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Abstract: Methionine is an essential amino acid for animals and is typically considered one 

of the first limiting amino acids in animal feed formulations. Methionine deficiency or 

excess in animal diets can lead to sub-optimal animal performance and increased 

environmental pollution, which necessitates its accurate quantification and proper dosage in 

animal rations. Animal bioassays are the current industry standard to quantify methionine 

bioavailability. However, animal-based assays are not only time consuming, but expensive 

and are becoming more scrutinized by governmental regulations. In addition, a variety of 

artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, 

which are based on a microbial response to external supplementation of a particular nutrient 

such as methionine, appear to be attractive potential alternatives to the already established 

standards. They are rapid and inexpensive in vitro assays which are characterized with 

relatively accurate and consistent estimation of digestible methionine in feeds and feed 

ingredients. The current review discusses the potential to develop Escherichia coli-based 

microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis 

and regulation pathways are overviewed in relation to genetic manipulation required for the 
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generation of a respective methionine auxotroph that could be practical for a routine 

bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow 

for inexpensive and rapid methionine quantification and ultimately enable timely 

assessment of nutritional profiles of feedstuffs. 

Keywords: methionine; microbial biosensors; Escherichia coli; bioavailability  

 

1. Introduction 

Methionine is an essential amino acid for animals and is involved in numerous metabolic  

processes [1-4]. In addition to being a building block in protein synthesis, methionine, after being 

transformed into S-adenosylmethionine, serves as a methyl donor in transmethylation reactions 

involved in the biosynthesis of lipids, biotin, and polyamines [5]. Since methionine cannot be 

synthesized de novo in mammal cells, its supplementation in animal diets is required to provide 

optimal growth and physiological performance of the animals. Plant proteins, however, are poor in 

methionine and its optimal level in animal diets is provided by supplementation with crystalline 

methionine [6] or methionine analogs such as 2-keto-4-(methylthio) butyric acid [7] and 

hydroxymethionine [8,9]. Therefore, timely and accurate pre-quantification of this amino acid in feed 

ingredients is necessary to improve cost efficiency of feed formulation and prevent its overdosage. 

According to Klasing and Austic [10] and Baker [11], excess of individual amino acids due to feed 

mixing errors can be potentially harmful to the animal, with methionine considered to be the amino 

acid possessing the highest toxicity. Feed compounds such as cysteine, vitamin B12, arginine, choline, 

and sulfate that are related to methionine metabolism can affect the apparent methionine requirement 

of animals and additionally complicate the estimation of the optimal dosage of this amino acid in 

animal diets [12].  

Chemical assays including high performance liquid chromatography (HPLC) are commonly used to 

quantify methionine level in feed ingredients. The analysis, however, involves pretreatment of the 

samples with performic acid followed by acid digestion [13,14]. The procedure results in a complete 

protein degradation and liberation of methionine which differs from protein digestion under 

physiological conditions. Feed-derived methionine, which is available to animals to assimilate, can be 

more accurately estimated by animal or microbial assays which are considered to correspond more 

directly to the physiological needs of animals [15,16]. Although considered standard, animal assays are 

laborious, expensive, and time consuming [17-19]. The types of animal assays that have been used for 

quantifying methionine availability have been reviewed extensively by Froelich and Ricke [18] and 

will not be discussed further in the current review. Microbial assays appear to be easier and more 

affordable for routine analysis. Rapid development and recent improvements in molecular techniques 

allow for constructing successful and accurate amino acid biosensors via more precise genetic 

targeting of specific genes in microbial cells. This review discusses methionine biosynthesis and 

regulation in Escherichia coli and the potential of genetically modifying this microorganism into 

practical whole cell biosensors for methionine bioavailability quantification.  
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2. Microbial Biosensors 

Recently, numerous microbial biosensors have been created and used in medical diagnostics, food 

technology, biotechnology, and environmental monitoring. Microbial biosensors couple a biological 

element (enzymes, viable or non-viable microbial cells) and a transducer or a device which allows for 

rapid, accurate and sensitive detection of target analytes [20,21]. Their popularity is due to highly 

specific selectivity to the substrate of interest, relative inexpensiveness, and portability [22,23]. 

Versatile microorganisms have proven to be useful in development of biosensors. The bacterium 

Vibrio harveyi and Mycena citricolor, a fungal microorganism, demonstrated high sensitivity for 

detecting cyanide and sodium monofluoroacetate respectively [24]. A microbial biosensor for 

sensitive, selective, rapid, and direct determination of p-nitrophenyl (PNP) -substituted 

organophosphates was developed based on PNP oxidation metabolic pathway of the Moraxella sp. 

[25]. Flavobacterium sp. were employed for development of a biosensor for methyl parathion pesticide 

[26]. The variety and versatility among microbial species useful in the construction of biosensors for 

environmental application is more extensively discussed elsewhere [20,27] and will not be further 

discussed here.  

In the food industry, microbial biosensors, derived from Gluconobacter oxydans and yeast have 

gained popularity for detecting total sugars, sucrose, and ethanol [28,29]. Respiratory activities of 

Gluconobacter oxydans DSM 2343 cells, immobilized on chitosan, were used in the quantification of 

glucose. A linear relationship (R2 = 0.99) between sensor’s response and substrate concentration was 

achieved in the range of 0.05 to 0.1 mM glucose [23]. By using a microbial biosensor based on 

immobilized Saccharomyces ellipsoideus yeast cells, Rotariu et al. [29] were able to determine ethanol 

concentrations up to 50 mM in alcoholic beverages including two types of beer, vodka, and cognac. 

