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Abstract: Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol,
and specific proteins which are stabilized into platforms involved in the regulation of vital cellular
processes. The rafts at the cell surface play important functions in signal transduction. Recent
reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the
single-cell membrane. In this review, we summarize our recent data on living platelets using
two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ

as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally
distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to
sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular
fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen
receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion
to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding
proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain
protein family, tetraspanin family, and calcium channels are discussed.
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1. Platelet Lipid Rafts

The fluid mosaic model has supported our understanding of cellular membranes for a long time.
Recent studies suggest that plasma membrane lipids are not homogeneously distributed and that the
membranes may contain microdomains or compartments. Glycosphingolipids form microdomains
containing cholesterol in the cell membrane. Glycosphingolipid- and cholesterol-rich microdomains
are referred to as lipid rafts. Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin,
cholesterol, and proteins which are stabilized into platforms involved in the regulation of a number of
cellular processes [1]. Lipid rafts are isolated as a detergent-resistant membrane (DRM) fraction by
sucrose density gradient centrifugation. Recent studies have demonstrated that lipid rafts are spatially
and compositionally heterogeneous in the cell membrane. In migrating T cells, GM3 ganglioside-rich
rafts containing a chemokine receptor are present at their leading edge, whereas GM1-rich rafts
containing integrin β1 are present at their uropod [2].

In 1996, platelet DRM was shown to be rich in glycoprotein CD36, Src, and Lyn [3]. Platelet rafts are
important membrane microdomains in responses such as adhesion and aggregation. The localization
of the adhesion receptor glycoprotein (GP)Ib-IX-V complex to lipid rafts is required for platelet
adhesion to the vessel wall by binding the von Willebrand factor (vWF) [4,5]. In resting platelets,
phosphatidylserine (PS) is asymmetrically restricted to the inner leaflet of the plasma membrane.
An increase in intracellular Ca2+ concentration during platelet activation can lead to the exposure of PS
in the outer leaflet. PS forms a procoagulant binding site for tenase and prothrombinase coagulation
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complexes. Lipid rafts are required for the release of PS-exposing extracellular vesicles from platelets [6].
Thus, lipid rafts are critical membrane domains in platelet activation processes [7,8]. Interestingly,
platelet DRM shifts to a higher density in sucrose gradients upon thrombin receptor activating peptide
(TRAP) stimulation [9]. Trace amounts of actin are observed in rafts from resting platelets, but a marked
increase in the amount of actin is found in rafts upon platelet stimulation by TRAP. Platelet DRM also
shifts to a higher density in sucrose gradients upon adenosine diphosphate (ADP) stimulation [10].

A protease-nicked and biotinylated derivative (BCθ) of perfringolysin O (θ-toxin) binds specifically
to cholesterol-rich microdomains of intact cells [11]. In resting platelets, BCθ-positive cholesterol-rich
rafts are uniformly distributed on the cell surface. Upon interaction with fibrinogen, BCθ-positive
cholesterol-rich rafts accumulate at the tips of filopodia and at the leading edge of spreading platelets [12].
The adhesion-dependent raft aggregation is accompanied by the concentration of the tyrosine kinase
c-Src and the tetraspanin CD63 in cholesterol-rich rafts. The perfringolysin O derivative BCθ recognizes
a subpopulation (cholesterol-rich rafts) of platelet DRM rafts, suggesting that a heterogeneous
population of lipid rafts exists in platelets [11]. However, little is known about raft heterogeneity in
platelet membranes.

2. Sphingomyelin-Rich Rafts of Platelets

We have been identifying glycosphingolipid-binding proteins [13–19] and investigated the signal
transduction in lipid rafts of platelets [20]. Previously, we reported that clot retraction is mediated by the
coagulation factor XIII (FXIII)-dependent fibrin-integrin αIIbβ3-myosin axis in platelet sphingomyelin
(SM)-rich membrane rafts [21]. Clot retraction is a process driven by outside-in signaling by the platelet
integrin αIIbβ3, resulting in the contraction of the fibrin mesh and the formation of mechanically
stable thrombi. To elucidate the function of platelet lipid rafts, we identified DRM-raft-specific
proteins from activated platelets. We isolated the DRM raft fraction of platelets treated with thrombin
by sucrose gradient centrifugation. Several specific proteins were present in the DRM fraction of
thrombin-stimulated platelets. By mass spectrometry, we identified three proteins of 65, 50, and 47 kDa
as fibrins α, β, and γ, respectively. These findings were supported by the results of immunoblot
analysis using an anti-fibrinogen/fibrin polyclonal antibody. In resting platelets, fibrinogens Aα

(67 kDa), Bβ (52 kDa), and γ (47 kDa) were present in the non-raft fraction. In contrast, fibrins
α (65 kDa), β (50 kDa), and γ (47 kDa) were exclusively present in the DRM fraction of platelets
treated with thrombin (Figure 1A) [21]. Therefore, we investigated the subcellular distribution of
fibrin and BCθ-positive cholesterol-rich rafts on thrombin-stimulated spreading platelets by scanning
immunoelectron microscopy. Fibrin was localized in the central area of spreading platelet (Figure 1B,
left panel). In contrast, BCθ-positive cholesterol-rich rafts were localized evenly on the membrane
(Figure 1B, right panel). These observations suggest that fibrin is translocated to platelet rafts other
than cholesterol-rich rafts following thrombin stimulation.

