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Abstract: Immunotherapy with chimeric antigen receptor T (CAR-T cells) has been recently approved
for patients with relapsed/refractory B-lymphoproliferative neoplasms. Along with great efficacy in
patients with poor prognosis, CAR-T cells have been also linked with novel toxicities in a significant
portion of patients. Cytokine release syndrome (CRS) and neurotoxicity present with unique
clinical phenotypes that have not been previously observed. Nevertheless, they share similar
characteristics with endothelial injury syndromes developing post hematopoietic cell transplantation
(HCT). Evolution in complement therapeutics has attracted renewed interest in these life-threatening
syndromes, primarily concerning transplant-associated thrombotic microangiopathy (TA-TMA). The
immune system emerges as a key player not only mediating cytokine responses but potentially
contributing to endothelial injury in CAR-T cell toxicity. The interplay between complement,
endothelial dysfunction, hypercoagulability, and inflammation seems to be a common denominator
in these syndromes. As the indications for CAR-T cells and patient populations expand, there
in an unmet clinical need of better understanding of the pathophysiology of CAR-T cell toxicity.
Therefore, this review aims to provide state-of-the-art knowledge on cellular therapies in clinical
practice (indications and toxicities), endothelial injury syndromes and immunity, as well as potential
therapeutic targets.
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1. Introduction

Both autologous and allogeneic hematopoietic cell transplantation (HCT) have been widely
applied for the treatment of hematologic and autoimmune diseases [1,2]. Autologous HCT provides the
opportunity of intensive chemotherapy and immunosuppression, whereas allogeneic HCT provides
additional benefits of anti-tumor effects through immune mechanisms [3]. A novel cellular therapy in
the field of autologous HCT has been recently approved in patients with hematologic malignancies:
immunotherapy with chimeric antigen receptor T (CAR-T cells). Along with great efficacy in patients
with poor prognosis, CAR-T cells have been also linked with novel toxicities in a significant portion of
patients [4–6].

Despite efforts to characterize this new toxicity profile, our understanding of the pathophysiology
and potential therapeutic targets remains poor. These syndromes resemble the endothelial injury
syndromes observed post allogeneic HCT [7], but present with a different phenotype. Therefore, this
review aims to provide state-of-the art knowledge on cellular therapies in clinical practice (indications
and toxicities), endothelial injury syndromes and immunity, as well as potential therapeutic targets.
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2. Cellular Therapies in Clinical Practice

2.1. Indications

Recently, two CAR-T cell products have been approved for use in clinical practice:

(1) Tisagenlecleucel (KYMRIAH, Novartis, Basel, Switzerland) is a biosynthetic CD19 CAR-T cell
product, approved for treatment of children and young adults (up to 25 years of age) suffering
from relapsed/refractory B acute lymphoblastic leukemia (ALL) [4], as well as certain types of
relapsed/refractory aggressive B non-Hodgkin lymphoma (NHL) [5].

(2) Axicabtagene ciloleucel (YESCARTA, Kite Pharma, a Gilead Company, Los Angeles, CA, USA)
is also a biosynthetic CD19 CAR-T cell product, approved for treatment of certain types of
relapsed/refractory aggressive B non-Hodgkin lymphoma (NHL) [6].

Other CAR-T cell products have also shown promising results [8]. In particular, Lisocabtagene
maraleucel (Liso-cel, Bristol Myers Squibb) is undergoing a priority review for relapsed/refractory
large B-cell lymphoma.

Manufacturing these CAR-T cell products has been the result of continuous research in the field
since 1993. This research has moved the field from T-cell receptor mimetics to fourth generation
CARs [9]. Briefly, first generation CARs include an scFv antigen-binding epitope with one signaling
domain. The CD3ζ chain provides signals required for T cell activation. In second generation,
a costimulatory molecule, mainly CD28 or 4-1BB receptor (CD137), is added. The approved products
that have been mentioned above are of second generation. Third generation CARs improve effector
functions and persistence compared to second generation. Finally, fourth generation CARs are also
called TRUCKs (CAR redirected T cells that deliver a transgenic product to the targeted tumor tissue)
or armored CARs. These present enhanced antitumor potency, cytokine activity, and costimulatory
ligands [10].