The comparison to the chemical assay used for the analyses of the same analyte revealed good 

correlation (correlation coefficient 0.998) between the biosensor and the spectrometric method. An 

Acetobacter pasteurianus-based biosensor has been proposed as an alternative to chemical methods 

available for quantifying lactate which is used as an indicator for specific fermentations activities 

including those of milk, yogurt, and wine [30,31]. Aeromonas phenologenes-, Pseudomonas 

fluorescens-, and Bacillus subtilis-based biosensors were proposed to serve as alternatives in 

quantification of amino acids including tyrosine, tryptophan, and glutamate [32,33]. 

3. E. coli as a Biosensor 

Among all microorganisms, E. coli is one of the most highly investigated bacteria for the purposes 

of biosensor fabrication. It is easy to cultivate, with simple nutritive requirements and rapid  

growth [34]. E. coli is a Gram negative microorganism with very well known genetics which enables 

the construction of a wide variety of biosensors [20,21]. The complete E. coli genome has been 

sequenced and the information deposited to the National Center for Biotechnology Information  

(NCBI) [35]. Thus, each DNA sequence of interest is routinely available to the public and can be used 

for a wide range of potential further genetic manipulations. In promoter-based E. coli biosensors, a 

gene promoter, inducible by the analyte of interest, is fused to a reporter that generates a signal in 

response to the analyte that can be easily monitored and measured. A strong SOS E. coli promoter 

fused to a lux gene resulted in the development of a construct which served in a dose-dependent 
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detection of 6 genotoxic chemicals including mitomycin C, N-methyl-N-nitro-N-nitrosoguanidine, 

nalidixic acid, dimethylsulfate, hydrogen peroxide, and formaldehyde [36]. An E. coli BL21 DE3 

(RIL) biosensor strain displayed a specific response and high sensitivity to different aromatic 

aldehydes. The response was measured by monitoring the fluorescence of a reporter (green fluorescent 

protein) fused to an alcohol dehydrogenase inducible promoter (Sso2536adh) belonging to the 

archaeon Sulfolobus solfataricus [37]. A plasmid-borne transcriptional fusion between the E. coli 

nitrate reductase (narG) promoter and the Photorhabdus luminescens lux operon was used to generate 

a modified E. coli with a highly bioluminescent phenotype in the presence of nitrate that enabled the 

detection of nitrate to a level of 5 × 10–5 mol L–1 (0.3 ppm) [38]. Following the same approach, 

biosensors for toluene, arsenite and arsenate, and lead have also been generated [39-41].  

In addition to environmental testing and analyses, E. coli-based biosensors were found to be useful 

in the food industry as well. E. coli derived β-galactosidase, glucose oxidase, and horseradish 

peroxidase were immobilized on a glassy carbon electrode to generate a biosensor for quantification of 

lactose in raw milk [42]. Simultaneous determination of various mono- and disaccharides was 

performed by a sensor array comprised of bacterial mutants of E. coli K12 lacking different transport 

systems for individual carbohydrates [43]. 

4. E. coli as a Biosensor for Amino Acid Bioavailability 

Amino acids are building monomers in protein synthesis and indicators for protein quality which 

explains the interest in constructing microbial biosensors for their quantification. Successful whole-cell 

biosensors for the quantification of threonine, tryptophan, lysine and glutamine have been developed 

based on E. coli auxotrophy for the respective amino acids [44-46]. Wild type E. coli can synthesize all 

amino acids and does not require their supplementation in media. However, auxotrophic mutants that 

are defective in the biosynthesis of the amino acid of interest grow in a dose-dependent fashion in 

response to the external concentration of the amino acid. In addition, E. coli is a part of the intestinal 

microflora of most animals and humans with high similarity in the assimilation of amino acids and 

peptides which is a necessary prerequisite for the bacterium to serve as a representative biosensor 

microorganism for these compounds [47]. After pre-treating feed ingredients with pronase and 

peptidase, Erickson et al. [48] obtained a correlation of 0.94 between lysine bioavailability determined 

by using an E. coli lysine auxotroph and previously published chick bioassay data. Indeed, in a direct 

experimental comparison, the E. coli biosensor developed by Chalova et al. [19] proved to be as 

accurate as a chick bioassay for quantitation of bioavailable lysine in diverse feed ingredients and 

mixtures including soybean meal, cotton seed meal, meat and bone meal, chick starter and finisher, 

and swine starter.  

Early efforts for microbial quantification of methionine have also been based on bacterial 

auxotrophy. Hitchens et al. [45] demonstrated that E. coli GUC41 could grow on DL-methionine 

sulfoxide but not on DL-methionine sulfone. The microbiological assay was as accurate as the 

chemical assay with high correlation coefficients between the two. The microbiological assay values 

for amino acid content were expressed as percentages of the HPLC values to obtain the bioavailability 

values. By using E. coli ATCC 23798, a methionine auxotroph, Zabala-Díaz et al. [49] were able to 

quantify crystalline methionine added to feed. The feed matrix had negligible influence on the assay 

and methionine recovery percentages for all supplementation levels ranged from 71 to 80% indicating 
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consistency in the bacterial response to the supplemented methionine. The E. coli methionine growth 

assay has also been miniaturized and adapted to be conducted in microtiter plates where a linear 

response of the E. coli auxotroph to up to 26.8 µM methionine was achieved [50].  

