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Abstract

Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understand-
ing of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction,
functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A
promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions
(ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on
ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its
favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf
samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and
proportions of positively selected fixations (a) in ACRs and find that intergenic ACRs harbor a considerable fraction of
weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than
comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted
of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory
regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic
analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral
mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral
mutations for evolutionary processes in outcrossing Brassicaceae species.

Key words: ATAC-sequencing, open chromatin region, gene expression variation, natural selection, functional non-
coding sequences, distribution of fitness effects.

Introduction
Accurate estimates of genome-wide rates and fitness effects
of new mutations are essential for an improved understand-
ing of the response of populations to selection, the evolution
of mating systems, and the maintenance of quantitative var-
iation (Wright and Andolfatto 2008; Tataru et al. 2017).
Quantifying the genomic impact of selection is therefore a
major aim in evolutionary genetics (Ohta 1973; Kimura 1983;
Gillespie 2004). Indeed, the relative contributions of different
classes of mutations to polymorphism and divergence and
the impact of selection at linked sites lie at the heart of many
debates in population genetics (Ohta 1973; Kimura 1983;
Kreitman 1996; Ohta and Gillespie 1996; Gillespie 2004;
Kern and Hahn 2018; Jensen et al. 2019, Chen et al. 2020).

For instance, under the strict neutral theory, the vast ma-
jority of mutations are assumed to be either strongly deleteri-
ous or neutral (Kimura 1983). Most polymorphisms in natural

populations are then expected to be neutral, and the rate of
evolution is independent of the effective population size (Ne)
(Kimura 1983; Ohta 1992). In contrast, under the nearly neutral
theory, many new mutations are expected to be under such
weak selection that changes in Ne determine whether they are
efficiently selected or not (Ohta 1992). The most well-
developed versions of the nearly neutral theory mainly consider
the role of nearly neutral deleterious mutations (Kreitman
1996), although Ohta included weakly beneficial mutations
in her description of the nearly neutral theory (Ohta 1992).
Because fitness distributions of new mutations will ultimately
impact the expected rate of evolution of a population, espe-
cially with varying Ne (Charlesworth and Eyre-Walker 2007),
empirical estimates of the genome-wide distribution of fitness
effects (DFE) of new mutations are crucial.

Recent empirical studies in plants suggest that nearly neu-
tral deleterious mutations are key for the evolution of coding
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regions (Hough et al. 2013; Chen et al. 2020), but we currently
know much less about selection on noncoding sequences
(Haudry et al. 2013; Williamson et al. 2014, Joly-Lopez et al.
2020). The dearth of knowledge of how selection affects non-
coding regions is unfortunate, as mutations in noncoding
regions could potentially contribute a wealth of nearly neutral
mutations (Ohta 2002) and understanding selection on non-
coding regions is thus essential for a complete understanding
of genome evolution. In contrast to animals, plant genomes
harbor a lower percentage of well-characterized functional
noncoding sequences and the proportion of noncoding sites
under selective constraint in plants is lower than in animals
(Haudry et al. 2013; Hough et al. 2013). However, we currently
lack a complete understanding of the DFE of mutations in
functional noncoding regions in plants. Quantifying the con-
tribution of beneficial as well as deleterious mutations is es-
pecially interesting in this regard, as mutations in noncoding
cis-regulatory regions have long been suggested to be likely to
contribute to adaptation (e.g., King and Wilson 1975; Wray
2007; Stern and Orgogozo 2008).

A first step toward an improved understanding of selec-
tion on the noncoding part of the genome is the identifica-
tion and annotation of functional noncoding regions.
Comparative genomic approaches such as phylogenetic foot-
printing can identify highly conserved noncoding sequences
(CNS) as candidate functional noncoding regions (Miller et al.
2004) but these approaches are not well suited for detecting
functional noncoding regions under positive selection or
those under weak purifying selection, because such sequences
will not be evolutionarily conserved (Andolfatto 2005).
However, thanks to recent progress in sequencing methods,
it is now possible to identify potentially functional noncoding
sequences not only based on sequence conservation or purely
computational methods that identify transcription factor
binding sites (e.g., Nguyen and Androulakis 2009), but also
based on epigenetic characteristics or genetic associations.
For instance, single noncoding loci can be associated with
phenotypic traits such as gene expression variation through
association mapping or QTL mapping. Such loci are com-
monly termed expression quantitative trait loci (eQTL)
(Gilad et al. 2008; Josephs et al. 2015, 2017, 2020).
Combined with polymorphism data, these alternative
approaches can help us better characterize selection on func-
tional noncoding sequences in plants (Wright and Andolfatto
2008).