Except for the construct, the success of CAR-T cell lies in the selection of an optimal cell surface
antigen as a target. CD19 has been selected as an optimal target for several reasons. It is expressed in
the cell surface primarily of the B-cell lineage, with highly restricted expression in normal tissues [11].
It is also involved in B-cell development and function, and possibly in tumor biology [9].

The process of CAR-T administration to patients resembles that of autologous HCT [2]. This
autologous process requires leukapheresis of selected patients. T cells are then isolated and genetically
engineered to express a modified T cell receptor. CAR-T cells are subsequently infused to the patient
after a lymphodepleting regimen [12]. Patients need to be carefully monitored for toxicities and
therefore, CAR-T cell therapy is currently performed in accredited transplant units. Interestingly,
successful outpatient treatment is currently performed with new products, such as liso-cel [13].

The above-mentioned indications of CAR-T cell products were based on their efficacy in patients
with otherwise poor outcomes. Indeed, relapse is observed in up to 15–20% of children and young
adults with ALL, with an overall survival of 22% at 1 year and 7% in 5 years. In relevant clinical
trials of CAR-T cells, response reached 81% [4]. Similarly, patients with relapsed/refractory aggressive
B-non-Hodgkin Lymphoma (B-NHL) do not benefit from autologous HCT, since relapse is observed
in 60% of those that undergo autologous HCT. CAR-T cells showed a complete remission of 38% in
clinical trials [14], with similar efficacy in real-world data [15].

2.2. Toxicity

CAR-T cells have introduced a novel toxicity paradigm. Clinical manifestations vary and
affect multiple systems, as summarized in Table 1. Cardiac, respiratory, hepatic, or gastrointestinal,
hematologic and renal toxicity are usually reversible or transient. Mild symptoms from these systems,
such as cough or nausea, are very common (≥1/10); while severe events, such as infarcts or B-cell aplasia,
uncommon (≥1/1000 to <1/100). Among them, two syndromes require intensive management: cytokine
release syndrome (CRS) and neurotoxicity, recently re-named to Immune effector cell-associated
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neurotoxicity syndrome (ICANS). In the phase 3 trials of approved products (including liso-cel), CRS
was observed in 37–93% of patients, and neurotoxicity in 23–65% [4,6,16]. CRS manifests with fever,
hypotension, hypoxia, manifestations from multiple systems: arrhythmia, cardiomyopathy, prolonged
QTc, heart block, renal failure, pleural effusions, transaminitis, and coagulopathy. Neurotoxicity may
present with delirium, encephalopathy, somnolence, obtundation, cognitive disturbance, dysphasia,
tremor, ataxia, myoclonus, focal motor and sensory defect, seizures, cerebral edema. Given the diverse
clinical manifestations of these syndromes, increased awareness is needed to early diagnose them post
CAR-T cell therapy.

Table 1. Clinical manifestations of CAR-T cells toxicity.

Toxicity Manifestations

Cytokine release syndrome (CRS)
fever, hypotension, hypoxia, manifestations from multiple systems:
arrhythmia, cardiomyopathy, prolonged QTc, heart block, renal failure,
pleural effusions, transaminitis, and coagulopathy

Neurotoxicity
delirium, encephalopathy, somnolence, obtundation, cognitive
disturbance, dysphasia, tremor, ataxia, myoclonus, focal motor and
sensory defect, seizures, cerebral edema

Cardiotoxicity sinus tachycardia, hypotension, decreased left ventricular ejection
fraction, arrhythmias, QT prolongation, increased troponin

Respiratory toxicity hypoxia, dyspnea, increased respiratory rate, respiratory failure, pleural
effusions, capillary leak syndrome

Hepatic and gastrointestinal toxicity increased liver transaminases or alkaline phosphatase or
direct bilirubin, nausea, vomiting, diarrhea

Hematologic toxicity

anemia, thrombocytopenia, neutropenia, B-cell aplasia,
hypogammaglobulinemia, prolongation of partial thromboplastin time
(PTT) or prothrombin time (PT), decreased fibrinogen, disseminated
intravascular coagulation (DIC), hemophagocytic lymphohistiocytosis

Renal toxicity renal insufficiency, hyponatremia, hypokalemia, hypophosphatemia,
tumor lysis syndrome

Data from different clinical studies and research groups have been recently harmonized based
on a consensus grading suggested by the ASCT (American Society of Transplantation and Cellular
Therapy, formerly American Society for Blood and Marrow Transplantation, ASBMT) [17]. This
consensus document provides additional useful recommendations on tools to diagnose and monitor
patients. Although these syndromes have been reported in up to 93% of patients early after CAR-T cell
therapies, they are potentially life-threatening [18].