In general, this early assay work with E. coli methionine auxotrophs supports the feasibility of this 

approach and potential reliability for routine use. However, there are also limitations with these 

particular E. coli methionine auxotrophs. To the best of our knowledge, E. coli methionine auxotrophs 

used for methionine quantification so far have been generated via chemical mutation [51-53]. This 

mutation method is a “hit-or-miss” approach that mutates the organism in random locations, followed 

by a selection of a certain phenotype. As a result, the mutation is not target specific and various  

non-methionine related genes can be affected. Revertants or compensatory mutations may occur to 

abolish the desired functionality [54]. In addition, in the case of methionine, the auxotrophic 

requirements for this amino acid are not specific and can also be satisfied by a variety of compounds 

including methioninyl peptides, α-hydroxy methionine, N-acetylmethionine, and the α-keto analogue 

α-keto-λ-methiol butyrate [55]. When a chemically generated E. coli methionine auxotroph  

(ATCC 23798) was used, Froelich et al. [56] established no differences based on substrate affinities of 

an E. coli methionine auxotroph to methionine and methionine hydroxy analog, respectively. 

Estimated maximum growth rate of the E. coli auxotroph when grown on both substrates was also 

found to be similar.  

Although the E. coli methionine auxotroph did not discriminate between methionine and its 

hydroxyl analog, it appears that both sources are not equally assimilated by animals. While studying 

the efficacy of both methionine and methionine hydroxyl analog supplementation of pig diets, 

Shoveller et al. [57] established that methionine hydroxyl analog is significantly less bioavailable 

compared to DL-methionine for protein deposition in growing pigs. Similar observations were made by 

Feng et al. [58] who reported the methionine hydroxyl analog to be 26.8% and 54.4% less effective 

than methionine for growing pigs with respect to nitrogen retention and plasma urea nitrogen 

respectively. Therefore, more specific mutagenesis that targets specific gene(s) without altering other 

metabolic pathways would be a more desirable approach to generate a microbial biosensor for 

discriminating and quantifying specific forms of methionine. Detailed knowledge about E. coli’s 

genomics and more specifically, the genes involved in methionine biosynthesis and transportation is a 

prerequisite to accomplish such a goal and is the focus of the discussion in the following sections.  

5. Biosynthesis of Methionine in E. coli 

Methionine’s carbon skeleton is initially derived from aspartate. The intermediates of this pathway, 

aspartyl semialdehyde and homoserine, are also used in the synthesis of lysine and threonine. Serine 

and cysteine are metabolically related to the methionine pathway: serine being the precursor in the 

synthesis of folate, which is the methyl donor for the synthesis of methionine and cysteine from the 

precursor of cystathionine, which is intermediate in methionine synthesis [59]. Methionine 

biosynthesis results from the coupling of homocysteine and a methyl group, but can be  

accomplished via two distinct pathways [55,60]. The E. coli K-12 methionine biosynthesis  

pathway http://biocyc.org/ECOLI/organism-summary?object=ECOLI&detail-level=3 has been  

schematically presented by EcoCys [61], a member of BioCys database collection 

(http://biocyc.org/publications.shtml), and is available via SRI International Pathway Tools, version 
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13.5 [62]. A summary of the consecutive reactions, participating genes and respective products is 

given in Table 1. The nonfolate branch of the methionine pathway includes metA, metB, metC, metH, 

and metK and the folate branch is comprised of metF and metE which are all negatively controlled by 

the metJ repressor system [73]. The final methyl transfer is catalyzed by either a B12-dependent 

methyltransferase (metH gene product) or a non-B12-methyl transferase (metE product). The metabolic 

intermediate, 5-methyltetrahydrafolate, encoded by the metF, provides the methyl group for both 

enzymes to attach. This is a convergence point through which the cells are able to balance the 

requirement for protein synthesis, methylation reactions, and nucleic acid synthesis on several levels 

and to regulate the pathway flow of methyl units [73]. Once methionine is formed, it is metabolized to 

S-adenosylmethionine (AdoMet) in the presence of ATP and AdoMet synthetase, a metK gene  

product [74-76].  

The regulation of the methionine biosynthetic pathway consists of positive and negative feedback 

mechanisms depending on methionine availability and B12. For example, MetE biosynthesis is 

autoregulated via a negative feedback loop. It can also function as an antagonist of the metR gene 

product, by either interfering directly in the activation mechanism or by repressing metR  

expression [73,77,78]. Alternatively, the activation depends not only on the presence of a functional 

MetR but also on a coactivator. A functional metF gene is required for vitamin B12- mediated 

repression of metE gene, and 5-methyltetrahydrofolate may be involved in a negative feedback 

repression. Inactivation of the metE gene allows for accumulation of the methionine intermediates  

O-succinylhomoserine, cystathionine, homocysteine, and 5-methyltetrahydrafolate [60,75].  

Table 1. Summary of genes which participate in methionine biosynthesis and regulation. 

Gene Product Reaction/Function Reference 

Methionine biosynthesis 
metA homoserine O-

transsuccinylase 
L-homoserine + succinyl-CoA <==> O-succinyl-L-

homoserine + coenzyme A  
 [63] 

metB Cystathionine ã-synthetase L-cysteine + O-succinyl-L-homoserine <==> succinate + 

L-cystathionine + H+  
 [64] 

metC cystathionase L-cystathionine + H2O <==> pyruvate + ammonia + L-

homocysteine + H+  
 [65] 

metH Cobalamin-dependent 
tetrahydropteroylglutamate 
methyltransferase 

L-homocysteine + 5-methyltetrahydrofolate <==> L-

methionine + tetrahydrofolate  
 [66] 

metE Cobalamin-independent 
tetrahydropteroyltriglutamate 
methyltransferase 

L-homocysteine + 5-methyltetrahydropteroyltri-L-

glutamate <=> L-methionine + tetrahydro-pteroyltri-L-

glutamate  

 [67] 

yagD homocysteine methyltransferase  L-homocysteine + S-adenosyl-L-methionine <==> L-

methionine + S-adenosyl-L-homocysteine + H+ 
 [68] 

metK  methionine 
adenosyltransferase 

Catalyzes the formation of the sulfonium 
compound S-adenosylmethionine from 
methionine 

 [70] 
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Table 1. Cont. 