Lysenin, the earthworm toxin, is a specific probe of sphingomyelin (SM)-rich rafts in living
cells [22,23]. SM is a major component of raft lipids in platelets [9]. Therefore, we investigated the
subcellular distribution of SM-rich rafts in spreading platelets. Lysenin-positive SM-rich rafts were
localized in the central area of adhering platelets stimulated with thrombin (Figure 2A, left panel).
Lysenin-positive SM-rich rafts and fibrin mostly colocalized as a patch in the double-stained the central
area of spreading platelets stimulated with thrombin (Figure 2A, middle panel). Next, we investigated
the spreading of platelets by time-lapse differential interference contrast (DIC) imaging (Figure 2B) and
lysenin staining (Figure 2C). In resting platelets (Figure 2C, 0 min), lysenin-positive SM-rich rafts were
uniformly distributed on the cell surface. At an early stage of the spreading of platelets treated with
thrombin for 3 min, SM-rich rafts were mainly localized in the central area of adhering platelets with
some distributed in the lamellipodia. At a late stage of spreading of platelets treated with thrombin
for 15 min, almost all SM-rich rafts were in the central area. Furthermore, we also demonstrated the
translocation of myosin to the DRM raft fraction following thrombin stimulation and the colocalization
of activated myosin with fibrin in SM-rich rafts of adhering platelets stimulated with thrombin [21].



Int. J. Mol. Sci. 2020, 21, 5539 3 of 18

These observations suggest that SM-rich rafts act as platforms of fibrin-mediated outside-in signaling,
leading to clot retraction. To support this idea, the clot retraction of SM-depleted platelets from SM
synthase 1 and SM synthase 2 knockout mice was delayed significantly. As a result, we demonstrated
that fibrin converted by thrombin translocates immediately into platelet DRM rafts in a coagulation
factor XIII (FXIII)-dependent manner. Therefore, we proposed that fibrin is translocated to SM-rich
rafts in the presence of FXIII crosslinking activity and that platelet SM-rich rafts act as platforms where
extracellular fibrin and intracellular actomyosin join to promote clot retraction [21,24,25]. A spatial
distinction between SM-rich rafts and cholesterol-rich rafts in platelets is illustrated (Figure 3).
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 

 

 
Figure 1. Fibrin translocation to lipid rafts in central region of spreading platelets stimulated with 
thrombin. (A) Sucrose density gradient analysis of washed human platelets. Resting platelets (left) 
and platelets stimulated for 3 min with 1 U/mL thrombin (right) were lysed in Triton X-100 and then 
adjusted to 40% sucrose. A sucrose gradient (5–30%) in a volume of 6 mL was layered over the lysate 
(4 mL) and was centrifuged. Ten fractions were collected from top to bottom after centrifugation and 
subjected to immunoblotting with an anti-fibrinogen polyclonal antibody. In resting platelets, 
fibrinogens Aα (67 kDa), Bβ (52 kDa), and γ (47 kDa) were detected in the non-raft fraction (lanes 7–
10). In contrast, fibrins α (65 kDa), β (50 kDa), and γ (47 kDa) were detected in the raft fraction (lanes 
5,6) of thrombin-stimulated platelets. (B) Localization of fibrin (left panel) and BCθ-positive 
cholesterol-rich rafts (right panel) of thrombin-stimulated spreading platelets on fibronectin by 
scanning immunoelectron microscopy. Spreading platelets were incubated with 15 μg/mL BCθ for 30 
min followed by glutaraldehyde fixation and immunolabeling with anti-biotin IgG gold. Gold-
positive fibrins were localized in the central region of spreading platelet (left). In contrast, gold-
positive cholesterol-rich rafts were localized uniformly on the membrane (right). The study was 
approved by the institutional ethics committee. 
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Figure 1. Fibrin translocation to lipid rafts in central region of spreading platelets stimulated with
thrombin. (A) Sucrose density gradient analysis of washed human platelets. Resting platelets (left)
and platelets stimulated for 3 min with 1 U/mL thrombin (right) were lysed in Triton X-100 and then
adjusted to 40% sucrose. A sucrose gradient (5–30%) in a volume of 6 mL was layered over the lysate
(4 mL) and was centrifuged. Ten fractions were collected from top to bottom after centrifugation
and subjected to immunoblotting with an anti-fibrinogen polyclonal antibody. In resting platelets,
fibrinogens Aα (67 kDa), Bβ (52 kDa), and γ (47 kDa) were detected in the non-raft fraction (lanes
7–10). In contrast, fibrins α (65 kDa), β (50 kDa), and γ (47 kDa) were detected in the raft fraction
(lanes 5,6) of thrombin-stimulated platelets. (B) Localization of fibrin (left panel) and BCθ-positive
cholesterol-rich rafts (right panel) of thrombin-stimulated spreading platelets on fibronectin by scanning
immunoelectron microscopy. Spreading platelets were incubated with 15µg/mL BCθ for 30 min followed
by glutaraldehyde fixation and immunolabeling with anti-biotin IgG gold. Gold-positive fibrins were
localized in the central region of spreading platelet (left). In contrast, gold-positive cholesterol-rich
rafts were localized uniformly on the membrane (right). The study was approved by the institutional
ethics committee.
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sphingomyelin-rich raft staining. Washed platelets were incubated with GFP-lysenin for 10 min and 
then stimulated with 1 U/mL thrombin. The time-lapse fluorescent and DIC images were captured 
using Olympus LCV110. 

