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Abstract: There are numerous pyrazine and phenazine compounds that demonstrate biological
activities relevant to the treatment of disease. In this review, we discuss pyrazine and phenazine
agents that have shown potential therapeutic value, including several clinically used agents. In
addition, we cover some basic science related to pyrazine and phenazine heterocycles, which possess
interesting reactivity profiles that have been on display in numerous cases of innovative total synthesis
approaches, synthetic methodologies, drug discovery efforts, and medicinal chemistry programs. The
majority of this review is focused on presenting instructive total synthesis and medicinal chemistry
efforts of select pyrazine and phenazine compounds, and we believe these incredible heterocycles
offer promise in medicine.
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1. Introduction

Pyrazine- and phenazine-containing small molecules and natural products collectively
demonstrate a breadth of biological activities that are of significant interest to human health
and medicine [1,2]. The pyrazine (1; Figure 1) heterocycle is composed of a six-membered
aromatic structure bearing two nitrogen atoms, arranged in a 1,4-orientation embedded
within a carbon framework [1–3]. Phenazine (2) [4,5] heterocycles contain fused benzene
moieties at the carbon positions of a pyrazine nucleus. Both pyrazines and phenazines
possess distinct chemical reactivity profiles, and have been the focal point of advances
in total synthesis, synthetic methods, chemical biology, and drug discovery [1–6]. This
review presents a sampling of total synthesis and medicinal chemistry campaigns of various
pyrazine- and phenazine-containing compounds.
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2. Pyrazines and Phenazines of Therapeutic Interest

There have been many biological investigations related to pyrazine- and phenazine-
containing compounds that demonstrate therapeutic value related to human health and
disease. The World Health Organization’s (WHO) Model List of Essential Medicines in
2019 included four pyrazine (amiloride, bortezomib, paritaprevir, pyrazinamide) and
one phenazine (clofazimine) drug molecules [7]. The pyrazine scaffold offers additional
promise, as computational studies have shown common drug–target interactions related
to biologically active pyrazines, lending credence to incorporating this heterocycle, along
with phenazine, into appropriate drug design campaigns [8].

2.1. Pyrazines

In this section, we provide a brief overview of select pyrazine agents that demonstrate
biological activity, including some therapeutic agents (see Figure 2). Additional discussions
are included for select pyrazine compounds in later sections when discussing relevant total
syntheses, synthetic methodological advances, or drug discovery campaigns.
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Bortezomib (PS-341, 3) is a first-in-class treatment for multiple myeloma, and was the
first FDA-approved proteasome inhibitor to see clinical use [9,10]. This pyrazine-containing
therapeutic agent reversibly inhibits the 26S proteasome through the action of its boronic
acid moiety, leading to the dysregulation of proteins critical to multiple myeloma cell
growth and survival. Bortezomib’s boronic acid is known to complex the key hydroxyl
group of a threonine side chain in the proteasome’s active site to inhibit proteolysis.

Eszopiclone (7) is a pyrrolopyrazine-based sedative that has been widely used to treat
insomnia [11,12] since receiving FDA approval in 2004. Interestingly, eszopiclone was
declined approval in the EU owing to similarity to the racemate, which was patented. Es-
zopiclone is the (S)-enantiomer of the hypnotic agent zopiclone, whereas the (R)-enantiomer
has greatly reduced sedative activities. Eszopiclone is believed to elicit its effects through
modulating GABAA receptor domains, which are related to benzodiazepine receptors.

Cephalostatin 1 (8) is a naturally occurring pyrazine isolated from the marine worm
Cephalodiscus gilchristi, and demonstrates remarkably potent activities against multiple can-
cer types and cell lines [13]. Incredibly, cephalostatin 1 reported an average GI50 = 1.8 nM
across all 60 cancer cell lines in the NCI-60 human cancer cell line panel. This complex nat-
ural product, along with the related ritterazine alkaloids, [14] contains a pyrazine nucleus
flanked by stereochemically complex, oxygenated steroidal units containing spiroketal
moieties. Interestingly, cephalostatin 1 demonstrates potential synthetic lethality with the
p16 tumor suppressor gene, which would allow this naturally occurring pyrazine to selec-
tively kill cancer cells with altered or mutated p16. Total synthesis of cephalostatin 1 has
been pursued by multiple labs in efforts to determine its cellular target and the therapeutic
potential for this natural product to treat cancer, since only small quantities of 8 have been
isolated from marine sources, which has hampered its investigation in clinical trials [15].

Favipiravir (9) is a pyrazine prodrug therapy that inhibits RNA-dependent RNA poly-
merase of the influenza virus [16]. This agent also demonstrates inhibitory action against
several other pathogenic RNA viral infections (e.g., arenavirus, bunyavirus, norovirus),
and has shown promising therapeutic potential against Ebola viral infections. Currently,
favipiravir is being investigated for use against COVID-19 infection in several countries
around the world, with some promising preliminary findings; however, additional studies
are needed in order to determine its clinical potential [17,18].