Management is also based on a multidisciplinary approach, with a significant portion of patients
in need of intensive care and neurology consultation. The use of steroids and tocilizumab, an IL-6 agent,
seem to mainly abrogate CRS and subsequently, neurotoxicity, since these toxicities commonly co-exist.
Although neurotoxicity is reversible in most cases, 3–10% of neurologic events remain unresolved [19].
Importantly, deaths due to toxicity syndromes have been reported, despite optimal management [18].

Despite increased interest in these toxicities, their pathophysiology has not been clarified yet [20].
Hunter and Jacobson have recently reviewed the pathophysiology focusing on neurotoxicity [19].
As explicitly shown in their review, no experimental model or in vitro study has so far replicated the
profile of neurotoxicity post CAR-T cells. It is widely accepted that these syndromes are characterized by
endothelial injury and hypercoagulability [18]. Although the latter are common denominators in well
described endothelial injury syndromes post allogeneic HCT [7], no direct link has yet been established.

3. Endothelial Injury Syndromes and Immunity

3.1. Endothelial Injury Syndromes

Various endothelial injury syndromes result post allogeneic HCT, including transplant- associated
thrombotic microangiopathy (TA-TMA), graft-versus-host disease (GVHD) and veno-occlusive
disease/sinusoidal obstruction syndrome (SOS/VOD) [21].
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TA-TMA is a life-threatening complication of HCT that manifests with microangiopathic hemolytic
anemia, thrombocytopenia and often renal or neurologic dysfunction [22–27]. It is more common post
allogeneic HCT, but has also been described post autologous HCT, especially in pediatric recipients [28].
Its diagnosis is largely hindered by the high incidence of cytopenias and organ dysfunction in
HCT recipients. Indeed, renal and neurologic dysfunction are attributed to several causes post
HCT, that are potentially life-threatening [29–31]. Endothelial injury has been long recognized as
a contributor to the pathogenesis of TA-TMA. Various underlying processes (conditioning regimen
toxicity, calcineurin inhibitors/CNIs, alloreactivity, bacterial products, and GVHD) contribute to
a prothrombotic state, which may eventually lead to microvasculature thrombosis [32].

GVHD is the major cause of morbidity and mortality among allogeneic HCT survivors without
relapse or secondary malignancy [33,34]. GVHD treatment consists mainly of immunosuppressive
agents [35]. Prolonged immunosuppression is a risk factor of severe infections, leading to a vicious
cycle of morbidity in GVHD patients [30,36,37]. Markers of endothelial dysfunction, such as endothelial
microvesicles [38], are significantly increased 2–3 weeks post allogeneic HCT [39], as well as in patients
with acute GVHD [40]. Endothelial activation has also been implicated in the pathophysiology of acute
GVHD by a recent experimental study [41].

SOS/VOD disease of the liver has been traditionally considered a severe complication of allogeneic
HCT, particularly in patients with known risk factors [42]. Although it manifests as a rare HCT
complication thanks to advances in transplant modalities [43,44], calicheamicin-conjugated antibodies,
gemtuzumab and inotuzumab ozogamicin, have led to renewed interest in this syndrome [45,46].
Our group along with others has shown that changes in coagulation and fibrinolysis are predictive
of SOS/VOD [47]. However, further studies have failed to identify useful biomarkers for routine
clinical practice [42]. Its pathophysiology is strongly associated with damage observed in sinusoidal
endothelial cells and in hepatocytes that continues with progressive venular occlusion [42].

Recent progress, mainly in the field of thrombotic microangiopathies (TMAs), has highlighted the
role of complement as a common denominator in endothelial injury syndromes [48].

3.2. Immunity

The complement system is part of the immune system, comprising of more than 50 soluble
and membrane-bound proteins [49]. It provides innate defense against microbes and mediating
inflammatory responses. Except for inflammation, a link also exists between the complement
system and platelet activation, leukocyte recruitment, endothelial cell activation and coagulation.
Several reviews have tried to delineate the complex link between complement and thrombosis [50,51].
This link is basically established through interactions between C3, C5, and thrombin. Figure 1
summarizes complement activation and its interaction of complement with other pathways, that may
implicate it in CAR-T cell toxicity.