Figure 2. Immunocytochemical colocalization of fibrin with sphingomyelin-rich rafts in central region
of spreading platelets stimulated with thrombin. (A) Immunocytochemical colocalization of fibrin with
sphingomyelin-rich rafts in central region of thrombin-stimulated spreading platelets. Green fluorescent
protein (GFP)–lysenin-positive sphingomyelin-rich rafts (left panel). Alexa 594-labeled fibrin (middle
panel). Phase contrast (right panel). Scale bar, 3 µm. (B) Time-lapse platelet spreading after thrombin
stimulation on fibronectin-coated glass strip. (a) 0 min; (b) 0.2 min, filopodia formation; (c) 2 min,
spreading; (d) 10 min, complete spreading. (C) Time-lapse lysenin-positive sphingomyelin-rich raft
staining. Washed platelets were incubated with GFP-lysenin for 10 min and then stimulated with
1 U/mL thrombin. The time-lapse fluorescent and DIC images were captured using Olympus LCV110.
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Figure 3. A spatial distinction between SM-rich rafts and cholesterol-rich rafts in platelets. (A) In 
resting platelets, SM-rich rafts (green) and cholesterol-rich rafts (red) are uniformly distributed on the 
cell surface. No spatial distinction is observed by confocal microscopy. (B) Cholesterol-rich rafts 
accumulate at the tips of filopodia of adhering platelets [12]. SM-rich rafts are mainly localized in the 
central area of adhering platelets with some distributed in the lamellipodia. (C) SM-rich rafts are in 
the central area of full spreading platelets. Cholesterol-rich rafts were localized evenly on the 
membrane [21]. 
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ratio [26]. 
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Therefore, the platelet DRM shifts in sucrose gradients might be due to changes in lipid composition. 
Lactosylceramide and ganglioside GM3 are the major glycosphingolipids of human platelets [31]. 
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the formation of ganglioside GD3 by GD3 synthesis from the GM3 pool [31,32]. The GD3 synthase is 
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with thrombin showed an increase in the amount of ganglioside GM3 [34]. The stimulation of 
platelets with ADP showed a decrease in the amount of cholesterol in the DRM raft fraction [10]. The 
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Figure 3. A spatial distinction between SM-rich rafts and cholesterol-rich rafts in platelets. (A) In
resting platelets, SM-rich rafts (green) and cholesterol-rich rafts (red) are uniformly distributed on
the cell surface. No spatial distinction is observed by confocal microscopy. (B) Cholesterol-rich rafts
accumulate at the tips of filopodia of adhering platelets [12]. SM-rich rafts are mainly localized in
the central area of adhering platelets with some distributed in the lamellipodia. (C) SM-rich rafts
are in the central area of full spreading platelets. Cholesterol-rich rafts were localized evenly on the
membrane [21].

3. Raft Heterogeneity

Platelet DRM shifts to a higher density in sucrose gradients upon platelet activation, suggesting
that platelet lipid rafts are dynamic membrane microdomains. Not only actin and fibrin but also small
GTPases (Rac, cdc42) and cytoskeleton regulatory proteins (moesin, Arp3, VASP) were detected in the
DRM fraction of activated platelets [9]. The possible mechanism of the DRM shift to a higher density
in sucrose gradients upon platelet activation presumably involves the high protein-to-lipid ratio [26].