The small molecule AKN-028 and the botryllazine natural products demonstrate a
diversity of biological activities. AKN-028 (14) is a novel pyrazine-based tyrosine kinase
inhibitor that has produced promising results in preclinical studies against acute myeloid
leukemia (AML) [19,20]. Botryllazine A (15) is a pyrazine-containing natural product
isolated from the tunicate Botryllus leachii [21]. In addition to the initially reported antineo-
plasmic activity, botryllazine B has demonstrated inhibitory activity against human aldose
reductase (ALR2), which could be useful for attenuating diabetic complications [22].

2.2. Phenazines

The phenazine heterocycle is showcased in numerous biologically active natural prod-
ucts and synthetic small molecules. In this section, we provide a concise overview of
select phenazine agents that demonstrate activities relevant to human health and dis-
ease. Phenazine natural products are produced by several bacteria, including pseu-
domonads, streptomycetes, and actinomycetes [4,5,23]. Collectively, natural and syn-
thetic phenazines (Figure 3) display interesting anticancer, antimalarial, and antimicrobial
activities [4,5,24–29]. Additional discussions are included for phenazines of interest in later
sectiwhons of this review (e.g., lavanducyanin, marinocyanins, iodinin, myxin).



Molecules 2022, 27, 1112 4 of 24

Molecules 2022, 27, x FOR PEER REVIEW 4 of 26 
 

 

dapsone due to the high frequency of resistance that many leprosy infections have to these 
antibiotics [30]. In addition, clofazimine is on the World Health Organization’s (WHO) 
model list of essential medicines, illustrating its global therapeutic impact [7]. 

 
Figure 3. Phenazine heterocycles that demonstrate biological activities, including FDA-approved 
clofazimine. 

Pyocyanin (19) and phenazine-1-carboxylic acid (25) are two phenazine antibiotics 
that are produced by Pseudomonas aeruginosa. Collectively, phenazine antibiotics are a col-
orful series of redox-active metabolites that endow their producing organism with various 
survival advantages. Phenazine antibiotics have been the source of inspiration for the dis-
covery of halogenated phenazine compounds (e.g., HP-14 or 28) that eradicate surface-
attached bacterial biofilms, which will be discussed in a later section in this review. 

Figure 3. Phenazine heterocycles that demonstrate biological activities, including FDA-
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Clofazimine (16) is an antimycobacterial agent initially investigated as a treatment
for Mycobacterium tuberculosis infections; however, this phenazine derivative later received
FDA approval to treat lepromatous leprosy (caused by Mycobacterium leprae) in 1986 [28,29].
Clofazimine is often administered in combination with rifampin and/or dapsone due to the
high frequency of resistance that many leprosy infections have to these antibiotics [30]. In
addition, clofazimine is on the World Health Organization’s (WHO) model list of essential
medicines, illustrating its global therapeutic impact [7].

Pyocyanin (19) and phenazine-1-carboxylic acid (25) are two phenazine antibiotics
that are produced by Pseudomonas aeruginosa. Collectively, phenazine antibiotics are a
colorful series of redox-active metabolites that endow their producing organism with
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various survival advantages. Phenazine antibiotics have been the source of inspiration
for the discovery of halogenated phenazine compounds (e.g., HP-14 or 28) that eradicate
surface-attached bacterial biofilms, which will be discussed in a later section in this review.

Phenazinomycin (24) is a naturally occurring phenazine isolated from Streptomyces sp.
WK-2057. This antibacterial antitumor agent bears a cyclic terpenoid appendage, and shows
moderate antibacterial activities against Staphylococcus aureus. In addition, phenazinomycin
demonstrated promising efficacy in vivo in a tumor model (with Sarcoma 180 cells) in mice,
resulting in an increase in life span of up to 140% [31].

NC-190 (31) is a small benzo[a]phenazine molecule that demonstrates anticancer activ-
ity against multiple cancer cell lines in vitro and in vivo (tumor models in animals) [32,33].
NC-190, along with its methyl ester NC-182 (structure not shown), induces topoisomerase-
II-dependent DNA cleavage and subsequent fragmentation [34,35]. NC-190 has demon-
strated dose-dependent growth inhibition against HL-60 leukemic cells comparable to that
of etoposide—a clinically used cancer therapy.

3. Select Total Syntheses of Natural Pyrazine Products

There are several pyrazine-containing natural products of interest due to their signif-
icant biological activities related to multiple disease states (e.g., cephalostatin 1, cancer;
dragmacidin D, neurological diseases). The following section details select total synthe-
ses of naturally occurring pyrazines showcasing a diversity of pyrazine reactivity and
instructive synthetic routes.