The proximal complement cascade is activated by the classical, alternative, and lectin pathways.
The classical pathway is mainly activated by antibody-antigen complexes recognized by complement
component C1q [52]. This leads to the formation of classical pathway C3 convertase that cleaves
C3, generating the anaphylatoxin C5a and C5 convertase. The latter cleaves C5 into C5a and C5b,
initiating the terminal pathway of complement. In the terminal pathway, C5b binds to C6 and C7
generating C5b-7, that is able to insert into lipid layers of the membrane [53]. C5b-7 binds C8 and C9,
forming a complex that unfolds in the membrane and binds several C9 molecules, thereby forming the
membrane attack complex (MAC).
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Figure 1. Schematic representation of complement activation. Proximal complement activation initiated
by any of the three pathways (classical, alternative, or lectin pathway) leads to C3 activation and C3
convertase formation on C3-opsonized surfaces. C3 activation through the alternative pathway of
complement amplifies this response (APC amplification loop, shown in dotted lines), culminating
in pronounced C3 fragment deposition on target cells. In the presence of increased surface density
of deposited C3b, the terminal (lytic) pathway is triggered, leading to membrane attack complex
(MAC) formation on the surface of target cells. C3a and C5a mediate complement interactions with
inflammation, coagulation, and endothelial cell activation. These alterations are also triggered by
CAR (chimeric antigen receptor)-T cell toxicity syndromes, including CRS (cytokine release syndrome)
and neurotoxicity.

Interestingly, the alternative pathway of complement serves as an amplification loop for the lectin
and classical pathways, accounting for roughly 80% of complement activation products [54]. The
alternative pathway is continuously activated through slow spontaneous hydrolysis of C3, which forms
C3(H2O) [55]. The activated C3(H2O) binds factor B, generating C3(H2O)B. Factor B is subsequently
cleaved by factor D, generating the fluid phase APC C3 convertase, or C3(H2O)Bb. C3 convertase
then catalyzes the cleavage of additional C3 molecules to generate C3a and C3b, which attach to cell
surfaces [56]. This initiates the amplification loop, where C3b pairs with factor B on cell surfaces, bound
factor B is cleaved by factor D to generate a second APC C3 convertase (C3bBb). Membrane-bound C3
convertase then cleaves additional C3 to generate more C3b deposits, closing the amplification loop. The
binding and cleavage of an additional C3 molecule to C3 convertase forms the C5 convertase, initiating
terminal pathway activation. Both C3 and C5 APC convertases are stabilized by properdin [57], which
also serves as a selective pattern recognition molecule for de novo C3 APC convertase assembly [55].
Properdin is the only known positive regulator of complement. It increases the activity of C3 and C5
convertases, which amplify C3b deposition on cell surfaces [58].

Lectin pathway activation is initiated by mannose-binding lectins (MBLs) [59,60] and other
pattern recognition molecules including ficolins and collectin 11 [61]. These molecules act through
MBL-associated serine proteases (MASPs), which generate the C3 convertase in a process similar to
that of the classical pathway.

3.3. Complement Activation in Endothelial Injury Syndromes

In TA-TMA, Jodele et al. first suggested that TA-TMA results from endothelial dysfunction
after multiple triggers in genetically predisposed pediatric patients [27,62]. Initial data have shown
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excessive activation of terminal complement pathway through a rough marker of terminal complement
activation, soluble C5b-9 levels [27]. Further studies have also confirmed complement activation
on cell surface through functional assays [63]. Additionally, genomic data have suggested genetic
susceptibility through rare mutations in complement-mediated genes [62]. Our group confirmed these
data in adult patients [64], providing additional evidence of a vicious cycle of endothelial dysfunction,
hypercoagulability, neutrophil and complement activation in TA-TMA [7]. A more recent study of
transcriptome analysis in pediatric TA-TMA has shown activation of multiple complement pathways
and an interplay between complement and interferon that perpetuates endothelial injury [65]. These
data are in line with a previous clinical observation documenting complement-mediated TMA in
patients with hemophagocytic lymphohistiocytosis (HLH), a rare clinical syndrome of excessive
immune activation, characterized by signs and symptoms of extreme inflammation, largely driven by
interferon γ and other pro-inflammatory cytokines [66].

