relationship between 
radiomics features. This may be particularly applicable to 
the identification of tumor heterogeneity and microenvi-
ronment changes in CT images, making it more condu-
cive to predicting PD-L1 expression in patients with GC.

Although ML predictive models have been reported 
to be powerful [33, 38–43], they are often referred to as 
black boxes because they lack interpretability and trans-
parency [44]. SHAP, a highly practical ML interpretation 
tool, can open the black box of ML predictive mod-
els by providing both global and local explanations in a 
clinician-friendly manner, promoting the clinical appli-
cation of models and boosting clinicians’ confidence in 
using predictive models. Studies have employed SHAP 
to efficiently interpret and visualize radiomics models 
developed using various ML algorithms. For instance, 
Wang et al. [45] found that SHAP summary plot effec-
tively illustrated the value of MRI radiomics features in 
influencing the impact attributable to the SVM model 
in assessing responses to whole-brain radiotherapy for 
brain metastases. Moreover, the SHAP force plot quan-
tified the integration of feature impacts on individual 
responses through SHAP values. Liu et al. [46] devel-
oped an XGBoost combined model for predicting peri-
neural invasion in intrahepatic cholangiocarcinoma by 

combining clinicoradiological features and CT radiomics. 
Their SHAP bar chart demonstrated that compared with 
clinicopathological features, the radiomics score had the 
optimal contribution with the highest SHAP value of 
0.38 (range, 0.25–0.28). Furthermore, their SHAP force 
plots demonstrated each feature’s positive and negative 
impacts on predictive outcomes in individual visualiza-
tions. In line with these studies, we applied the SHAP 
method to interpret and visualize our LGBM models. 
Our SHAP summary plot provided a global explanation 
of distribution and importance of feature impacts on 
model outputs and found that among all radiomics fea-
tures, wavelet_LL_ngtdm_Busyness had the most impor-
tant weight, with the highest SHAP value of 0.23 (range, 
0.03–0.23). After understanding how features impact the 
LGBM model, clinicians may use our model to assess 
individual outcomes. To visualize the model’s prediction 
results and determine the influence of features on the 
outcome, we used SHAP waterfall plots. By comparing 
the output SHAP value of a single patient with the base 
value (− 0.096), clinicians could easily classify the patient 
into either the PD-L1-high ( ≥ − 0.096) or -low ( < − 0.096) 
expression status group. Moreover, clinicians could 
assess how each feature impacted each patient’s assess-
ment by reviewing the arrow’s color (e.g., red indicating 
an increased probability of PD-L1-high expression status) 
and length (describing the degree to which a particular 
feature contributed to the prediction). SHAP waterfall 
plots significantly improved clinician comprehension 
of the decision-making process of the predictive model, 
strengthening confidence in both algorithmic reliability 
and clinical applicability of predictions.

In summary, this study established a novel multialgo-
rithm framework for predicting PD-L1 expression in 
GC via CECT radiomics. By systematically evaluating 11 
ML models, we identified LGBM as the optimal model, 
achieving AUCs of 0.834 (validation set) and 0.822 
(external test set). Our key innovation is related to the 
dominance of wavelet-transformed features (e.g., wave-
let_LL_ngtdm_Busyness), uniquely capturing multiscale 
tumor heterogeneity linked to PD-L1-driven immune 
microenvironment remodeling. After integrating SHAP, 
we obtained global quantification of feature contribu-
tions and individualized decision visualizations, over-
coming the “black box” limitations of traditional models. 
Rigorous external validation and a robust cohort (n = 285) 
underscore our model’s generalizability and reliability. 
In general, our study provided a noninvasive, reliable 
method for predicting the PD-L1 expression status of 
patients with GC.

This study has several limitations. First, although 
our model demonstrated good predictive performance 
across all three datasets from two centers, we used a ret-
rospective design, which may have introduced potential 
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bias. Therefore, prospective studies with multicenter 
datasets are necessary for further validation. Second, as 
described previously [19, 32], we performed the manual 
segmentation of GC tumors, which was both time- and 
labor-intensive. Thus, future studies should focus on 
developing automatic, reliable segmentation meth-
ods that segment using the artificial intelligence–based 
approach, as reported previously [47]. Third, the hetero-
geneity of CT scanners and imaging parameters between 
centers 1 and 2 may have influenced the distribution of 
radiomics features. To mitigate this issue, we resampled 
all images from both centers to a uniform size. Finally, 
although we adopted 5 as the CPS cutoff for PD-L1 high 
expression, as reported previously [6, 32], the optimal 
cutoff of high PD-L1 expression in clinical practice for 
GC remains unclear. Therefore, large-scale, multicenter 
prospective studies should be conducted to compare the 
predictive performance of different CPS cutoffs and iden-
tify the optimal value for predicting immunotherapeutic 
responses.

Conclusion
The ML model based on CECT radiomics can effectively 
and non-invasively differentiate between PD-L1 high 
expression (PD-L1 CPS ≥ 5) and low expression (PD-
L1 CPS < 5) in GC. The SHAP method can improve the 
interpretability of ML models, thereby aiding clinicians 
in comprehending the model and facilitating clinical 
decision-making.
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