3.1. Total Synthesis of Ritterazine B

Ritterazine B (32) is a bis-steroidal pyrazine (BSP) marine natural product isolated
from the tunicate Riterella tokioka off Japan’s Izu Peninsula in 1995 [14]; it has gained a
significant amount of interest due to it being considered “among the most potent growth
inhibitors ever tested” by the National Cancer Institute (NCI) [36,37]. Ritterazine B pos-
sesses subnanomolar activity against P388 leukemia cells (IC50 = 0.17 nM) [38] and an
average GI50 of 3.2 nM in the NCI-60 human cancer cell line panel [37–39]. BSPs are known
to induce apoptosis in cancer cells; however, a COMPARE analysis suggests that these
natural products act via a novel mode of action when compared to traditional cancer
therapies [40]. Recent studies have revealed BSPs to be high-affinity ligands for oxysterol-
binding proteins, while additional studies indicate that the endoplasmic-reticulum-specific
heat-shock protein GRP78 could be their molecular target [41–43]. Unfortunately, these
promising foundational studies have been hampered due to the lack of natural materials;
thus, synthesis of 32 is required in order to fully evaluate its potential as a cancer therapy.

In 2021, the Reisman Group reported the first total synthesis of ritterazine B (32), which
featured a titanium-mediated propargylation, gold-catalyzed spirocyclization, and late-
stage chromium C-H oxidation (Scheme 1) [44]. Disconnection of the central pyrazine ring
of ritterazine B provided western and eastern fragments—steroids 33 and 34, respectively.
Remarkably, the Reisman Group was able to synthesize each fragment from a common
starting material, using the same general strategy as for C-C bond formation and spiroketal-
ization. Thus, steroids 33 and 34 can be traced back retrosynthetically to the corresponding
alkynes 35 and 36, where the gold-mediated cycloisomerization would be used to form the
respective spiroketals. It was envisioned that alkynes 35 and 36 could be obtained by the
1,2-addition of the propargyl metal species derived from the appropriate alkynes to the
alpha-hydroxy ketone accessible on trans-dehydroandrosterone (37).
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The first key steps in the total synthesis of ritterazine B are a set of divergent titanium-
mediated propargylations, which provide two different alkynes that serve as starting
materials for each fragment. For the eastern fragment, treatment of 38 with n-butyl lithium
results in deprotonation of the C16 alcohol, followed by 1,2-addition of the organotitanium
species derived from propargyl bromide, yielding the alkyne 39 (Scheme 2). It is important
to note that these additions for both fragments occur with exclusive beta-face selectivity,
despite the neighboring axial methyl group. This is presumably due to the formation of an
alpha-cyclic chelate between the C16 and C17 oxygens. Therefore, the alpha configuration
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at C16 is critical in imparting the desired stereocontrol in the divergent step. Additionally,
this same C16 alcohol controls the stereochemical outcome of the gold-mediated spirocy-
clization, in which the beta configuration at C16 is needed in order to construct the required
spiroketals. Critical stereoinversion of C16 can be achieved through a Stahl oxidation and a
diastereoselective 1,2-reduction using di-iso-butylaluminum hydride to yield 40, where the
alcohol at C16 is now in the vital beta configuration.
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Scheme 2. Key steps in Reisman’s total synthesis of ritterazine B (32).

The two-step stereoinversion sequence sets the stage for a gold-mediated
spiroketalization—another key transformation in the synthesis of both the eastern and west-
ern fragments. Extensive experimentation revealed that treatment of the alkyne precursor
(40 or 42) with CyJohnPhos·AuCl (10 mol%) and AgBF4 (5 mol%) provided the spiroketal
(41 or 43) as a single diastereomer. It is important to note that this critical reaction not only
provided the desired configuration at the spiroketals, but also resulted in the convergence
of C20 epimers, delivering the spiroketals with the necessary alpha-disposed methyl group.
An important late-stage transformation on the western steroid fragment is the allylic C-H
oxidation of 43 using oxochromate (Cr(V)) and MnO2 as a co-oxidant. This rare chromium
oxidation chemistry resulted in the enone intermediate (not shown), which was reduced
using SmI2 to yield 44 as a single diastereomer.

In conclusion, the Reisman Group reported the first total synthesis of ritterazine B from
a simple steroid starting material over 37 steps in a 9% overall yield. The synthesis featured
a unique strategy, which included a divergent titanium-mediated propargylation from a
common building block to construct the eastern and western fragments. A gold-catalyzed,
diastereoselective spirocyclization elaborated each eastern and western steroid into their
respective spiroketals (eastern fragment: 59% over 18 steps; western fragment: 33% over 17
steps). Lastly, a convergent tin-catalyzed heterodimerization combined 45 and 46 via an
initial imine formation, subsequent loss of molecular nitrogen from the intermediate azide,
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and a final cyclization/aromatization sequence to provide the desired pyrazine moiety of
ritterazine B, followed by global silyl deprotection using tetrabutylammonium fluoride
(TBAF) to yield 32. The Reisman Group has employed their route to generate several
multimilligram batches of ritterazine B, and investigations into the biological activity of 32
are currently underway.