Our understanding of the pathophysiology of TA-TMA has led to a revolution in therapeutics.
Based on their success in patients with TMA and excessive complement activation [67,68], complement
inhibitors have also shown success in TA-TMA. The first-in-class terminal complement inhibitor,
eculizumab, has long been used in TA-TMA [69–72]. Real-world data suggest early initiation of
treatment in patients with complement activation measured by soluble C5b-9 levels, as well as
monitoring of treatment and dose adjustments yield better results [73]. Recently, narsoplimab
(OMS721), a novel lectin pathway inhibitor targeting MASP-2 (mannan-binding lectin-associated serine
protease-2), received breakthrough FDA designation, based on positive data in TA-TMA [74].

Clinical features of SOS/VOD share common characteristics with a syndrome observed during
pregnancy, the HELLP (hemolysis, elevated liver enzymes, and low platelet number) syndrome.
We and other groups have provided functional and genetic evidence pointing towards increased
complement activation associated with complement-related germline mutations in patients with
HELLP syndrome [75–79]. In this context, these syndromes resemble the disease model of
complement-mediated hemolytic uremic syndrome (HUS) [48]. Different mutations in complement-
related factors may lead to distinct phenotypes with similar characteristics as shown in other
complement-related diseases, such as C3G-glomerupathy and age-related macular degeneration [80,81].

Earlier studies have suggested preliminary evidence of complement activation in patients with
SOS/VOD. A subset of transplanted patients with SOS/VOD has shown increased complement activation
markers at levels similar to those of patients with transplant-associated TMA. In addition, ADAMTS13
(A Disintegrin and Metalloproteinase with Thrombospondin motifs), a known regulator of TMAs,
was reported lower in patients with SOS/VOD [82]. In line with these data, a previous case report
documented increased complement activation in a SOS/VOD patient that was efficiently treated with
the complement inhibitor C1 esterase inhibitor (C1-INH-C) [83]. Regarding genetic studies, Bucalossi
et al. detected two complement factor H (CFH) variants in 3 SOS/VOD patients. Except for complement
factor I (CFI), no other complement-related genes were studied [84].

4. CAR-T Cell Toxicity and Endothelial Injury Syndromes

Endothelial dysfunction and hypercoagulability are being currently investigated in CAR-T cell
toxicity. Indeed, angiopoietin 2, the angiopoietin-2 to angiopetin-1 ratio, and von Willebrand Factor
(VWF) were increased in patients with severe neurotoxicity (grade ≥ 4) [85]. These patients also had
a lower fraction of high molecular weight VWF multimers and a higher fraction of low molecular
weight VWF multimers. In addition, ADAMTS13 that cleaves VWF [86], has been measured in patients
with severe neurotoxicity. A lower ADAMTS13:VWF ratio was found when compared to patients
with lower grade neurotoxicity [85]. To further confirm evidence of endothelial activation, sera from
patients with severe neurotoxicity induced the formation of VWF-platelet strings on endothelial cells
in vitro [85]. Similarly, high angiopoietin-2 to angiopoietin-1 ratios were found in patients with severe
neurotoxicity, grade 3–4 compared to grade 0–2 [87]. Angiopoietin-2 and VWF were also increased
during severe CRS and before lymphodepletion in patients who developed CRS [88].
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Additional findings of hypercoagulability have been suggested by laboratory markers of
disseminated intravascular coagulation (DIC) in these patients [87]. This evidence is tightly linked
to blood-cerebrospinal fluid barrier disruption and proinflammatory cytokines that have been also
observed in severe neurotoxicity [85,87]. Endothelial expression of adhesion molecules (ICAM-1 and
VCAM-1) has also been found impaired in experimental studies [89].

An alternative link between endothelial injury and CAR-T cell toxicity stems from cardiovascular
events. Although cardiovascular events are largely under-reported in patients with hematologic
malignancies and cellular therapies [32], a recent study in patients post CAR-T cell therapy has
highlighted their role. In particular, cardiac injury and cardiovascular events were common, showing
a graded relationship among CRS, elevated troponin, and cardiovascular events. A lower rate of
cardiovascular events was found in CRS patients with early onset of tocilizumab [90]. It should be noted
that endothelial dysfunction is considered an early event in the pathophysiology of cardiovascular
disease [91]. In this context, CAR-T cell toxicity resembles endothelial injury syndromes.