Methionine biosynthesis regulation 
 

metR DNA-binding transcriptional 
activator, homocysteine-
binding 

Transactivate metA, metE, and metH  [71] 

metJ S-adenosylmethionine 
transcriptional repressor 

Represses transcription from associated 
promoter 

[72] 

 

The first unique step in bacterial methionine biosynthesis involves the activation of homoserine, 

which in E. coli is accomplished through a succinylation reaction catalyzed by homoserine 

transsuccinylase (HTS). The activity of this enzyme is closely regulated in vivo and therefore 

represents a critical control point for cell growth and viability [79]. Born and Blanchard [80] cloned 

homoserine transsuccinylase from E. coli and demonstrated that the enzyme generates a complex with 

the succinyl group of succinyl-CoA before transferring it to homoserine to form the final product,  

O-succinylhomoserine. The enzyme can be inhibited by iodoacetamide in a pH-dependent manner 

which suggests the presence of cysteine in the active site that forms a succinyl-cysteine intermediate 

during enzymatic turnover. In E. coli, HTS is not only a key regulator of methionine biosynthesis but 

also of the bacterial growth at elevated temperatures [81]. E. coli growth is impaired at temperatures 

above 44 °C due to the instability of HTS. According to Biran et al. [79], the instability of the protein 

is determined by the amino-terminal part of the protein, and its removal or substitution by the  

N-terminal part of beta-galactosidase confers stability. Mordukhova et al. [82] reported that two amino 

acids in the enzyme, namely isoleucine 229 and asparagine 267, are responsible for HTS instability and 

their substitution leads to stabilization of HTS molecule and improved bacterial growth at elevated 

temperature. MetA is controlled by the expression of metJ [83]. 

MetE, a zinc-containing monomer, transfers the methyl group of N5-methyl-tetrahydrofolic to the 

thiolate group of homocysteine [68,75,78]. Several mechanisms for repression of metE exist. The 

interaction between methionine as S-adenosylmethionine with MetJ leads to a corepression of metE 

through a negative feedback loop [75]. The absence of MetR can also repress metE. MetR and MetE 

are of similar size and exist relatively in the same location but result from transcription in opposite 

directions [77]. MetR is a transactivator of both metE and metH gene [75,77,78]. Homocysteine 

coactivates both the expression of the metR gene and the MetR stimulation of metE expression.  

The vitamin B12 -mediated repression of the metE gene in E. coli requires the B12-dependent 

transmethylase, a product of the metH gene. It has been proposed that the MetH-B12 holoenzyme 

complex is involved directly in the repression mechanism [55,73,75]. According to Wu et al. [84], 

however, B12-mediated repression of the metE gene derives primarily from a loss of MetR-mediated 

activation due to depletion of the coactivator homocysteine, rather than a direct repression by the 

MetH-B12 holoenzyme. MetH has a higher constant of Michaelis-Menten (Km) than MetE, which is 

compensated by the very strong expression of the metE gene [68]. N5-methyl-H4-folate transfers a 

methyl unit to the MetH holoenzyme where it is subsequently attached to homocysteine [55,68,75,78]. 

The cobalamin-independent methyltransferase (MetE) shares no similarity with the sequence of the 

cobalamin-dependent protein (MetH), suggesting that the two have arisen by convergent evolution [85]. 
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The metF gene codes for N5-methyl-H4-folate and regulates metE in an indirect way. N5-methyl-H4-folate 

is required for the transfer of a methyl group to the B12 within the MetH holoenzyme forming a 

methyl-B12 enzyme; the catalytically active methylated form of the MetH protein regulates metE 

expression [55,75,77,78]. Regulation by MetJ may occur more readily because of the existence of  

5 met boxes in metF’s promotor region making it more sensitive than the other met genes to small 

increases of AdoMet that might occur in B12 grown cells [75]. 

YagD is a third methionine synthase in E. coli. YagD is a zinc-dependent methyltransferase with a 

catalytic mechanism similar to MetH and synthesizes methionine from S-methylmethionine or  

S-adenosylmethionine and homocysteine. YagD does not contribute to the utilization of methionine 

sulfoxide as methionine sulfoxide is converted to methionine via reduction. YagD is subject to 

regulation by the MetJ-S-adenosyl-methionine system [68]. 

All met genes are regulated by MetJ. MetJ protein binds to a specific DNA region, met box, which 

is present in all met genes except metH. The met box region is a sequence with dyad symmetry (TGAA 

. . . TTCA) and produces a helical region containing four leucine residues seven amino acids apart. 

This motif is called a leucine zipper and has been proposed to play a role in protein dimerization that is 

required for DNA bindings. MetJ can bind to this region and prevent the transcription of most of the 

met genes (metA, metBL, metC, metF, metJ, metR, and metE) [55,59,71,74]. The interaction of the 

MetJ protein with the met operator region is markedly enhanced by the presence of AdoMet.  