3.2. Total Synthesis of Cephalostatin 1

Shair et al. have reported a convergent enantioselective synthesis of cephalostatin
1 (Scheme 3) [45]. The total synthesis approach to cephalostatin 1 hinged on a late-stage
heterodimerization of key “western” and “eastern” fragments through a pyrazine-forming
reaction to condense distinct α-aminoketone synthons. The “western half” fragment
of cephalostatin 1 was synthesized in 29 steps from the plant-derived steroid hecogenin
acetate (47) (available at kilogram scale). The synthesis of the “eastern half” of cephalostatin
1 was carried out in 16 steps from trans-androsterone (49), and included (1) a remote C-H
oxidation (C-ring) and (2) installation of an alkyne side chain via Sonogashira coupling
with 50. The critical late-stage pyrazine-forming reaction occurred between α-azidoketone
48 and α-aminomethyloxime 51 upon treatment with polyvinylpyridine and dibutyltin
dichloride (Bu2SnCl2). Final treatment with TBAF removed silyl- and acetate-protecting
groups to produce cephalostatin 1 (8) at a 47% yield over the final two steps.
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3.3. Total Syntheses of (-)-Barrenazines A and B

Barrenazines A and B are structurally interesting pyrazine natural products isolated
from a tunicate in the Barren Islands, and demonstrate anticancer activities against colon
carcinoma, prostate carcinoma, and leukemia cells. Due to their interesting molecular
structures and biological activities, barrenazines A and B have generated considerable
interest from the synthetic community. Sestelo reported enantioselective total syntheses of
(-)-barrenazines A and B using an (-)-8-phenylmenthyl carbamate—initially developed by
Comins—as a chiral auxiliary to direct Grignard additions into an N-acylpyridinium salt
(54) and establish the absolute stereochemistry in these natural products (Scheme 4) [46].
Following the key Grignard reaction to yield 56 with high enantioselectivity, enone 57 was
subjected to L-selectride (conjugate) reduction and subsequent treatment with TIPSOTf to
trap the intermediate enolate species in order to form silyl enol ether 58 at a 97% yield. Treat-
ment of 58 with ceric ammonium nitrate (CAN) and sodium azide afforded α-azidoketone
52 at a 76% yield. Staudinger reduction of 52 afforded the corresponding α-aminoketone
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(structure not shown), which was then treated with PTSA to generate pyrazine 59 at a 59%
yield. Boc group deprotection of 59 was carried out following treatment with trifluoroacetic
acid (TFA) to afford (-)-barrenazine B (11) at an 86% yield. Finally, 11 was hydrogenated to
produce (-)-barrenazine A (10) at a 90% yield.
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3.4. Total Synthesis of Dragmacidin D through Advances in C-H/C-H Cross-Coupling

Dragmacidin D is a marine natural product that demonstrates potent inhibition of
serine/threonine protein phosphatases, which have implications for the treatment of
Alzheimer’s, Parkinson’s, and Huntington’s diseases. Itami, Yamaguchi, et al. disclosed an
interesting synthetic approach to dragmacidin D model compound 67, involving a series
of innovative C-H/C-H cross-coupling reactions (Scheme 5) [47]. The initial C-H/C-H
cross-coupling between indole 60 and mono N-oxide of pyrazine (61) was catalyzed by
palladium(II) acetate and silver(I) acetate to afford 62 at a 45% yield. Following this,
N-oxide 62 was subjected to trifluoroacetic anhydride to give a 1:1 mixture of pyrazinones
64 and 65 at a 60% yield. 5-Indolopyrazinone 64 was then subjected to a second C-H/C-H
cross-coupling with 6-bromoindole (66) and trifluoromethanesulfonic acid (CF3SO3H) in
DMF, in the presence of air, to form 67 at a 73% yield. This model synthesis laid the
foundation for a concise total synthesis of dragmacidin D.
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The total synthesis of dragmacidin D was carried out in only five steps, starting
from MOM-protected indole 68, which was accessed in nine steps. Compound 68 was
subjected to a palladium(II)-acetate-catalyzed C-H/C-H cross-coupling reaction with the
pyrazine-N-oxide (61) to afford 69 at a 50% yield [47]. Compound 69 was then treated
with trifluoroacetic anhydride and successfully converted to pyrazinone 70, before a sec-
ond C-H/C-H cross-coupling reaction was successfully carried out with 6-bromoindole
to yield 71 (57% yield over two steps; Scheme 5). The end-game synthetic sequence in-
cluded (1) α-bromination of the ketone in 71 following silyl enol formation and subsequent
treatment with NBS (73% yield), (2) installation of Boc-protected 2-aminoimidazole from
treating the α-bromoketone intermediate with Boc-guanidine, and (3) a final reaction with
trifluoroacetic acid to promote global deprotection and access (±)-dragmacidin D (12)
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(51% yield over two steps). This unique synthetic approach showcases multiple C-H/C-H
cross-coupling reactions, which enable rapid access to this important marine alkaloid. In
addition, this total synthesis of dragmacidin D provides a clear roadmap towards accessing
related alkaloids and novel synthetic analogues for biological investigations relevant to
various neurological diseases.