In porcine lung membranes, two distinct types of DRM were obtained after sucrose density
gradient centrifugation using Triton X-100. Light DRM contained cerebroside, whereas dense DRM
contained Ca2+ATPase and the IP3 receptor [27]. In the adult mouse cerebellum, two distinct types
of DRM were also obtained after sucrose density gradient centrifugation using Triton X-100. Light
DRM contained cerebroside and sulfatide [28]. In B-lymphocytes, two distinct types of DRM were
obtained after sucrose density gradient centrifugation using Brij 98. Light DRM contained ganglioside
GM1 and MHC II, whereas dense DRM contained ganglioside GM2 and MHC I [29]. These results
suggest endocytosis of MHC molecules by distinct lipid rafts. In HEK293T cells, two distinct types of
DRM were also obtained after sucrose density gradient centrifugation using sodium carbonate (pH 11).
Light DRM contained ganglioside GM1, whereas dense DRM contained cholesterol and flotillins [30].
Therefore, the platelet DRM shifts in sucrose gradients might be due to changes in lipid composition.
Lactosylceramide and ganglioside GM3 are the major glycosphingolipids of human platelets [31].
Resting platelets do not express ganglioside GD3. The stimulation of platelets with ADP resulted in
the formation of ganglioside GD3 by GD3 synthesis from the GM3 pool [31,32]. The GD3 synthase is
CMP-NeuAc:NeuAc α2-3Gal β1-4Glc β1-1′Cer α2,8-sialyltransferase [33]. The stimulation of platelets
with thrombin showed an increase in the amount of ganglioside GM3 [34]. The stimulation of platelets
with ADP showed a decrease in the amount of cholesterol in the DRM raft fraction [10]. The precise
mechanism of DRM shifts to a higher density in sucrose gradients upon platelet activation remains to
be elucidated.

4. Platelet Glycosphingolipids

Lactosylceramide is the most abundant neutral glycosphingolipid. Its major fatty acids are
20:0, 22:0, 24:0, and 24:1. Ganglioside GM3 is the most abundant acidic glycosphingolipid. The
neuraminic acid component was N-acetylneuraminic acid [35,36]. In addition, galactosylceramide [36],
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sulfatide [37], glucosylceramide [34,38], ganglioside GM1 [39], globotriaosylceramide Gb3 [40],
and sialyl-galactosylgloboside [41] are also found in human platelets.

Sulfatide is present on platelet surfaces that bind to adhesive proteins such as vWF, P-selectin,
laminin, and thrombospondin [42,43]. Sulfatide is localized as a large cluster towards the center of
spreading platelets [44], suggesting that sulfatide-rich rafts may be platforms involved in intracellular
signaling. Sulfatide micelles, the sulfatide-binding recombinant malaria circumsporozoite protein
(MCSP), and the sulfatide-specific single-chain fragment variable antibody probe PA38 inhibit this
adhesion [44–46]. The sulfatide antagonist MCSP reverses platelet aggregation induced by ADP,
collagen, or TRAP [45]. Sulfatide-deficient mice display an extended lag phase of collagen-induced
platelet aggregation [44].

The adaptor protein Disabled-2 (Dab2) as a key regulator of platelet signaling is a sulfatide-binding
protein. Its interaction is mediated by two N-terminal conserved basic motifs (amino acid residues
24–29 and 49–54) with a dissociation constant Kd of 0.6 µM [47]. Dab2 is present in the cytoplasm
and α-granules of platelets and is released from the platelets in response to platelet activation. Dab2
interacts with the cytoplasmic tail of the integrin αIIbβ3 and regulates inside-out signaling [48]. On the
other hand, Dab2 released from α-granules inhibit platelet aggregation by competing with fibrinogen
for binding to the integrin αIIbβ3, an interaction that is modulated by Dab2 binding to sulfatide at
the outer leaflet of the plasma membrane. The Dab2 sulfatide-binding motif peptide can prevent
sulfatide-induced platelet aggregation [49,50]. The bleeding time is prolonged and thrombus formation
is impaired in Dab2-deficient mice. Dab2-deficient platelets elicited a selective defect in platelet
aggregation and spreading on fibrinogen by thrombin stimulation [51].

Sulfatide on the platelet surface interacts with a blood coagulation factor, playing a major
role in hemostasis. Blood coagulation cascade has two pathways: intrinsic pathway and extrinsic
pathway. Coagulation factor XII is a plasma serine protease that initiates the intrinsic pathway of
blood coagulation upon contact with anionic surfaces, such as sulfatide on the plasma membrane.
Annexins (ANXs) are implicated in the regulation of blood coagulation reactions by binding to
sulfatide [52]. ANXA3, ANXA4, and ANXA5 inhibit sulfatide-induced plasma coagulation. ANXA4
inhibits sulfatide-induced autoactivation of Factor XII to Factor XIIa and the conversion of its natural
substrate Factor XI to Factor XIa [53].

Ganglioside GD3 is rapidly expressed on the platelet surface following platelet activation and
internalized to the cytoskeleton where it transiently associates first with the Src family kinase Lyn then
with the Fc receptor gamma chain [32]. The binding of bacterial cells to human platelets contributes
to the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis strain SF100 is
mediated by two surface proteins, PblA and PblB. α2-8-linked sialic acid residues on platelet membrane
ganglioside GD3 are the primary targets for PblA/PblB-mediated binding to human platelets. [54].

Globotriaosylceramide Gb3 is a functional receptor of the Shiga toxin [40]. Shiga toxin is the
principal virulence factor of enterohemorrhagic Escherichia coli. Thrombocytopenia caused by platelet
consumption in thrombi is a primary symptom of hemolytic uremic syndrome associated with Shiga
toxin. Shiga toxin1 and its B (binding) subunit bind to platelets, leading to fibrinogen binding
and platelet aggregation [55]. The possible existence of glycosphingolipid-specific rafts, such as
sulfatide-rich rafts, remains to be explored.