6. Bacterial Transport of Methionine  

Although E. coli prototroph cells are capable of synthesizing methionine de novo, they can also 

acquire external methionine or methionine analogs to satisfy cellular needs for either methionine or 

sulfur which reflects the high flexibility of the organism under a wide range of environmental 

conditions. The activity of methionine transport systems in E. coli is influenced by the concentrations 

of both external and internal methionine pools [86]. Cells with increased internal methionine pool or 

pre-exposed to excess of external methionine exhibit decreased rates of methionine uptake. 

Conversely, starvation for methionine in a methionine auxotroph can increase the rate of external 

methionine transport [86].  

At least two transport systems for methionine exist in E. coli. The high affinity transport system 

(metD) has a Km of approximately 10–7 M and is responsible for the uptake of L- and D- methionine 

isomers [87]. MetD is an ABC transporter with Abc the ATPase, YaeE the permease, and YaeC the 

likely substrate binding protein. The expression of these genes is regulated by L-methionine and MetJ, 

the common repressor of the methionine regulon. Interestingly, L-methionine inhibits the uptake of  

D-methionine; however, D-methionine does little to affect the uptake of the L-isomer [88].  

By performing competition experiments Kadner [88] established that MetD possesses a distinct  

substrate-binding site for each stereoisomer. The second system (metP) is a low affinity system with a 

Km of approximately 40 μM and can transport L-methionine but not the D-isomer [88,89]. By using 

various deletion mutants, Merlin et al. [87] observed that only mutants with active MetD were able to 

grow on D-methionine.  

Methionine can be transported across a concentration gradient (a temperature sensitive uptake 

process) with the assistance of MetD [90]. The accumulation against a concentration gradient and the 

temperature influence of the uptake indicates that methionine enters bacterial cells through active 
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transport, which is an energy-dependent process. When starved of methionine, the rate of uptake of 

methionine is faster than those grown with methionine [91]. Both systems are regulated by the level of 

the internal methionine pool of the bacterium and differ in affinity by a factor of at least  

400-fold [86,88,91]. In E. coli, the methionine, transported into the cells, accumulates in the form of 

AdoMet rather than as free methionine.  

Active transport can be completely eliminated in the presence of glucose with the presence of azide 

and fluoride [86,91]. In the absence of glucose, cells could still accumulate methionine less efficiently. 

The methionine analogs that inhibit uptake required the –S (or Se)-CHS group [91]. The initial rate of 

uptake of L-methionine was poorly affected by the addition of α-keto-λ-methiol-butyrate,  

D-methionine, or methionine sulfoxide when they were added simultaneously with the substrate. 

However, methionine transport was reduced in cells exposed to analogs and methionine variations 

prior to the addition of a substrate [86]. 

7. Genetic Strategies for Construction of E. Coli Mutants for Methionine Bioassays  

7.1. General Strategies 

Understanding methionine biosynthesis and transportation in E. coli is a prerequisite for 

constructing accurate and specific microbial biosensors for methionine estimation. An E. coli 

microbial bioassay approach for methionine quantification necessitates using an auxotrophic strain for 

methionine which is incapable of biosynthesizing this amino acid on its own. As discussed in the 

previous sections, mutants, currently in use for the purpose of methionine quantification, have been 

developed and isolated after exposure to a chemical mutagen. However, the disadvantage of the 

imprecise nature of chemical mutagenesis requires other approaches for generation of mutants that are 

more specific and efficient. 

To avoid the hit and miss nature of broad spectrum mutagenesis approaches such as those involving 

addition of chemical mutagens requires a strategy that targets a specific site on the genome without 

alteration of the remainder of the genome. Such approaches are more likely to result in phenotypes that 

are exclusively linked to a specific genetic modification rather than the collective accumulation of 

several mutations some of which may not be related to the gene(s) of interest. The problem with 

multiple mutations is not only the risk of unpredictable reversion of the phenotype of interest but a less 

robust mutant that does not grow as well under the selective conditions required for a particular assay. 

In the past few years, genetic tools have been developed that harness the utility of biological systems 

such as transposons that can more directly interact with the bacterial chromosome at specific sites.  

Transposons are versatile tools for genetic manipulation and analysis. These are DNA sequences 

that can be mobilized into bacterial chromosome by a recombination process that is catalyzed by an 

enzyme, called transposase. In contrast to chemical mutagenesis, insertion of a transposon in the 

bacterial genome causes complete disruption of the gene of interest and results in non-leaky 

phenotypes that are specifically linked to the mutated gene [92]. This approach is particularly useful 

where the function of all the genes in the bacterial genome is not known or the biosynthetic pathway of 

the analyte of interest is complicated or bypassed. Transposon engineering was used by  

McAdam et al. [93] to mutate Mycobacterium bovis BCG, a member of the slow-growing M. 

tuberculosis complex. Two auxotrophs for leucine and one for methionine were isolated from the 
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library of transposon insertions and used to study the functionality of the respective genes. The random 

insertion of transposon Tn4560 into Streptomyces tendae ATCC 31160 resulted in identification of six 

genes involved in the biosynthesis of nikkornycin, a nucleoside-peptide chitin synthase inhibitor [94]. 

The scope of application of transposon mutagenesis techniques was increased by Kwon and Ricke [95] 

and Kwon et al. [96] when they developed an approach for the identification of transposon location in 

the bacterial genome based on the amplification of transposon flanking regions using polymerase chain 

reaction (PCR). 