A particularly promising approach to characterizing puta-
tively functional noncoding regions relies on identifying ac-
cessible noncoding sequences. These noncoding regions are
located in accessible chromatin regions (ACRs), which allow
DNA-binding proteins and transcription factors to bind their
target sequences. Such regions are thought to be enriched for
cis-regulatory elements and were found to be good candidate
regions for narrowing down functional sequences in maize
(Vera et al. 2014; Rodgers-Melnick et al. 2016). ACRs can be
identified through approaches such as Micrococcal Nuclease
analysis of chromatin structure (MNase-seq) (Zaret 2005) or
Assay for Transposase-Accessible Chromatin with high-
throughput sequencing (ATAC-seq) (Buenrostro et al. 2013;

Buenrostro, Wu, Chang, et al. 2015). Such methods have been
successfully used to identify ACRs in 13 angiosperm species
and revealed a positive correlation between the number of
detected ACRs and the number of annotated genes in the
genome (Lu et al. 2019). ACRs were conserved throughout
evolution and harbored more CNS, but fewer single-
nucleotide polymorphisms (SNPs) and transposable elements
(TEs) than their flanking sequences, suggesting that ACRs are
likely to harbor cis-regulatory regions (Lu et al. 2019). In the
rice genome, ACRs are under similar levels of constraint than
UTRs and promoters, but under weaker constraint than cod-
ing sequences or CNSs (Joly-Lopez et al. 2020). However, for
most plant genomes, we still lack a complete understanding
of the full DFE of mutations in candidate functional noncod-
ing regions. This is unfortunate as weak selection on muta-
tions in these regions can impact patterns of polymorphism
and divergence through selective interference (Comeron et al.
2008; Good et al. 2014).

In this study, we use ATAC-seq analyses to identify ACRs
and investigate the DFE of intergenic ACRs in a plant species
that is especially well suited for this purpose, the outcrossing
Brassicaceae species Capsella grandiflora. Capsella grandiflora
has a large and relatively constant effective population size
without strong population structure (Foxe et al. 2009; Slotte
et al. 2010; St. Onge et al. 2011; Douglas et al. 2015) which
makes it ideal for investigating variation in selection across
the genome (Steige et al. 2017). Indeed, natural selection was
previously reported to be efficient in both coding and CNS in
the C. grandiflora genome (Slotte et al. 2010; Williamson et al.
2014; Steige et al. 2017). The rapid decay of linkage disequi-
librium (within 0.004 cM, or�1 kb) in C. grandiflora (Foxe et
al. 2009; Mattila et al. 2019), further minimizes interference
from nearby coding sites and facilitates the study of selection
patterns on candidate functional noncoding regions in the
proximity of genes, such as cis-regulatory regions.

Here, we use ATAC-seq analyses to identify ACRs and de-
scribe a population distribution of ACRs in a natural popu-
lation of C. grandiflora. We then generate and analyze whole-
genome resequencing data from 40 C. grandiflora individuals
to explore the strength and nature of selection in intergenic
ACRs. We achieve this by quantifying the DFE of new muta-
tions and the proportion of positively selected substitutions
(a) in different parts of the genome. Finally, we leverage pre-
vious results to test for an enrichment of eQTL (Josephs et al.
2015, 2017, 2020) and CNS (Williamson et al. 2014) and a
depletion of TEs in ACRs. Our results are important for an
improved understanding of the nature, prevalence and
strength of selection on noncoding regions, and the role of
nearly neutral mutations for evolutionary processes in out-
crossing Brassicaceae species.

Results

Open Chromatin Identification and Profile across a C.
grandiflora Population
We used ATAC-seq to identify ACRs in young and still
extending leaves of 16 nine-week-old plants from a single
Greek C. grandiflora population. Across our 16 individuals,
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we identified 31,243 distinct ACRs, which together made up
12% of the genome. Out of these, 28,273 (92%) were located
on one of the eight main genome scaffolds. Splitting up ACRs
into mutually exclusive genic and intergenic ACRs revealed
that overall, 25.8% of the ACRs were located in intergenic
regions, whereas 74.2% and 60% were located in genes and
in coding sequences, respectively. The ACR density was higher
within genes and lower in the immediate surroundings of
genes (fig. 1A). Out of the intergenic ACRs, 34.3% were prox-
imal to genes (<2 kb up- and downstream), and 65.7% were
distal (>2 kb) to genes. In concordance with previous findings
(e.g., Lu et al. 2019), ACRs located in genes as well as intergenic
ACRs exhibited higher GC content than their surrounding
regions (supplementary fig. S1, Supplementary Material
online).

We further divided ACRs based on their frequency in our
sample into unique ACR (uACR), common ACR (cACR), and
high-frequency ACR (hACR) (see Materials and Methods). In
our population sample, 18.2%, 57.5%, and 24.3% of ACRs were
uACRs, cACRs, and hACRs, respectively.