5. Platelet Raft-Binding Proteins

Platelet rafts function as dynamic membrane microdomains for the attachment of various proteins
such as adhesion molecules, receptors, signaling molecules, adaptor proteins, and effector proteins
(Table 1).
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Table 1. Platelet raft-binding proteins.

Molecules Function Localization
in Rafts

Moves into
Rafts Palmitoylation Ref.

Actin Cytoskeleton + [9]
ACV/VI Adenylyl cyclase PGI2 m [56]

Akt2 Ser/Thr kinase + [20]
Arp3 Actin nucleator TRAP [9]

Caveolin-1 Integral scaffolding protein ++ m [57]
CD9 Tetraspanin ++ m [58]

CD36 Scavenger receptor +++ m [59]
CD63 Tetraspanin ++ m [58]
Cdc42 Small G protein TRAP m [9]

CLEC-2 Podoplanin receptor Rhodocytin [60]
c-Src Tyr kinase ++ [12]

CXCR4 Chemokine receptor + [20]
Estrogen
receptor Hormone receptor Estradiol [61]

Factor XI Plasma thromboplastin ++ [62]
Factor XIII Transglutaminase Thrombin [21]

Fc receptor g Immunoglobulin G receptor ++ [63]
Fibrin Major component of blood clot Thrombin [21]

Flotillin-1 SPFH-domain scaffolding protein +++ m [59]
Flotillin-2 SPFH-domain scaffolding protein +++ m [64]

Gia Trimeric G protein ++ m [65]
GLUT-3 Glucose transporter ++ [59]
GP130 IL6 receptor ++ [66]

GPIb/IX/V vWF receptor vWF m [4]
GPVI Collagen receptor Collagen [67]

Integrin
aIIbb3 Fibrinogen receptor + [21]

LAT Linker for activation of T cells +++ m [68]
Lyn Tyr kinase ++ m [69]

Moesin ERM family TRAP [9]
Myosin Cytoskeleton Thrombin [21]
Orai1 Store-operated Ca2+ entry ++ [70]
P2X1 ATP receptor ++ [64]
P2Y1 ADP receptor ADP [10]

P2Y12 ADP receptor ADP [10]
PECAM-1 Adhesion molecule ++ m [63]

PI3Kb Phosphatidylinositol 3-kinase + [20]
PI4K55 Phosphatidylinositol 4-kinase ++ m [58]
PKA-I Ser/Thr kinase PGI2 [56]
PP1c Protein phosphatase Thrombin [71]

PP2Ac Protein phosphatase Thrombin [71]
Prohibitin SPFH-domain scaffolding protein ++ m [72]

PrPc Prion + [73]
Pyk2 Tyr kinase ++ [61]

Rap2b Small G protein ++ m [74]
STIM1 Store-operated Ca2+ entry ++ [70]

Stomatin SPFH-domain scaffolding protein ++ m [59]
TIIICBP Collagen receptor ++ [75]

TRPC1,4,5 Store-operated Ca2+ entry ++ m [76]
TXA2

receptor Prostanoid receptor ++ m [77]

VASP Actin filament elongation TRAP [9]
vWF Molecular glue of platelet plug ++ [4]

14-3-3ζ pSer/pThr binding protein Cold shock [78]

Ratio (localization in rafts/non-rafts) +: low, ++: medium, +++: high.
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5.1. Protein S-Palmitoylation: Lipid Raft Targeting Modification

S-palmitoylation is a posttranslational modification catalyzed by palmitoyl acyltransferases from
the zincfinger and Asp–His–His–Cys domain-containing (DHHC) enzyme family. It is involved in
the attachment of the saturated palmitoyl acyl chain (C16:0) delivered by palmitoyl-CoA to a cysteine
residue [79–81]. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36
to the plasma membrane [82]. DHHC5 palmitoylates flotillin-2 in neuronal cells [83]. DHHC2 affects
palmitoylation, and functions of tetraspanins CD9 and CD151 [84]. The enzymatic removal of S-acyl
modifications in mammalian cells is catalyzed by acyl protein thioesterase (APT) and APT can remove
palmitate groups from palmitoylated proteins [80]. Two protein palmitoyl thioesterases (PPTs) have
been described as being capable of catalyzing the removal of fatty acids from proteins, in other words,
acyl protein thioesterase 1 (APT1), and palmitoyl protein thioesterase 1 (PPT1). APT1 is reported to
depalmitoylate the alpha subunit of G proteins and LAT in vitro. APT1 is itself palmitoylated and
contain a hydrophobic pocket to accept palmitoylated substrates.