3.5. Total Synthesis of Botryllazine Involving a New C-H Functionalization of Pyrazines

Singh et al. developed an iron-catalyzed C-H functionalization of electron-deficient
heterocycles with organoboron agents. In addition, this robust methodology was used to
complete a short total synthesis of the natural product botryllazine A (15) (Scheme 6) [48].
The work aimed to address challenges related to the cross-coupling of electron-poor het-
eroarenes, including pyrazines. During the course of these studies, arylboronic acids (72)
were successfully coupled to pyrazines 1 and 80, with up to 86% yield, using a combina-
tion of 20 mol % iron(II) acetylacetonate [Fe(acac)2], one equivalent of trifluoroacetic acid,
a phase-transfer catalyst (tetrabutylammonium bromide; TBAB) and an oxidant (potas-
sium persulfate; K2S2O8) in 1:1 dichloromethane:water. This new method transformed
2,3-dimethylpyrazine (80) to arylated pyrazine 82 (60% yield), which was further elabo-
rated to botryllazine A (15) using a short synthetic sequence involving benzylic oxidation
to dialdehyde 83, Grignard addition with 84 to yield intermediate 85, subsequent PCC
oxidation to diketone 86 and, finally, acid-promoted demethylations to botryllazine A (15).

3.6. Total Synthesis of the Pyrazine Bisindole Alkaloid Alocasin A

Alocasin A is a pyrazine-linked bisindole alkaloid isolated from the plant Alocasia
macrorrhiza and used throughout southern Asia as folk medicine to treat headaches, flu, and
other conditions. Sperry and Kim developed a concise total synthesis of alocasin A that was
initiated with a double Suzuki–Miyaura coupling between 2,5-dibromopyrazine (87) and
3-borylindole 88 using tetrakis(triphenylphosphine)palladium(0) to afford pyrazine bisin-
dole 89 at a 69% yield (Scheme 7) [49]. The final sequence included an N-Boc-group removal
upon treatment with trifluoroacetic acid (90% yield), followed by a final demethylation of
90 with hydrobromic acid to yield alocasin A (13) (43% yield). This robust synthetic route
enables rapid access to alocasin A, while providing a roadmap to generate structurally
related synthetic analogues for more extensive biological studies.

3.7. Total Synthesis of Wasp Pheromone 2-Hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine

An elegant synthesis of the female wasp pheromone 2-hydroxymethyl-3-(3-methylbutyl)-
5-methylpyrazine (91) was reported by Barrow et al. using a five-step synthetic se-
quence [50]. This instructive route demonstrates the incredible synthetic utility of N-oxides
in the synthesis of pyrazine-based molecules. In this synthesis, N-oxide intermediates were
readily accessed to strategically install a chlorine atom at the 2 position of the pyrazine
heterocycle and facilitate a Boekelheide rearrangement in the last step to install the hy-
droxymethyl group of 91. In addition, 2-chloropyrazine 93 was an ideal substrate for a
nickel-catalyzed Kumada–Corriu cross-coupling with 3-methylbutylmagnesium bromide
(96) to afford trisubstituted pyrazine 97 at a 90% yield (Scheme 8). The robust strategies
employed in this streamlined synthesis are highly practical, and could be applied to access
numerous pyrazine compounds in the future.
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3.8. Regio- and Chemoselective Metallations to Access the Pyrazine Natural Product Coeleterazine

Knochel et al. developed a sequential regio- and chemoselective metalation method-
ology by treating chloropyrazine 98 with TMPMgCl·LiCl (2,2,6,6-tetramethylpiperidide
magnesium chloride; Turbo-Hauser base) and (2,2,6,6-tetramethylpiperidide magnesium
chloride; Turbo-Hauser base) and TMPZnCl·LiCl. Subsequent trapping of metallated inter-
mediates was effective following treatment with various electrophiles/cross-coupling part-
ners (e.g., aryl iodide), and afforded highly functionalized pyrazine compounds (e.g., 100;
Scheme 9) [51]. This methodology was demonstrated to provide 18 pyrazines, showcasing
the synthetic utility of this high-yielding sequence (≤93% yields), which enables consid-
erable diversification of the heterocyclic nucleus. This robust synthetic methodology was
used to synthesize coelenterazine (106)—a naturally occurring bioluminescent pyrazine
produced by the jellyfish Aequorea victoria—in eight linear steps from 98 (19% overall yield).
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3.9. Total Synthesis of Pyrazine Alkaloids from Amino Acids

A biomimetically inspired synthesis of 2,5-disubstituted pyrazine alkaloids was ac-
complished through the homodimerization of α-amino aldehydes and subsequent air
oxidation (Scheme 10) [52]. Cbz-protected α-amino aldehydes (107, 111, 115) that were
required for these total syntheses efforts were readily synthesized from common amino
acids. Each α-amino aldehyde reported in this study was accessed from hydrogenolysis of
the Cbz-protecting group upon treatment with 5 mol % palladium(II) hydroxide under a
hydrogen atmosphere, followed by the critical tandem condensation–oxidation sequence to
afford target pyrazine alkaloids at 41–73% yields (2,5-diisopropylpyrazine (110), 51% yield;
2,5-bis(3-indolylmethyl)pyrazine (114), 73% yield; actinopolymorphol C (118), 41% yield).