ACRs Are Depleted of CNSs
Some CNSs were previously reported to be involved in gene
expression regulation in plants (e.g., Freeling and
Subramaniam 2009). To assess whether they are also enriched
in intergenic ACRs, as might be expected if ACRs harbor
regulatory elements, we investigated the distribution of pre-
viously identified CNSs in C. grandiflora (Williamson et al.
2014). Interestingly, we observed the opposite pattern where
ACRs were more frequent outside of CNSs than within CNSs
(fig. 1B). Indeed, ACRs were significantly depleted of CNSs

(1,000 permutation-based two-sided P-value< 0.002, supple-
mentary table S1, Supplementary Material online). Such a
significant depletion was also observed in distal and proximal
ACRs (1,000 permutation-based two-sided P-value < 0.002,
supplementary table S1, Supplementary Material online). A
lack of CNSs in ACRs might indicate that although intergenic
ACRs could be enriched in functional sites and thus under
selective constraint, which would be expected to lead to
higher sequence conservation, other factors such as elevated
mutation rates in ACRs (Monroe et al. 2020) or rapid regu-
latory site turnover could mitigate this effect and lead to a
lack of sequences that can be identified as CNS in ACRs.

Impact of Selection on Intergenic ACRs and
Comparable Intergenic Regions
To investigate the impact of selection on mutations in ACRs
in our C. grandiflora population, we conducted population
genomic analyses of whole-genome sequences of 40 individ-
uals (including those used to identify ACRs; mean coverage
34�). We identified a total of 54.9 million sites and 2 million
SNPs that could be polarized and thus included when esti-
mating the DFE. We quantified polymorphism and diver-
gence at ACRs, 0-fold degenerate and 4-fold synonymous
sites (supplementary table S2, Supplementary Material on-
line) and found that intergenic ACRs had a lower proportion
of SNPs than nearby genomic regions (fig. 1C) as well as a
slightly lower mean nucleotide diversity (p) than intergenic
sites in general (supplementary table S2, Supplementary
Material online). Reduced diversity did not seem to be a result
of locally reduced mutation rates in intergenic ACRs, as inter-
genic ACRs had a higher mean divergence between Capsella
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FIG. 1. Genetic profile plots. (A) Proportion of ACRs in and around genes (TSS: transcription start site; TES: transcription end site). (B) Proportion of
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and Arabidopsis than other intergenic sites (supplementary
table S2, Supplementary Material online). Differences in di-
versity and divergence between intergenic ACRs and other
intergenic regions may thus reflect different selective pres-
sures on these regions.

To investigate the impact of positive and negative selec-
tion on intergenic ACRs, we estimated the DFE and a in
intergenic ACRs. For comparison, we also estimated DFE
and a for 0-fold degenerate sites and for a set of proximal
and distal intergenic negative control regions (see Methods).
For this purpose, we used DFE-alpha v.2.16 (Keightley and
Eyre-Walker 2007; Eyre-Walker and Keightley 2009;
Schneider et al. 2011).

Our DFE analyses of intergenic ACRs revealed that in C.
grandiflora, approximately 18% (95% CI: 16.8–19.5%) of new
mutations in intergenic ACRs have a strongly deleterious fit-
ness effect (�Nes > 10). Thus, some mutations in intergenic
ACRs are under strong constraint. However, the proportion
of new mutations in intergenic ACRs under strong purifying
selection is significantly lower than the estimated 75.6% (95%
CI: 75.5–75.7%) for new 0-fold degenerate mutations (two-
sided P-value < 0.02; fig. 2A). Further, 73.1% (95% CI: 71.8–
74.2%) of new mutations in intergenic ACRs were neutral and
nearly neutral mutations (1 > �Nes > 0), which was signif-
icantly more than the 19% (95% CI: 18.9–19.1%) of new
mutations at 0-fold degenerate sites (two-sided P-value <
0.02; fig. 2A). These results suggest that mutations in inter-
genic ACRs could make a substantial contribution to the
genome-wide content of nearly neutral mutations, because
we found that nearly neutral mutations could arise at 5.1
million different sites in intergenic ACRs but only at 4 million
different 0-fold degenerate sites. Overall, the one- and two-
epoch model DFE estimates revealed similar results (fig. 2 and
supplementary fig. S2, Supplementary Material online) and
the estimated DFE for 0-fold degenerate mutations in this
study was similar to previous estimates for C. grandiflora
(Williamson et al. 2014; Mattila et al. 2019).

Although we observed clear differences in the impact of
purifying selection on intergenic ACRs and 0-fold degenerate
sites, our estimates of the proportion of mutations fixed by
positive selection (a) in intergenic ACRs were negative (sup-
plementary fig. S3, Supplementary Material online), indicating
limitations in our ability to reliably estimate a in intergenic
ACRs using DFE-alpha. In contrast, a for the 0-fold degenerate
sites was 0.32 (95% CI: 0.31–0.33; supplementary fig. S3,
Supplementary Material online), in line with previous esti-
mates for C. grandiflora (Slotte et al. 2010; Williamson et al.
2014; Josephs et al. 2017; Mattila et al. 2019).