Deletion of specific gene(s) which abolishes the biosynthetic capability of the bacteria for certain 

amino acids is an alternative approach to transposon mutagenesis. This technique is applicable when 

the sequence of the gene to be deleted is known. Four individual (glnA1, glnA2, glnA3, and 

glnA4) and one triple mutant (glnA1EA2) of Mycobacterium tuberculosis were generated by 

deletion to investigate the roles of glutamine synthetase enzymes in the nitrogen metabolism of this 

specific bacterium [97]. Tryptophan auxotrophy in Leptospira meyeri was achieved by deletion of the 

tryptophan biosynthetic gene trpE via homologous recombination [98]. Li and Ricke [99] were able to 

completely delete lysA in E. coli K12 by using a linear DNA which contained at both ends 50 bp 

sequences homologous to upstream and downstream sequences of lysA. The lysA encoded for 

diaminopimelic acid decarboxylase and is a key enzyme in lysine biosynthetic pathway in E. coli  

K12 [99]. The recombinant strain behaved as an auxotroph for lysine and was not able to grow in 

minimal medium without lysine supplementation. The E. coli K12 Δ lysA growth response to 

increasing concentrations of lysine was found to be linear, which is a must for the purpose of lysine 

quantification in feed-derived proteins. In fact, after being converted into a fluorescent biosensor, the 

strain was successfully used to quantitatively assess lysine in feed ingredients and complete diets [19]. 

7.2. Generating specific E. coli Methionine Auxotrophs  

Identifying a specific gene from the biosynthetic pathway of methionine in E. coli in which a 

deletion could result in methionine auxotroph phenotype is not straightforward. Due to the versatility 

in methionine biosynthetic pathway, only mutations in certain genes in the met regulon would result in 

auxotrophy for methionine and not for any of the pathway intermediates or precursors. For example, 

metL mutants can grow on homoserine while metBL mutants can propagate on both cystathionine and 

homoserine [101]. While studying mutations that influenced the methionine biosynthetic pathway, 

Mulligan et al. [55] observed that deficiencies in metA and metB resulted in growth requirements for 

homosysteine and cystathionine, and a mutation in metE was overcome by B12 supplementation. 

Insertions in metL and metH also did not result in methionine auxotrophy. In the same study, metF was 

the only gene which sufficiently abolished biosynthesis functions to ensure a requirement for external 

methionine for bacterial growth. In Streptomyces lividans, the disruption of a gene encoding for  

5,10-methylenetetrahydrofolate reductase which was found to be highly homologous to E. coli MetF, 

also resulted in methionine auxotrophy [102].  

In contrast to other amino acid mutants of E. coli which require the L-form for growth, cys and met 

mutants are capable of using either isomer of cysteine or methionine [103]. D-Methionine is not 

bioactive and cannot be directly incorporated into protein biosynthesis. Therefore, the utilization of  

D-methionine for L-methionine is justifiable only if the D-form of this amino acid is ultimately 

transformed into L-methionine. According to Cooper [104,105], conversion of D- to L-methionine in  
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E. coli is possible and occurs via oxidative deamination and subsequent transamination of the  

keto-methionine product of the former reaction. By using ultraviolet irradiation, Cooper [105] was able 

to generate a mutant incapable of growing on D-methionine. The locus of the D-methionine utilization 

was mapped at approximately 2 min away from lac region toward threonine and leucine. Therefore, to 

make an E. coli biosensor specific for growth on L-methionine would require an addition to disabling 

the L-methionine biosynthesis genes as well as the genes responsible for conversion of other forms 

such as D-methionine transformation to L-methionine. Another approach may be possible now that the 

structure and allosteric regulation of the high-affinity E. coli methionine ABC transporter is better 

understood [106] and manipulation of methionine transport may offer a more precise targeting of the 

relationship between intracellular L-methionine transport and external concentration of different forms 

of methionine.  

8. Detection Modes for Methionine Microbial Biosensors. 

As analytical tools, microbial biosensors are genetically engineered to produce a measurable signal 

in response to the compound of interest. These signals include but are not limited to light emission, 

reflection, fluorescence, or absorption. Although their function is based on different principles, a 

common feature is the proportionality between the intensity of the signal and the concentration of 

target analyte [107]. The choice of an appropriate detection system is an important point since each 

detection mode possesses advantages and disadvantages which are summarized in Table 2. Several 

detection methods for detecting microbial responses exist for potential implementation in respect to the 

microbiological assay for methionine quantification.  

Table 2. Detection systems for microbial assays. 

Detection Systems Characteristics Reference 

 
Optical Density (OD) 

●Economical  
●Reliable 
●Easy to use 
 

[111] 
 

â-galactosidase ●More sensitive than OD  
●Requires more steps 
 

[108] 

Luminescence ●10X more sensitive than OD 
●Requires aldehyde to initiate luminescence 
●Expensive 

[109] 

Fluorescence ●Same advantages as luminescence  
●Less expensive detection 
●Self contained assay: no reagents added 

[110] 
 

8.1. Optical Density 

Measuring optical density (OD) is a common approach to monitor bacterial growth and is 

thoroughly reviewed by Kavanagh in [111]. The readings provided by the spectrophotometer correlate 

directly with the concentration of bacteria in the test media. A non-inoculated tube with media is used 

to calibrate the spectrophotometer as a representative blank or “zero” value. A nutrient medium is 
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inoculated with the E. coli bacterial suspension, incubated at 37°C, and the growth response of the test 

organism is measured hourly. Over time the turbidity/cell number is calculated and ultimately plotted 

to determine a linear response. The optical density values that constitute the linear slope gradually 

increase as the concentration of test nutrient increases.  