3.10. Total Synthesis of Favipiravir from 2-Aminopyrazine

Guo et al. recently reported the total synthesis of favipiravir (9, T-705)—a pyrazine-
containing antiviral prodrug that requires enzyme action to produce its active favipiravir-
ribofuranosyl-5′-triphosphate (120, RTP) form (Scheme 11) [16]. In this work, favipiravir
was synthesized using three synthetic routes; however, the preferred route required seven
steps from commercially available 2-aminopyrazine (121), and was highlighted by an effi-
cient synthesis of 3,6-dichloropyrazine-2-carbonitrile (127). This key synthetic intermediate
was prepared in four steps from 2-aminopyrazine, which included (1) a regioselective chlo-
rination of the pyrazine heterocycle to 122, (2) NBS bromination to 123/124, (3) palladium-
catalyzed cyanation to form 125/126, and (4) a Sandmeyer diazotization/chlorination
sequence to yield 127/128. This synthetic approach eliminated the need for POCl3, and
afforded a better yield (48%) than the alternative routes reported in this study (not detailed
here). Intermediates 127/128 were subjected to a nucleophilic aromatic substitution reac-
tion with fluorine, followed by partial hydrolysis of the nitrile moiety to form amide 130;
finally, nucleophilic aromatic substitution with water yielded favipiravir (9).
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4. Recent Total Synthesis of Phenazine-Containing Natural Products
4.1. Total Synthesis of N-Alkyl-2-halophenazin-1-ones

Several natural N-alkyl-2-halophenazin-1-one products are of considerable interest
due to their biological activity profiles, including pyocyanin (19), marinocyanin B (20),
lavanducyanin (21), WS-9659 B (22), and marinocyanin A (23). Kuromachi et al. recently
reported the synthesis of six naturally occurring N-alkyl-2-halophenazin-1-ones using an
oxidative condensation of N-alkylbenzene-1,2-diamines (131) with 4-halo-1,2,3-benzenetriol
(132) (5 examples, 10–21% yield; Scheme 12) [53]. This new synthetic approach enables the
synthesis of N-alkyl-2-chlorophenazin-1-ones, whereas standard N-chlorosuccinimide chlo-
rination of N-alkyl-phenazin-1-ones provides an undesired chlorination at the 4 position of
the phenazine heterocycle.
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Following chemical synthesis, cytotoxicity of six N-alkyl-2-halophenazin-1-ones and
three N-alkylphenazin-1-ones against human promyelocytic leukemia HL-60, lung cancer
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A549, and non-cancerous MRC-5 cells was investigated. Results from the biological assess-
ment show lavanducyanin (21) and the 2-position-halogenated analogues demonstrating
the most potent cytotoxicity (IC50 ≤ 0.75 µM), while marinocyanin B (20) analogues show
good cytotoxicity (IC50 = 0.33–2.59 µM); however, these compounds were also found to
be cytotoxic to the same degree as the non-cancerous cell lines (MRC-5). Interestingly,
2-chloropyocyanin (136) possessed the most ideal selectivity profile against A549 cells
(IC50 = 0.76 µM) when compared to MRC-5 (IC50 = 4.41 µM).

4.2. Total Synthesis and Antileukemic Evaluation of Iodinin, Myxin and Derivatives

An efficient total synthesis of the naturally occurring phenazine 5,10-dioxides iodinin
(29) and myxin (30) was recently reported by Rongved et al. (Scheme 13) [54]. In addition,
a series of related synthetic analogues was generated (e.g., 141–143), and their activity
against leukemia cells was investigated to determine cytotoxicity in hypoxic and non-
hypoxic conditions. This work provided considerable insights into the structure–activity
relationship profiles of these interesting anticancer agents, while paving the way for future
developments in this area.
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The synthesis of iodinin was initiated with a double palladium-catalyzed Buchwald–
Hartwig C-N cross-coupling of 2-bromo-3-methoxyaniline (137) to generate
1,6-dimethoxyphenazine (138) at a 79% yield on a one-gram scale. Numerous palladium cat-
alyst systems were screened to carry out the 1,6-dimethoxyphenazine synthesis; however,
the best results were obtained using the palladium(II)-BrettPhos precatalyst in combina-
tion with potassium hexamethyldisilazide (KHMDS). Next, 1,6-dimethoxyphenazine was
demethylated to afford 1,6-dihydroxylphenazine (139) using boron tribromide (BBr3) at
a near-quantitative yield, followed by double N-oxidation using mCPBA in toluene to
afford iodinin (29) at a 76% yield. This robust synthetic route afforded iodinin at a gram
scale, which enabled rapid access to myxin (30) at a 61–72% yield following treatment
with methyl iodide and potassium carbonate in DMF with the addition of 18-Crown-6. In
addition, iodinin was alkylated with α-bromo esters (e.g., 140) to further explore synthetic
analogues related to myxin.