To further disentangle how selection on different inter-
genic ACRs affects the DFE, and to contrast these findings
to nonaccessible intergenic regions, we estimated DFE and a
for proximal ACRs, distal ACRs, and control intergenic regions
(comparable proximal and distal intergenic regions not over-
lapping with ACRs or CNSs). Proximal and distal ACRs have a
significantly higher proportion of strongly deleterious new
mutations than control regions (two-sided P-value < 0.02;
fig. 2B), indicating that proximal as well as distal ACRs are
under stronger purifying selection than comparable

intergenic regions. As before, our ability to reliably estimate
a in proximal and distal ACRs was limited (supplementary fig.
S3, Supplementary Material online).

Finally, we estimated the DFE separately for unique, com-
mon, and hACRs to investigate whether regions which are
consistently accessible are under different selective constraint
than regions that are only sporadically accessible. Although
differences were subtle, our analyses suggest that ACRs with
higher population frequencies harbor a higher proportion of
strongly deleterious mutations than unique and cACRs (two-
sided P-value < 0.02; fig. 2C). The differences in the propor-
tion of strongly deleterious mutations implies that new muta-
tions in ACRs present at higher population frequencies might
be under more efficient purifying selection than those in
lower frequency ACRs.

Regions Containing ACRs Are Enriched with eQTL
Our population genomic analyses suggest that intergenic
ACRs are under (weak) selection. To test whether ACRs are
also more likely to harbor functional noncoding sequences,
such as cis- or trans-regulatory regions, we investigated the
overlap between intergenic ACR and previously described cis-
and trans-eQTL in C. grandiflora leaves (Josephs et al. 2015,
2020).

In C. grandiflora, we found an enrichment of cis-eQTL
within and in the proximity (500 bp surroundings) of ACRs
in and around (5 kb up- and downstream) genes (fig. 3, 3,032,
95% CI based on 1,000 permutations: 2,669–2,814,
permutation-based two-sided P-value < 0.005, supplemen-
tary table S4, Supplementary Material online). There was also
a significant enrichment of cis-eQTL within and in the prox-
imity of proximal ACRs (1,000 permutation-based two-sided
P-value < 0.002, supplementary table S4, Supplementary
Material online). Similarly, we found an enrichment of
trans-eQTL within and in the proximity of ACRs at least
5 kb away from genes (1,000 permutation-based two-sided
P-value < 0.005, supplementary table S5, Supplementary
Material online). These results were expected under the as-
sumption that intergenic ACRs harbor functional sites such as
cis- and trans-regulatory regions, because eQTL are expected
to be located in or around the sequences regulating the levels
of gene transcription. Hence, these results are in line with our
interpretation of the DFE, that SNPs in intergenic ACRs are
more likely to have fitness consequences than in comparable
intergenic regions.

To elucidate the biological function of genes affected by
eQTL located in intergenic ACRs, we investigated their gene
ontology (GO) annotations using GO Slim terms, cut-down
versions of GO providing a broader overview of gene function
present. The most represented specific GO Slim biological
process terms were “metabolic process” and “biosynthetic
process,” respectively (supplementary fig. S4, Supplementary
Material online), indicating that many of these genes are in-
volved in basic metabolic processes. The most common spe-
cific GO Slim molecular function terms were “binding” and
“catalytic activity” (supplementary fig. S4, Supplementary
Material online). For cellular component, the most common
specific GO Slim term annotation was “cell” and
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“intracellular” (supplementary fig. S4, Supplementary Material
online). Overall, there were 11 GO terms that were over-
represented relative to the set of all genes analyzed for
eQTL (Benjamini–Hochberg adjusted Fisher’s exact test
P-value < 0.05, supplementary table S6, Supplementary
Material online). Two of these GO terms in the domain
biological process (“response to organonitrogen com-
pound” and “response to chitin”) indicate an overrepre-
sentation of genes associated with defense response genes
and with nitrogenated nutrients availability, respectively.
The molecular function GO terms corresponded to cata-
lytic activity, further indicating an overrepresentation of
genes associated to metabolism. Finally, eight GO terms
were from the cellular component domain and included
terms such as “cytoplasm” and “endomembrane system,”
as well as other subcellular compartments, further con-
firming the association with general cellular functions
(supplementary table S6, Supplementary Material online).
Together, these results suggest that regulatory regions as-
sociated with intergenic ACRs mostly regulate genes in-
volved in metabolic and biosynthetic processes, many of
which have enzymatic activity or bind to DNA or proteins.