The theoretical aspects of photometry have been extensively described elsewhere [111]. Although 

OD measurements require minimal technical effort and are relatively inexpensive there are several 

drawbacks for their use in quantifying nutrients from complex oranic matrices such as animal feeds 

and feed ingredients. To prevent any potential alternations of methionine availability, autoclaving or 

heat treatment of feed samples should be avoided. Therefore, the primary problem is the contribution 

of nonspecific microflora growth that results in OD increases, not corresponding to different 

concentrations of the nutrient being quantified by the assay organism. Erickson et al. [112] were able 

to overcome this with the use of an antibiotic-based selective media which exclusively supported the 

growth of the E. coli lysine bioassay organism. Froelich et al. [113] tested a medium containing a 

cocktail of antibiotics and antifungal agents and demonstrated that they did not alter growth kinetics of 

a methionine E. coli auxotroph in response to various methionine concentrations when compared to 

growth responses of the same strain of E. coli grown without antibiotics. Although the use of 

antibiotics suppress background microflora sufficiently to allow for short term bioassay measurements 

eventually background microflora can overcome antibiotic inhibition of growth. Consequently, if 

detection based on OD alone requires longer assay times, background microflora would need to be 

eliminated by sterilization of the feed matrix. Sterilization, particularly by thermal processes adds to 

the uncertainty of the accuracy of the amino acid assay by potentially altering their respective 

availability and any resulting measurements would no longer reflect the original values of the animal 

feeds being assayed. 

8.2. β-galactosidase 

The measurement of β-galactosidase expression historically is a well-understood, easily measured 

and reliable method for examining bacterial genetics and understanding fundamentals of gene 

regulation [114]. The β-galactosidase enzyme assay has also been used as an indirect method of 

microbial detection and quantitation and is more sensitive than OD [108]. The E. coli lac operon 

enables the organism to metabolize lactose as a carbon source. This lac operon is translated at a 

constant rate when lactose is present in the media [115]. Therefore, the enzyme concentration of lysed 

cells can be directly correlated with the total bacterial cell count. β-galactosidase assay was 

successfully used by Hitchens et al. [45] to quantify the bioavailability of cysteine, methionine, 

threonine, and tryptophan in 17 foods. To overcome the lack of exoproteolytic activities in E. coli, the 

food matrices were enzymatically digested with pronase and further subjected to analysis with the 

respective auxotrophic bacterial strain. The accuracy of the β-galactosidase assay was evaluated by 

comparison of the data to the amino acid estimates in the same food-derived proteins obtained by a 

chemical assay. Spearman rank correlation coefficients for the two methods were significant and found 

to be as follows: cysteine (0.61), methionine (0.95), threonine (0.64), and tryptophan (0.85). Thus, 

Hitchens et al. [45] and earlier Tuffnell and Payne [108] demonstrated that β-galactosidase 

biosynthesis correlated to the concentrations of the amino acid needed by the auxotrophic bacterial 

cells for growth and could be accurately used in the quantification of methionine, tryptophan, and 
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lysine bioavailability. However, the β-galactosidase-based assay requires more steps than an OD assay. 

It is disruptive and is not appropriate for kinetic studies. More importantly as with OD measurements, 

there is a risk of nonspecific background microflora contributing to overall β-galactosidase assay 

response as several organisms possess this enzyme. Therefore, a key requirement for any detection 

system to be used is that it is sufficiently unique versus the typical native microflora already present on 

the animal feed matrix. 

8.3. Luminescence 

Compared to β-galactosidase, luminescence is a more recent detection approach and has been 

routinely used in the generation of bacterial biosensors. This method allows the detection of viable 

cells through a quantum measurement to indirectly enumerate cells. A bioluminescent signal can not 

only be coupled to bacterial growth response to accurately measure levels of the respective nutrient 

limiting bacterial growth but is 10- fold more sensitive than OD [46,109,116] and considerably more 

sensitive than β-galactosidase. While testing the efficiency of both firefly luciferase and  

β-galactosidase as reporters in developing vaccine virus, Rodrigues et al. [117] established that the 

luciferase assay was 1,000-fold more sensitive than that of β-galactosidase. The limit of detection of 

luminescence produced by the action of luciferase was found to be approximately one infected cell in a 

background of a million noninfected cells.  

In E. coli, bioluminescence does not occur and must be acquired via genetic modifications [118,119]. 

Luminescence is accomplished by the introduction of the luxAB genes via plasmid or chromosomal 

insertion. Cells are subsequently grown in the test media and a chemical reagent is required to induce 

the bioluminescent phenotype of the inserted sequence. The production of light lasts only minutes 

(seconds in flash luminescence) before destabilization of the exogenous reagent. This is a shortcoming 

of luminescence technology and has led to genetic development of longer lasting luminescence and 

reagent-less requiring strains. The bioluminescence assay response is measured with a flash 

luminescence luminometer and requires addition of autoinducer [46,116] and therefore, it is not 

possible to continuously monitor bacterial cell population increases during exponential growth. In 

order to quantify luminescence, expensive detection devices must be purchased [46,116]. However, 

Froelich et al. [120] demonstrated with a bioluminescent E. coli methionine auxotroph that, although 

the growth kinetics between the transformed strain and a nonplasmid carrying auxotroph were 

somewhat different, the OD-based standard curves between the two strains were similar. This indicates 

that even in the absence of available luminescent detection equipment such strains could still be used 

in a conventional OD-based assay with the advantage being that they could be used for luminescent 

based assays when the opportunity for using such equipment is made available.  