Following chemical synthesis, iodinin, myxin, and a diverse series of related analogues
were evaluated against MOLM-13 leukemia cells in hypoxic (low, 2% oxygen concentration)
and normoxic (normal, 19% oxygen concentration) conditions. Agents that selectively
target hypoxic cancer cells are of considerable interest, as cancers that thrive in low-oxygen
environments are notoriously aggressive and lead to poor prognoses in patients. Results
from these in vitro experiments demonstrated that iodinin, myxin, and multiple structurally
related analogues (e.g., 141) showed potent and increased activity against hypoxic MOLM-
13 leukemia cells (e.g., iodinin: EC50 = 2.0 µM against normoxic cells, EC50 = 0.79 µM
against hypoxic cells). In addition, analogues 142 and 143 were designed to probe the
necessity for the double N-oxide feature in iodinin/myxin, and showed significant losses in
activity against MOLM-13 cells. This was the first evidence that iodinin (29) demonstrated
hypoxia-selective antileukemia activity, and has the potential to act on malignant cells in
hypoxic bone marrow of AML patients.

4.3. Total Synthesis of Streptophenazine A and G

Streptophenazines A–H are a structurally related series of natural phenazine prod-
ucts isolated from marine Streptomyces sp. strain HB202. Streptophenazine A was isolated
in 2008, and reported moderate antibacterial activity, which garnered interest from the scien-
tific community. Yang et al. completed the first asymmetric synthesis of
(-)-streptophenazine A (144), which proved critical to its structural elucidation, as this
chemical synthesis led to a revision of the initially reported structure (Scheme 14) [55]. In
addition, this synthesis allowed for accurate stereochemical assignment regarding the two
stereogenic centers of (-)-streptophenazine A.

In terms of the retrosynthetic analysis, the plan to access (-)-streptophenazine A (144)
hinged on a late-stage asymmetric aldol reaction from the key phenazine aldehyde 145
(Scheme 14). A disconnection through the central ring of the phenazine nucleus of 145
led Yang et al. to nitroarene 146 and aniline 147 as building blocks to start the synthesis.
This robust synthesis plan proved to be quite flexible, and was also utilized to synthesize
(-)-streptophenazine G (154) [56].

The phenazine heterocycle of (-)-streptophenazine A (144) was rapidly assembled us-
ing a short synthetic sequence that included a nucleophilic aromatic substitution (SNAr) re-
action between 146 and 147, followed by a reductive cyclization reaction with sodium boro-
hydride/sodium ethoxide of 148 to form the critical phenazine heterocycle (Scheme 14) [55].
Next, treatment with methyl iodide and potassium carbonate resulted in the formation of
methyl ester 149. Subsequent benzylic oxidation with manganese oxide yielded aldehyde
145 as a key intermediate to this modular synthetic platform. To complete the synthesis
of (-)-streptophenazine A, aldehyde 145 was subjected to an asymmetric aldol reaction
with the enolate of 150 to set the two stereocenters of 151 with high levels of stereochem-
ical control at a 75% yield. The end-game sequence to (-)-streptophenazine A involved
the cleavage of the oxazolidinone moiety of 151 with lithium hydroxide and hydrogen
peroxide, and final installation of the methyl ester upon treatment of the corresponding
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carboxylic acid (structure not shown) with (trimethylsilyl)diazomethane (TMSN2) to yield
(-)-streptophenazine A (144).
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In addition, Yang reported an analogous synthesis to (-)-streptophenazine G (154)
(Scheme 14) [56]. Similar to the (-)-streptophenazine A study, the chemical synthesis of
(-)-streptophenazine G was critical to determining the absolute stereochemistry of this nat-
ural product, which possesses a hydrocarbon side chain bearing an additional stereocenter
when compared to (-)-streptophenazine A. During these investigations, the key aldehyde
145 was subjected to an asymmetric aldol reaction with oxazolidinone 152 bearing the
appropriate side chain. From 153, a hydrolysis/methyl ester formation end-game sequence
yielded (-)-streptophenazine G (154). Collectively, the modular synthesis that Yang et al.
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established to rapidly access streptophenazine natural products and derivatives could
make a significant impact towards the treatment of antibiotic-resistant bacterial pathogens.