Depletion of TE Insertions in ACRs
TE insertions can interfere with the function of any functional
part of the genome, such as genes or cis-regulatory regions, in
two distinct ways. First, TEs can directly disturb a functional
element through insertions into such elements. Second, TEs
can trigger a host-induced epigenetic defence mechanism
against TE spreading, which involves methylation and histone
modifications of the targeted TE sequence, which can spread
beyond the borders of the TEs and interfere with nearby
functional sequences (Hollister and Gaut 2009). In C. grandi-
flora, varying selective constraint on TEs with distinct effects
on gene expression was reported to be the main factor pre-
venting an increase in the copy number of TEs (Uzunovi�c et
al. 2019) and, therefore, functional sites and their surround-
ings are expected to be depleted of TE insertions.

To test whether this was the case in ACRs, we first used
PopoolationTE2 v1.10.04 (Kofler et al. 2016) to identify TE
insertions in our C. grandiflora population. A total of 9,260
different TE insertions were identified in our population from
which 1,008 were located in ACRs. TE insertions were less
common in ACRs than in their surroundings (fig. 1D) and
ACRs were significantly depleted of TE insertions (1,000
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one-epoch demographic model. The estimated DFE was binned based on the mean selective effect (�Nes) into three bins: effectively neutral (0<
�Nes < 1), intermediate fitness effect (1 <�Nes� 10), and strongly deleterious (�Nes > 10) mutations. (A) DFE of intergenic ACRs and 0-fold
degenerate sites. (B) DFE of distal ACRs (dACRs), distal control regions (d-control), proximal ACRs (pACRs), and proximal control regions (P-
control). (C) DFE of intergenic ACRs split up into unique (u), common (c), and high-frequency (h) ACRs. Error bars show the 95% CI of each
estimate based on 100 bootstrap replicates. Significant differences between estimates are shown by asterisks (Kruskal–Wallis test with a Dunn post
hoc test, P-value < 0.05).
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permutation-based two-sided P-value < 0.002; supplemen-
tary table S7, Supplementary Material online). Similarly, distal
and proximal ACRs were significantly depleted of TE inser-
tions (1,000 permutation-based two-sided P-value < 0.002;
supplementary table S7, Supplementary Material online), in-
dicating that this pattern is not only driven by ACRs located
in genes and coding sequences. These results are in line with
the hypothesis that if intergenic ACRs harbor functional sites
then TEs in such regions might have a negative fitness
impacts and should therefore be less numerous (Hollister
and Gaut 2009). Alternatively, TEs could directly cause the
loss of ACRs by altering chromatin accessibility.

To further investigate whether the observed depletion of
TE insertions in ACRs could result from biases in recombina-
tion rate or GC content, considering that ACRs had higher GC
content than their surroundings (supplementary fig. S1,
Supplementary Material online), we split up ACRs based on
the recombination rate and GC content. Splitting up ACRs
revealed that regardless of the recombination rate, ACRs were
significantly depleted of TE insertions (supplementary table
S8, Supplementary Material online), but GC content affected
the observed relationship between TE insertions in ACRs
without any clear pattern (supplementary table S9,
Supplementary Material online). These results indicate that
although ACRs are overall depleted of TE insertions, other

genetic features might also influence how TEs accumulate in
ACRs. Further TE-specific features such as insertion biases,
which were not accounted for in our analyses, could also
contribute to the complexity of this relationship.

Discussion

The Genomic Distribution of ACRs in a C. grandiflora
Population
In this study, we identified a total of 31,243 ACRs based on an
ATAC-seq assay of 16 C. grandiflora individuals from a natural
population. In line with previous reports in 13 plant species
(Lu et al. 2019), ACRs in C. grandiflora were located predom-
inantly within genes, represented a small proportion of the
total genome and had a higher GC content compared with
nearby genomic regions. Similarly to a previous study (Lu et al.
2019), ACRs also harbored a lower number of SNPs than their
surroundings. The overall patterns of chromatin accessibility
that we observe are broadly comparable to those previously
reported for other plant species (Rodgers-Melnick et al. 2016;
Alexandre et al. 2018; Maher et al. 2018; Lu et al. 2019).

Our results further demonstrate that accessibility is not a
static feature of the genome of a species but shows within-
population variation. Intraspecific variation in chromatin ac-
cessibility has previously been reported among five
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FIG. 3. Comparison between the observed and expected number of cis- and trans-eQTL located in ACRs and their 500 bp surroundings in C.
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geographically and genetically diverse ecotypes of Arabidopsis
thaliana (Alexandre et al. 2018). Our study extends these
findings to show the presence of chromatin accessibility var-
iation within a single natural plant population.