Protein palmitoylation is a dynamic modification that regulates the lipid raft targeting of
proteins [85]. The basic forces driving raft formation are lipid interactions. The saturated acyl
chains and high acyl chain melting temperatures of glycosphingolipids mediate glycosphingolipid
clustering in combination with cholesterol, which has the properties of a “liquid-ordered phase.”
In contrast, most phospholipids have unsaturated acyl chains, low melting temperatures, and the
properties of a liquid-disordered phase. Lipid rafts are considered to exist as phase-separated domains.
The linkage of membrane proteins to saturated acyl chains by palmitoylation is considered to facilitate
the translocation of these proteins to lipid rafts.

Platelet raft marker proteins are characterized by multiple S-palmitoylations. For example,
palmitoylation occurs on the two N-terminal and two C-terminal cysteines, in human CD36
corresponding to cysteine residues 3, 7, 464, and 468 [86]. Both cysteine pairs are intracellular
and adjacent to transmembrane segments. LAT contains two palmitoylated cytoplasmic Cys residues
adjacent to its transmembrane domain, Cys 26 and Cys 29 [81]. Caveolin-1 is S-palmitoylated on its three
cysteine residues (Cys 133, Cys 143, and Cys 156). [87] Using a proteomic approach, 215 palmitoylated
platelet proteins are identified [88]. Palmitoylated platelet-raft-binding proteins are indicated in Table 1.

5.2. G protein-Coupled Receptors (P2Y1, P2Y12, CXCR4)

Platelet activation by several agonists such as collagen, ADP, and thrombin is followed by platelet
granule release, integrin αIIbβ3 activation, aggregation, and thrombus formation. All these processes
are triggered by an increase in cytosolic Ca2+ concentration ((Ca2+)i). Ca2+, diacylglycerol-regulated
guanine nucleotide exchange factor I, and protein kinase C have been shown to be critical elements
that link increased (Ca2+) to platelet secretion and integrin αIIbβ3 activation (inside-out signaling).
ADP induces multiple platelet responses via seven transmembrane G protein-coupled receptors, P2Y1,
and P2Y12. Lipid raft integrity is required for the P2Y1 and P2Y12 signaling pathways. P2Y1 is
translocated to the DRM raft fraction by in vitro stimulation with ADP [10]. Importantly, in vivo oral
administration to rats with clopidogrel, a P2Y12 antagonist, induces disruption of P2Y12 oligomers
and their partition removal from lipid rafts [89].

Platelets are a source of chemokine stromal cell-derived factor-1α (SDF-1α), which is stored
in α-granules. Platelet-derived SDF-1α modulates paracrine mechanisms such as chemotaxis [90].
Platelet-derived SDF-1α is also an autocrine activator of platelets through its receptor CXCR4 [91–94].
SDF-1α-induced platelet aggregation in inhibited by the pertussis toxin, suggesting that its effect is
mediated by a pertussis-toxin-sensitive G protein such as Gαi. SDF-1α induces platelet aggregation via
phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway [20]. Furthermore, SDF-1α-induced platelet
aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent
methyl-β-cyclodextrin. Sucrose density gradient analysis shows that CXCR4 (35%), the heterotrimeric
G proteins Gαi-1 (93%), Gαi-2 (91%), and Gβ (50%) and PI3Kβ (4%), and Akt2 (4.5%) are localized in
the DRM raft fraction. Gαi-1 and Gαi-2 are S-palmitoylated on a cysteine residue (Cys3). SDF-1α is
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highly expressed in atherosclerotic plaques [95], suggesting that platelet aggregation by SDF-1α/CXCR4
axis contributes to the pathologies such as atherosclerosis. Surface expression of SDF-1α on platelets is
a biomarker in ischemic events [90]. The SDF-1α expression level on platelets is elevated in patients
with acute myocardial infarction [96].

5.3. Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH)-Domain Protein Family

5.3.1. Flotillin

Flotillins are raft-associated integral membrane proteins and belong to the SPFH superfamily [97].
Flotillins bind the inner leaflet of a plasma membrane raft and serve as scaffolds facilitating the
assembly of multiprotein complexes. Flotillin-1 and flotillin-2 have the same domain architecture,
comprising two domains: the N-terminal SPFH domain and the C-terminal flotillin domain [98].
The SPFH and flotillin domains mediate inner membrane binding and oligomerization of flotillins,
respectively. The membrane association of flotillins is determined by the acyl chain(s) attached and
the interaction of protein hydrophobic regions with the cytosolic leaflet of membranes. Flotillin-1 is
S-palmitoylated on Cys34 located within the first hydrophobic stretch (amino acids 10–36). Flotillin-2
is N-myristoylated on Gly2 and S-palmitoylated on three cysteine residues; Cys4, Cys19, and Cys20,
which are located in the first hydrophobic region (amino acids 14–35). The second hydrophobic region
locates in the middle part of the SPFH domain (amino acids 134–150/151). The binding of cholesterol
by flotillins is mediated by the cholesterol recognition/interaction amino acid (CRAC) motif(s) located
within the SPFH domain (amino acids 117–124 in flotillin-1; 120–127 and 157–169 in flotillin-2).