4.4. Marine Phenazine 2-Bromo-1-Hydroxyphenazine-Inspired Antibacterial Agents

Our group has discovered a series of synthetically tunable halogenated phenazine an-
tibacterial agents that eradicate surface-attached biofilms with excellent potency [24,25,57–61].
Biofilms are densely packed bacterial communities that consist of enriched populations
of metabolically-dormant (non-replicating) persister cells demonstrating high levels of
tolerance to all classes of antibiotics. Biofilms are highly prevalent, and are credited as the
underlying cause of chronic and recurring infections in humans.

Our program was initially inspired by the action of phenazine antibiotics in the lungs
of cystic fibrosis (CF) patients. When CF patients are young, they often endure chronic
lung infections initially caused by the Gram-positive bacterial pathogen Staphylococcus
aureus. As these CF patients age, Pseudomonas aeruginosa co-infects the lungs and eradicates
S. aureus through the use of redox-active phenazine antibiotics. From this interesting
competitive interaction between P. aeruginosa and S. aureus, we hypothesized that phenazine
heterocycles would be a good starting point to discover novel antibacterial agents that
could potentially eradicate established biofilms [58].

During initial investigations, we synthesized a panel of five phenazine antibiotics
(e.g., pyocyanin) and eight diverse phenazine derivatives of synthetic origin. In the initial
MIC assay against planktonic S. aureus bacteria, we found 2-bromo-1-hydroxyphenazine
(27) to be the most potent natural phenazine product in our focused panel, with an
MIC = 6.25 µM (Scheme 15), which was significantly more potent than that of pyocyanin
(19; MIC = 50 µM) [57]. In addition, we found the related synthetic compound 2,4-dibromo-
1-hydroxyphenazine 155 (halogenated phenazine analogue 1, or HP-1) to demonstrate the
most potent antibacterial activity during initial studies, with an MIC = 1.56 µM against
S. aureus. In follow-up studies, we showed that HP-1 was able to eradicate established
methicillin-resistant S. aureus biofilms, with a minimum biofilm eradication concentration
(MBEC) of 100 µM [58,59].

After the identification of HP-1, we wanted to explore structure–activity relation-
ships (SARs) of the HP scaffold by functionalizing the other positions on the phenazine
heterocycle with various substituents (Scheme 15) [24,58–61]. To do this, we devised
modular chemical syntheses that enabled a diversity of functionalization at the 3- and
6-9 positions of the HP scaffold from available aniline starting materials. Precursor
1-methoxyphenazines (e.g., 161, 169) were rapidly accessed through a number of efficient
synthetic routes, including (1) Buchwald–Hartwig cross-coupling reaction between diverse
anilines 158 and 2-bromo-3-nitroanisole 159, followed by a sodium-borohydride-mediated
reductive cyclization to form the phenazine nucleus of 161; [24] and (2) a potassium-
tert-butoxide-promoted reaction between aniline starting materials (158) and 5-chloro-
2-nitroanisole 167 to form N-aryl-2-nitrosoaniline intermediates 168, which were then
subjected to N,O-Bis(trimethylsilyl)acetamide (BSA) to form the desired phenazine hetero-
cycle [61]. From these synthetic efforts, 1-methoxyphenazine products (e.g., 161 and 169)
were then demethylated using boron tribromide (BBr3), and brominated with two equiva-
lents of N-bromosuccinimide 163 (NBS) to yield target halogenated phenazines 164 and
170 [24,61].
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Overall, this collection of novel halogenated phenazines (e.g., 28, 155–157) demon-
strate potent antibacterial activities against several Gram-positive pathogens, including
Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis (antibacterial ac-
tivities reported as minimum inhibitory concentrations, or MIC values) [24,25,57–61]. In
addition, halogenated phenazines potently eradicate surface-attached bacterial biofilms
that are innately tolerant to all classes of conventional antibiotics (biofilm-killing activities
reported as minimum biofilm eradication concentrations, or MBEC values). HP-14 (28)
is one of the potent analogues we discovered during the course of these studies, and our
group used this compound as a probe in transcriptomic profiling experiments to demon-
strate that HPs induce rapid iron starvation in MRSA-1707 biofilms [25]. We have shown
that several other HP analogues—such as HP-29 (157)—also induce rapid iron starvation in
MRSA biofilms [61]. In addition, HP-29 has demonstrated good efficacy in treating S. aureus
and Enterococcus faecalis wound infections in mice. Collectively, small HP molecules have
the potential to dramatically impact future therapies related to biofilm-associated infections
in humans.
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5. Conclusions

Several exciting studies and discoveries regarding pyrazine- and phenazine-containing
compounds have been reported in recent years. This review covers a diverse collection
of outstanding contributions regarding total syntheses and medicinal chemistry efforts
related to pyrazine- and phenazine-containing compounds. In addition, we discussed
many pyrazine and phenazine agents that have shown potential therapeutic value, in-
cluding several that are clinically used to treat disease in humans. Overall, pyrazine and
phenazine compounds have produced significant interest from the medicinal and synthetic
communities, and we anticipate continued advances regarding these exciting heterocycles.
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