Finally, a unique characteristic of CAR-T cell toxicity is the central role of the immune system
orchestrating the cytokine storm. Monocytes and macrophages are key cells in this process. Giavridis
et al. documented that CRS severity depends on IL-6, IL-1, and nitric oxide produced by macrophages
in mice models [92]. Even in neurotoxicity, macrophage infiltration in the subarachnoid space has been
shown in animal studies [93] and in a patient with a fatal outcome [94].

5. Potential Therapeutic Targets in CAR-T Cell Toxicity

Supportive care, corticosteroids, and tocilizumab are the mainstay of treatment for the potentially
life-threatening CAR-T cell toxicity [95]. Innovative approaches have focused on developing alternative
products linked with lower toxicity rates. A really interesting study utilized low molecular weight
adapters to regulate toxicity post CAR-T cell therapy [96]. Other approaches targeting IL-1 through
competitive binding to IL-1 receptor (anakinra) or anti- inflammatory cytokines (IL-37) have also been
suggested [97]. Interestingly, anakinra decreased CRS and neurotoxicity-mediated mortality in mice
studies [92,94].

Nevertheless, anti-inflammatory approaches address rather the pathophysiology of cytokine
storm and not that of endothelial injury and neurotoxicity. Therefore, strategies addressing the
endothelial activation and related pathways may be adapted from successful treatment of endothelial
dysfunction syndromes. Defibrotide is the only efficient treatment of SOS/VOD, with encouraging
results as a prophylactic treatment in high-risk patients [98,99]. Defibrotide which dramatically
improves survival in patients with SOS/VOD through endothelial stabilization, may work in a similar
manner in prevention or treatment of neurotoxicity following CAR T-cell therapy [42].

5.1. Complement Inhibition

Complement inhibition is the treatment of choice for several complement-mediated diseases [49].
The disease model for complement inhibition is paroxysmal nocturnal hemoglobinuria (PNH), patients
manifesting with severe hemolytic anemia and/or thrombosis. Two complement inhibitors have been
approved by the FDA for the treatment of PNHs: eculizumab in 2007 and ravulizumab in 2019. Both
monoclonal antibodies are administered intravenously. They block terminal complement activation by
binding to C5 and sterically hindering cleavage of C5 by the C5 convertase. As a result, the generation
of the proinflammatory C5a molecule and MAC formation are blocked [100,101]. Ravulizumab has the
advantage of 4-fold longer half-life, showing a non-inferior efficacy compared to eculizumab in large
PNH trials [102,103]. Recently, ravulizumab has shown sustained one-year safety and efficacy [104], as
well as decreased breakthrough hemolysis [105]. Ravulizumab is currently considered the drug of
choice based on its long half-life that allows for more convenient dosing. The only major adverse effect
from terminal complement inhibition has been an expected increase risk of neisserial meningitis (0.5%
risk annually), since infection for other encapsulated bacteria is of lower risk [106]. The predictable
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toxicity from C5 inhibition and lack of other major end- organ toxicity along with a life-changing
efficacy, have rendered complement inhibition a precision medicine paradigm.

Novel complement inhibitors are in the advanced phase of clinical development [107–109].
Providing further details does not fall within the scope of this review. Therefore, we will briefly
describe the advantages and disadvantages of agents already administered in the disease model
of complement activation, PNH. The terminal complement inhibitor crovalimab also targets C5,
but at a different epitope from eculizumab and ravulizumab. It has the advantage of subcutaneous
administration every four weeks [110]. Proximal complement inhibition targets complement proteins
upstream of CD59 and CD55, such as C3, factor D, and factor B. These inhibitors are expected
to be more precise, especially in PNH. The factor D inhibitor (danicopan) has the advantage of
oral administration [111,112]. Regarding infection concerns, experimental studies have shown that
danicopan preserves the activity of classical and lectin pathways against invasive pathogens [113].
Furthermore, increased meningococcal killing in vaccinated volunteers has been shown in the presence
of danicopan compared to anti-C5 inhibitors [114]. Pegcetacoplan is administered subcutaneously.
This 15-amino acid cyclic peptide is conjugated to polyethylene glycol. It binds to C3 and prevents C3
and C5 cleavage by their respective convertases [115]. In summary, the therapeutic armamentarium of
complement-mediated diseases is constantly expanding. The choice of the ideal complement inhibitor
is soon expected to be personalized.