Platelets store sphingosine-1-phosphate (S1P) abundantly and release this bioactive lipid
extracellularly upon stimulation [99,100]. S1P induces platelet shape change and aggregation reactions
and stimulates vascular endothelial cell spreading and migration [101]. Platelet-derived S1P plays
an important role in vascular biology. S1P is synthetized from sphingosine by sphingosine kinases.
Recently, flotillin-1 and flotillin-2 have been shown to recruit sphingosine to lipid rafts and maintain
cellular S1P levels [102]. Sphingosine binding is mediated by the SPFH domain of flotillins, but the exact
identities of the hydrophobic sequences of the flotillins involved are not known. Flotillins also interact
with numerous signaling proteins such as receptors, protein kinases, G proteins, and adaptors [98].
Therefore, flotillin-based microdomains can serve as platforms mediating the formation of multiprotein
complexes and transmembrane signal transduction at the plasma membrane.

5.3.2. Stomatin

Stomatin is a raft-associated integral membrane protein and belongs to the SPFH superfamily [103].
Stomatin is composed of the N-terminal 24-residue basic domain, hydrophobic intramembrane domain
(residues 26–54), cholesterol recognition/interaction amino acid consensus (CRAC, residues 55–68),
SPFH domain (residues 57–256), coiled-coil domain, oligomerization and lipid-raft-association domain
(ORA, residues 263–273), and C-terminal domain. Stomatin is S-palmitoylated on Cys30 and Cys87.
The α-helical segments of stomatin flexibly move along with the membrane surface, with such
movement potentially leading to membrane bending via lipid raft clustering through the formation
of homo-oligomeric complexes of SPFH-domain proteins [97]. Stomatin is localized at the platelet
α-granular membrane. The lipid-raft marker proteins flotillin-1 and flotillin-2 are present in the plasma
membrane but excluded from α-granules. The activation of platelets by thrombin leads to translocation
of stomatin to the plasma membrane [59]. Lipid raft-associated stomatin enhances cell fusion. With its
unique molecular topology, stomatin forms molecular assemblies within lipid rafts, and promotes
membrane fusion by modulating fusogenic protein engagement [104]. During platelet activation,
the α-granular membrane undergoes fusion with the platelet plasma membrane and granular secretion.
Stomatin may have a role in the α-granular membrane fusion.
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5.3.3. Prohibitin

Prohibitin is also a raft-associated integral membrane protein and belongs to the SPFH superfamily [105].
Prohibitins, comprising the two homologous members PHB1 and PHB2, are ubiquitously expressed
and highly conserved. Prohibitin is composed of the N-terminal hydrophobic stretch, SPFH domain,
and coiled-coil domain. Prohibitin is S-palmitoylated on Cys69 [106]. Prohibitins are distributed in
lipid rafts, as determined by sucrose density centrifugation. In addition, prohibitins are associated
with protease-activated receptor 1 (PAR1). Platelet aggregation, integrin αIIbβ3 activation, granular
secretion, and calcium mobilization stimulated by low-concentration thrombin are reduced by the
blockade of prohibitins with anti-prohibitin antibody [72]. Prohibitins are involved in PAR1-mediated
platelet aggregation.

5.4. Tetraspanin Family

Tetraspanins are a superfamily of cell-surface glycoproteins that are characterized by four
transmembrane domains, intracellular N- and C-termini, and conserved sequence motifs within the
larger of two extracellular regions. Tetraspanins are considered to function by self-associating to form
a novel type of membrane microdomain, “tetraspanin-enriched microdomains (TEMs)”. TEMs are
physically and functionally distinct from lipid rafts [107]. However, gangliosides are a membrane
component of TEM [108] and are involved in tetraspanin–partner interactions, as determined from the
finding that the depletion of gangliosides affects the interaction between CD82 and its partners [109],
suggesting that gangliosides play a critical role in the organization of TEMs. Therefore, TEMs are
considered to be a subset of glycosphingolipid microdomains [110].

Tetraspanins are a family of 33 membrane proteins in humans. More than ten tetraspanins
(CD9, CD63, CD81, CD82, CD151, and Tspan 2, Tspan 9, Tspan 14, Tspan 15, Tspan 18, Tspan 32,
and Tspan 33) are identified in platelets by flow cytometry and proteomics. The relative expression
ratio of tetraspanins CD9, CD151, Tspan9, and CD63 (listed in order of their abundance in human
platelets) have been estimated at 50:7:3:1.

5.4.1. CD9

CD9 is found to be expressed at approximately 50,000 copies per platelet [111]. CD9 is a negative
regulator on platelets, because the fibrinogen binding of integrin αIIbβ3 in response to platelet agonists
is found to be mildly enhanced in CD9-deficient platelets, suggesting that CD9 limits the inside-out
activation of this integrin [112]. CD9 is S-palmitoylated on six cysteine residues (Cys9, Cys78, Cys79,
Cys87, Cys218, and Cys219), which are located in four internal juxta membrane regions [113].