Intergenic ACR Are under Stronger Negative Selection
than Comparable Intergenic Regions
To gain a better understanding of the impact of selection on
noncoding sequences and the contribution of such regions to
the genome-wide DFE of new mutations in plants, we esti-
mated the DFE of new mutations in intergenic ACRs.
Estimating the DFE of intergenic ACRs revealed that some
SNPs in intergenic ACRs were under negative selection in C.
grandiflora (fig. 2A). The proportion of mutations in inter-
genic ACRs with strongly deleterious fitness effect was higher
than in comparable intergenic regions (fig. 2B), indicating that
ACRs were more likely to harbor functional noncoding sites
than other intergenic regions, as suggested previously (Vera et
al. 2014; Rodgers-Melnick et al. 2016). High-frequency ACRs
(hACRs) harbored a slightly but significantly higher propor-
tion of strongly deleterious mutations than unique and
cACRs (fig. 2C), which could be expected if broadly important
functional cis-regulatory regions were more likely to be lo-
cated in hACRs than in regions of the genome which are less
frequently accessible. However, chromatin accessibility can be
variable between cell types and developmental states (Shen et
al. 2012; Pajoro et al. 2014; Buenrostro, Wu, Litzenburger, et al.
2015) and, therefore, low-frequency ACRs in whole tissue
samples could also represent ACRs in less abundant cell types
and/or states.

ACRs Contribute to the Genome-Wide Input of
Nearly Neutral Mutations
To investigate the suggestion that functional noncoding
regions such as regulatory regions could contribute a wealth
of nearly neutral mutations to the overall load of nearly neu-
tral mutations in the genome (e.g., Ohta 2002), we compared
the estimated proportion of nearly neutral new mutations at
intergenic ACRs to other regions of the genome. Doing so
revealed that intergenic ACRs harbor significantly more nearly
neutral and neutral mutations than 0-fold degenerate sites
(fig. 2A). Taking into account differences in the number inter-
genic ACR and 0-fold degenerate sites in C. grandiflora, this
would mean that intergenic ACRs contribute roughly 1.3
times more new nearly neutral mutations than 0-fold degen-
erate sites. Hence, intergenic regions, especially intergenic
ACRs, are an important contributor to the genome-wide
rate of nearly neutral mutations, which is an important find-
ing because the efficacy of selection on such mutations
depends on the effective population size (Ne) (Wright and
Andolfatto 2008).

The population genetic methods we used to estimate the
DFE require data for a class of sites assumed to be evolving
neutrally. In this study, we assumed that 4-fold degenerate
sites evolve neutrally when estimating the DFE and a of 0-fold
degenerate sites, and for analyses of the DFE at intergenic
ACRs we used nearby intergenic regions as control regions.
The assumption of neutrality may not strictly hold in either

case, especially not for synonymous sites, for which selective
constraint has previously been demonstrated in several sys-
tems (Chamary and Hurst 2005; Chamary et al. 2006; Eöry et
al. 2010; Künstner et al. 2011; Gu et al. 2012; Lawrie et al. 2013;
Gossmann et al. 2018). It is possible that 4-fold degenerate
sites might also experience some selective constraint in C.
grandiflora (Williamson et al. 2014). Although this issue can-
not be entirely avoided, it might lead to underestimation of
the strength of purifying selection and overestimation of a
(Eöry et al. 2010; Künstner et al. 2011). However, we consider
it unlikely that all differences in the DFE between intergenic
ACRs and 0-fold degenerate sites are due to deviations from
neutrality at the assumed neutral sites.

How does the inferred purifying selection on intergenic
ACRs compare with other noncoding regions? Here, we esti-
mated that in C. grandiflora 73.1% of new mutations in inter-
genic ACRs are effectively neutral. Previous estimates suggest
that in C. grandiflora 28%, 45%, and 70% of new mutations are
effectively neutral in CNS, UTRs and introns, respectively
(Williamson et al. 2014). Although the previously estimated
proportion of nearly neutral intergenic sites was nearly 100%
in C. grandiflora (Williamson et al. 2014), here, we show that a
small presumably functional subset of the intergenic sites are
impacted by higher selective constraint. We show that inter-
genic ACRs are affected by weaker purifying selection than 0-
fold degenerate sites, CNS, and UTRs but the impact of pu-
rifying selection on introns and intergenic ACRs seems to be
similar in C. grandiflora. This result differs somewhat from
those in rice, where, using a different analysis approach, the
level of constraint was estimated to be similar for ACRs and
promoter regions and UTRs (Joly-Lopez et al. 2020). These
findings therefore contribute to an improved understanding
of the currently relatively limited knowledge of the impact of
purifying selection on intergenic ACRs in plant genomes.