8.4. Fluorescence 

A similar assay method to luminescence is fluorescence. One advantage of fluorescence over 

luminescence is that it is less expensive to detect and is a self-contained assay, requiring no additional 

reagents [121]. Fluorescence occurs naturally in chemicals that resonate (a carbon chain with 

alternating single and double bonds) [122]. It also occurs in a protein referred to as Green Fluorescent 

Protein (GFP) that originally was produced in jellyfish (Aequorea victoria), but the DNA encoding 
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sequence has been isolated and incorporated via transgenics (the genetic translocation of genes from 

one species to another, i.e., placing gfp from jellyfish into a eukaryotic strain) [123]. Once 

incorporated, either through transformation of a gene system on a vector or directly incorporated in 

DNA of the test organism, the fluorescent protein is concomitantly synthesized with other cell 

proteins. The assay then requires a spectrofluorometer that can excite the engineered organism’s new 

protein and detect emitted light at a different wavelength [110,124]. Just as with OD, the value are 

recorded over time and graphed linearly over time and concentration.  

Originally discovered in Aequorea victoria, two proteins were found within this jellyfish that had 

luminescent/fluorescent capabilities. The first was aequorin that emitted blue light with the presence of 

Ca++(luminescence). The second was the green fluorescent protein which when excited could be 

detected on a fluorometer (fluorescence) [125]. Tsien [122] described the general molecular weight of 

most GFP forms to be approximately 27 kDa. An advantage of the use of gfp as a reporter gene is its 

structural stability. The eleven beta strands surround and protect the chromophore that is positioned 

near the geometric center of a “beta can”, which protects the chromophore from temperature, acid, and 

oxidation. Its normal excitation peak is at 395nm with a minor peak at 475nm and emission peaks  

at 508 nm [122]. It does not require any additional substrates or reagents to fluoresce, and thus sample 

perturbation and destruction are avoided [126]. Froelich et al. [127] successfully transformed an E. 

coli methionine auxotroph with a plasmid encoding for a green fluorescent protein and demonstrated 

that it could be used to quantify methionine in several representative animal feed ingredients. 

However, some variation between OD—based measurements and fluorescent measurements were 

noted suggesting some potential interference with fluorescent measurements. 

Some artifacts have to be taken into consideration when detecting the GFP chromophore. Media 

and feeds may contain aromatic and resonating conjugate carbon chains that may also fluoresce. Some 

of them have emission spectrum overlapping the emission spectrum of GFP (350 to 550 nm). This 

often leads to low signal to noise ratios, decreased emission intensity and occasionally complete 

inability to detect the fluorescence emitted by GFP [128]. To correct for this, a simple excitation filter 

that allows light to pass at wavelengths higher than 350 nm is used in conjunction with an emissions 

bandpass filter that allows only light with certain wavelength to pass. Heim and Tsien [129] using 

specific optical filters detected three different forms of GFP simultaneously in samples of viable 

bacteria. In addition, GFP variants with different emission spectra were created to overcome either the 

low intensity of the emission signal or the background fluorescence of various compounds. The 

resulting GFP mutants are characterized with different excitation/emission spectra, brighter 

fluorescence, higher solubility, and more even distribution throughout the cytoplasm than the wild  

type [130]. These mutants allow the monitoring of multiple species of bacteria simultaneously in a 

complex microbial community. However, Patterson et al. [131] implied that no single variant was 

appropriate for all applications but that each of them offers advantages and disadvantages when 

investigating viable cells.  

There are some issues associated with fluorescence assay which must be accounted for such as 

autofluorescence from matrices that naturally fluoresce. By studying autofluorecence capacity of feed 

ingredients including soybean meal, cottonseed meal, meat and bone meal, Chalova et al. [132] 

observed that hydrolyzed feed proteins in concentrations up to 0.1 mg/ml did not interfere with the 

fluorescence of Gfpmut3 [133] which was used as a reporter in an E. coli whole cell-based lysine 
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biosensor. Nonhydrolyzed soybean meal and cottonseed meal did not exhibit detectable background 

fluoorescence up to 2 mg/ml. The same authors demonstrated the advantages of the constructed gfp- 

based biosensor in the quantification of bioavailable lysine in the feed samples when contaminated 

with E. coli. 

The second possible problem is light scatter in the fluorometer. By simply diluting the sample to an 

OD of 0.1 or less, absorption artifacts and secondary inner filter affects can be avoided. This also 

prevents light scatter because the density of the sample is lower. Other techniques to lower light scatter 

should be checked with a blank made from media to determine if scatter is occurring. Finally, the 

existence of possible quenchers such as other fluorophores which may lower or lose quantum yield can be 

problematic. This can be corrected with the application of several equations depending on the cause [110].  

9. Conclusions 

In conclusion, microbial sensors for methionine quantification in feed and feed ingredients are an 

alternative to animal assays because they have the advantage of being simpler, more rapid, and cost 

efficient. Versatile tools in molecular biology combined with current knowledge of E. coli genetics 

favor the generation of appropriate and successful constructs that may serve as methionine biosensors. 

However, more work needs to be done in understanding the bacterial genome to better target gene(s) 

that lead to generation of methionine auxotroph exhibiting a single phenotype. The wide variety of 

available detection modes should facilitate the choice of a reporting system which will contribute to 

the simplified operation and identification of a biosensor’s emitted signal. 
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