5.4.2. CD151

CD151-deficient platelets exhibited impaired “outside-in” integrin αIIbβ3 signaling with defective
platelet aggregation by the protease-activated receptor 4 (PAR4) agonist peptides, collagen, and ADP;
impaired platelet spreading on fibrinogen; and delayed kinetics of clot retraction in vitro [114].
Furthermore, tail bleeding assay shows longer bleeding times, leading to the three-fold loss of blood
and a seven-fold increase in the incidence of rebleeding [115]. CD151 is S-palmitoylated on six
cysteine residues (Cys 11,15,79,80, 242, and 243). The association of a palmitoylation-deficient CD151
with CD81 and CD63 is markedly attenuated, but the interaction of the α3β1-CD151 complex with
phosphatidylinositol 4-kinase was not affected [116].
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5.4.3. CD63

In resting platelets, CD63 is localized on the membranes of α-granules and dense granules.
Following platelet activation and granule exocytosis, CD63 is expressed on the plasma membrane and
colocalizes with the αIIbβ3-CD9 complex. CD63-deficient platelets show slightly enhanced in vitro
aggregation responses, but they do not affect thrombus formation in vivo [117]. Palmitoylation levels
of CD63 and CD9 increase following thrombin activation.

5.4.4. Tspan32

Tspan32(TSSC6)-deficient platelets exhibit impaired clot retraction, platelet aggregation at lower
doses of PAR4, and collagen and platelet spreading on fibrinogen. Tspan32-deficient mice exhibit
longer bleeding times and an increase in rebleeding, as shown by tail bleeding assay [118].

5.4.5. CD82

CD82-deficient platelets display enhanced integrin αIIbβ3 surface expression, adhesion, tyrosine
kinase signaling on fibrinogen, and clot retraction. CD82-deficient mice exhibit reduced bleed times
in vivo [119].

A major problem in tetraspanin research is how to determine whether a particular phenotype
is due to a specific effect on tetraspanin. CD151 and Tspan32 are direct binding partners of αIIbβ3
and might enhance outside-in signaling by recruiting specific signaling proteins in a subset of
glycosphingolipid microdomains.

5.5. Calcium Channels (Orai 1, STIM, TRPC)

Platelet activation and aggregation depend on the increase in (Ca2+)i resulting from intracellular
Ca2+ release followed by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated channels [120].
SOCE is accomplished by the pore forming unit Orai and its regulator the stromal interaction molecule
(STIM). STIM1 is a transmembrane protein essential for the activation of SOCE, a major Ca2+ influx
mechanism. STIM1 is localized in the endoplasmic reticulum, communicating the Ca2+ concentration
in the stores to plasma membrane channels. Lipid rafts are required for the inactivation of SOCE
by extracellular Ca2+ mediated by the interaction between plasma-membrane-located STIM1 and
Orai1 [70]. Orai1 is a novel candidate of the platelet palmitoylome [88].

Orai1 trafficking to the cell surface is impaired in Tspan18-deficient platelets, resulting in impaired
Ca2+ signaling. Tspan18 may regulate the Ca2+ channel function of Orai1 at the cell surface by
promoting its clustering [121]. A reduction in the rate of release and a maximal Ca2+ increase are
observed in Tspan18-deficient platelets. Defective aggregation of Tspan18-deficient platelets is observed
in response to a collagen-related peptide at an intermediate concentration. Tspan18-deficient platelet
spreading is impaired on a collagen-related peptide but normal on fibrinogen.

Another family of plasma membrane Ca2+ channels, the transient receptor potential canonical
(TRPC) channels, also contributes to sustained (Ca2+)i elevation. TRPC1, TRPC4, and TRPC5 form
a heteromultimer associated with platelet lipid raft domains, whereas TRPC3 and TRPC6 associate
independently of lipid rafts [76]. TRPC5 is S-palmitoylated on Cys 181 in an intracellular loop [122].
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Abbreviations

ADP adenosine diphosphate
ANX annexin
APT acyl protein thioesterase
BCθ biotinylated derivative of perfringolysin O
CRAC cholesterol recognition/interaction amino acid motif
Dab2 disabled-2
DHHC Asp-His-His-Cys domain
DIC differential interference contrast
DRM detergent-resistant membrane
FXIII coagulation factor XIII
GFP green fluorescent protein
GP glycoprotein
MCSP malaria circumsporozoite protein
PAR1 protease-activated receptor 1
PAR4 protease-activated receptor 4
PGI2 prostaglandin I2
PI3K phosphatidylinositol 3 kinase
PPT palmitoyl protein thioesterase
PS phosphatidylserine
S1P sphingosine-1-phosphate
SDF-1α chemokine stromal cell-derived factor-1α
SOCE store-operated Ca2+ entry
SM sphingomyelin
SPFH domain stomatin, prohibitin, flotillin, and HflK/C
STIM stromal interaction molecule
TEM tetraspanin-enriched microdomain
TRAP thrombin receptor activating peptide
TRPC transient receptor potential canonical
TXA2 stromal interaction molecule
vWF von Willebrand factor
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