Previous estimates of the proportion of effectively neutral
mutations in intergenic regions of other plant and animal
species suggested that more than 90% of intergenic sites in
A. thaliana and A. lyrata (Haudry et al. 2013) and approxi-
mately 50% in Drosophila (Andolfatto 2005) are effectively
neutral. In mouse, humans, and Drosophila, it was estimated
that between 67–77% (Kousathanas et al. 2011), 78–100%
(Eyre-Walker and Keightley 2009), and 55–66% (Halligan et
al. 2004; Halligan and Keightley 2006) of intergenic sites
500 bp up- and downstream of genes are effectively neutral,
respectively. Although it is important to bear in mind that
differences in the effective population size can influence the
proportion of effectively neutral mutations in a population
(Ohta 1973; Eyre-Walker and Keightley 2007; Wright and
Andolfatto 2008), our results are consistent with the sugges-
tion that a smaller fraction of plant than animal genomes is
evolving under selective constraint (Hough et al. 2013).

One surprising finding was that intergenic ACRs were de-
pleted for CNS. In rice, CNS regions were associated with
transcription factors and developmental genes that vary in
expression across developmental stages (Joly-Lopez et al.
2020). In contrast, ACRs were associated with constitutively
expressed genes (Joly-Lopez et al. 2020), which could explain
the seeming contradiction between our findings of ACRs
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being depleted of CNS and a previous report that CNS were
enriched in ACRs (Lu et al. 2019). One difference between Lu
et al. (2019) and this study, besides the different study sys-
tems, is that in Lu et al. (2019) leaf tissue was sampled from
very young plants (maximum 10 days old), whereas in our
case leaves were sampled from mature (approximately 9-
week-old) plants. It is therefore possible that CNSs involved
in gene expression regulation during leaf development could
be underrepresented in our data set. Our GO analyses show-
ing mainly genes associated with metabolism suggest that this
could indeed be the case. Alternatively, elevated mutation
rates at ACRs in the Brassicaceae (Monroe et al. 2020) could
contribute to the depletion of CNSs in ACRs in our study.
These findings further indicate that completely relying on
comparative genomic approaches to detect functional sites
in C. grandiflora will underestimate the amount of such sites.

Evidence for Positive Selection at Intergenic ACRs Is
Limited
Cis-regulatory variation has long been considered to be im-
portant for adaptation. If ACRs are enriched for cis-regulatory
elements under positive selection, this should leave a signa-
ture of excess divergence relative to expectations given fixa-
tion of neutral and weakly deleterious mutations. To test for
evidence of positive selection acting on genetic variation in
accessible intergenic regions, we estimated the proportion of
substitutions fixed through positive selection, a, in intergenic
ACRs.

Our a estimates for intergenic regions were mostly nega-
tive, but most confidence intervals included values above 0
(supplementary fig. S3, Supplementary Material online), indi-
cating that our ability to detect positive selection in intergenic
ACRs was limited. Negative a estimates in plants were previ-
ously reported in other studies (e.g., Gossmann et al. 2010)
and were hypothesized to be due to ancient demographic
events that were not captured by polymorphism data
(Booker et al. 2017). Methodological limitations could also
limit our ability to estimate a. For example, violation of the
neutrality assumption could be a considerable issue, as dis-
cussed above. Other sources of potential bias include the
requirement of an outgroup for polarization of alleles, and
the higher GC content of ACRs, which is generally associated
with a higher mutation rate (Coulondre et al. 1978; Fryxell
and Moon 2005; DeRose-Wilson and Gaut 2007). Finally, a
biological factor that could interfere with our a estimates
using DFE-alpha is the potential presence of weakly beneficial
mutations in our population. To investigate this issue, we ran
polyDFE v2.0. (Tataru et al. 2017; Tataru and Bataillon 2019),
which can estimate the contribution of weakly advantageous
mutations to the DFE (see Materials and Methods). Although
the a and DFE estimates for ACRs were very noisy, especially
for proximal and distal ACRs (dACRs), these polyDFE analyses
revealed a potential presence of weakly beneficial mutations
in intergenic ACRs (supplementary figs. S5 and S6,
Supplementary Material online). These results suggest that
some sites in intergenic ACRs may be under weak positive
selection, but further work is needed to fully elucidate the

contribution of positive selection to the evolution of inter-
genic ACRs.

Enrichment of eQTL and Depletion of TEs Support
Functional Importance of ACRs
In line with previous reports of accessible regions being prom-
ising candidates for functional regions in maize (Vera et al.
2014; Rodgers-Melnick et al. 2016) and several other plant
species, including Arabidopsis thaliana (Lu et al. 2019), at least
two lines of evidence suggest that in C. grandiflora accessible
DNA sequences identified through ATAC-seq are also prom-
ising candidates for functional regions. First, previously iden-
tified cis- and trans-eQTL in comparable C. grandiflora leaf
samples were found more frequently in and around accessible
DNA sequences indicating that regions containing ACRs are
enriched for variants involved in gene expression regulation.
An enrichment of loci involved in gene expression regulation
in ACRs is in line with the expectation that regulatory ele-
ments need to be accessible to fulfil their function (e.g., Li et al.
2011; Jiang 2015) and suggests that variation in ACRs con-
tributes disproportionately to the genetic basis of gene ex-
pression variation. Second, we observed a TE depletion in
ACRs as well as in intergenic ACRs, consistent with the hy-
pothesis that if intergenic ACRs harbor functional sites, then
selection against TE insertions in such regions should remove
them from intergenic ACRs. This is in line with the results of
Uzunovi�c et al. (2019) who concluded that gene expression
alterations caused by TE insertions results in negative selec-
tion against TEs. Overall these results are consistent with
those in other plant species, where TEs were also depleted
in ACRs (e.g., Lu et al. 2019).