5.2. Complement Inhibition in Neurotoxicity

There is no clear evidence of complement inhibitor actions against neurotoxicity. Interestingly,
complement inhibition has been recently approved for certain neurological disorders. In addition,
similar to the mechanisms of actions in endothelial injury syndromes, complement inhibitors are
expected to provide benefits against endothelial dysfunction. Importantly, complement inhibitors are
also expected to induce an anti-inflammatory effect. The continuous progress made during the recent
coronavirus (COVID-19) pandemic has provided important insight into the anti-inflammatory effects
of complement inhibitors.

While complement is considered a first line of defense against invading pathogens, including
viral infections, blocking C3 activation can significantly attenuate the lung-directed proinflammatory
sequelae of infections [116]. Both the genetic absence of C3 and the blockade of downstream complement
effectors, such as C5a/C5aR1, have shown therapeutic promise by containing the detrimental
proinflammatory consequences of viral spread mainly via inhibition of monocyte/neutrophil activation
and immune cell infiltration into the lungs [117]. Furthermore, studies of previous coronaviruses
have shown that blocking C3 activation significantly attenuates the lung-directed proinflammatory
sequelae of infections [116,118]. A recent study also revealed that coronaviruses’ proteins (SARS-CoV,
MERS-CoV, and SARS-CoV-2) bind to a key protein of the lectin pathway (MASP-2/Mannan-binding
lectin serine protease 2), leading to complement-mediated inflammatory lung injury. Taken together,
several clinical and laboratory data suggest that the complement activation and inhibition need to
be further investigated in patients with severe COVID-19 infections [119]. Inflammatory states, such
as diabetes and obesity, also activate complement and thus, may exacerbate complement-mediated
injury [120]. Patients with severe lung injury may be the most likely to have a genetic predisposition,
as well as benefit from complement inhibition.

Given the promising preclinical data and the severity of COVID-19 infections, eculizumab is
currently being studied in patients with severe COVID-19 infections (ClinicalTrials.gov Identifier:
NCT04288713). In contrast to frequent intravenous infusions every two weeks that are required
for eculizumab treatment, a single intravenous dose of ravulizumab should be sufficient in patients
with COVID-19. Since C3 and the lectin pathway have been implicated in the pathophysiology of
coronaviruses infections, inhibitors of proximal complement pathways, under clinical development
for complement-mediated TMAs, could also be efficacious in COVID-19 [119]. Interestingly, the C3

ClinicalTrials.gov
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inhibitor AMY-101 has already shown efficacy in COVID-19 [121]. Additional clinical data are needed
to provide novel insights in these patients [122].

In summary, a plethora of evidence suggests that complement inhibition could be a promising
new approach to contain systemic, complement-mediated inflammatory reactions like CAR-T
cell neurotoxicity.

6. Conclusions and Future Perspectives

In conclusion, novel cellular therapies have introduced a new era of endothelial injury syndromes.
CRS and neurotoxicity present with a different phenotype but share many similarities with the
endothelial injury syndromes post HCT (TA-TMA, GVHD or SOS/VOD). The interplay between
complement, endothelial dysfunction, hypercoagulability, and inflammation emerges as a common
denominator in these syndromes.

Similarly, recent lines of evidence suggest that endothelial dysfunction, hypercoagulability, and
inflammation are also key players in the pathophysiology of CAR-T cell toxicity. Since complement
inhibition has shown safety and efficacy in patients with endothelial dysfunction syndromes (such as
TA-TMA), as well as in patients with excessive inflammation (such as severe COVID-19), it can by
hypothesized that complement inhibitors will show efficacy in these new patterns of toxicity.

As the indications for CAR-T cells and the patient populations expand, there in an unmet clinical
need of better understanding of the pathophysiology of toxicity following CAR-T cells. Further insights
into their pathophysiology will facilitate novel therapeutic options.
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