Conclusions
Our results show that intergenic ACRs in C. grandiflora are
under stronger purifying selection than other intergenic
regions and suggest that ACRs harbor functional sites, such
as regulatory elements. In line with this hypothesis, we find an
enrichment of eQTL as well as a depletion of TE insertions in
intergenic ACRs. Despite these findings, selective constraint
on intergenic ACRs still seems to be insufficient to cause
sequence conservation. Overall, purifying selection on inter-
genic ACRs is mostly weak, similar to levels seen at intronic
sites in C. grandiflora. We also find little evidence for recurrent
strong positive selection at intergenic ACRs, although we
cannot completely rule out an impact of weak positive selec-
tion on patterns of polymorphism. Our study is among the
first to estimate the DFE of mutations at ACRs in a plant
genome. By doing so, we can directly compare contribution
of mutations in noncoding regulatory regions and at non-
synonymous sites to the overall load of nearly neutral muta-
tions in the genome. We conclude that such mutations are
expected to contribute roughly 1.3 times more to the overall
load compared with mutations at 0-fold degenerate nonsy-
nonymous sites. Given the rapid decay of linkage disequilib-
rium in C. grandiflora and our evidence for weak selection on
ACRs, our results suggest that intergenic sites in this species
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evolve mostly in agreement with the nearly neutral theory
(Ohta 1973, 1992).

Materials and Methods

Plant Material
Field-collected C. grandiflora seeds from a single population in
Greece (Mikro Papingo: longitude: 39.98; latitude: 20.77) were
surface sterilized and germinated on half strength Murashige-
Skoog medium without b5 vitamins (Sigma-Aldrich, Missouri,
USA). A total of 40 plants were grown in a growth chamber
(16 h light/23�C; light intensity: 110 mE m�2 s�1 ; 8 h dark/
20�C; 70% maximum humidity) in potting soil. For ATAC-seq,
young and still extending leaves were sampled within the first
2 h after the start of the light period, from 16 nine-week-old
plants at roughly identical developmental stage before the
production of flower buds started. Leaf samples for DNA-seq
were collected approximately 2 weeks later from all 40 plants.

ATAC Sequencing
Nuclei extraction was performed immediately after harvest-
ing the samples following the “Purification of Total Nuclei
Using Sucrose Sedimentation” protocol from Bajic et al.
(2018), without using Triton X-100 detergent and performing
additional sieving first with a 100-mm nylon cell strainer be-
fore sieving again with a 70-mm nylon cell strainer as described
by Bajic et al. (2018). A final sieving with a 70-mm nylon cell
strainer was also added at the end of the protocol to remove
any remaining cell debris. To perform an Assay for
Transposase-Accessible Chromatin with high throughput se-
quencing (ATAC-seq; Buenrostro et al. 2013; Buenrostro, Wu,
Chang, et al. 2015), the Nextera XT kit (Illumina, San Diego,
USA) was used for the library preparation performed by the
National Genomics Infrastructure in Stockholm following
Bajic et al. (2018), but excluding the initial extension step in
the PCR following tagmentation. The resulting single library
was sequenced (paired-end 151-bp reads) on the Illumina
NovaSeq 6000 by the National Genomics Infrastructure in
Stockholm. To investigate the reproducibility of the sites
detected as transposase hypersensitive sites (THSs) through
ATAC-seq analyses, samples from each of the 16 plants were
divided into three technical replicates after the nuclei extrac-
tion but before the ATAC-seq library preparation. To assess
the quality of the ATAC-seq data, we compared the overlap
of signals among technical replicates (supplementary fig. S7,
Supplementary Material online) and inspected the location of
the detected ACRs across the genome.

Transposase Hypersensitive Site and ACR
Identification
The ATAC-seq reads were trimmed with Trimmomatic 0.36
(Bolger et al. 2014) and mapped with BWA mem 0.7.17 (Li
2013) to the v1.0 Capsella rubella reference genome (Slotte et
al. 2013) using default settings. PCR duplicates were removed
with the Picard toolkit 2.10.3 (http://broadinstitute.github.io/
picard/; last accessed June 2019) and reads with mapping
quality below 30 were removed with SAMtools 1.9 (Li et al.
2009; Li 2011), which resulted in an average coverage per

sample between 7� and 26.6� (supplementary table S10,
Supplementary Material online). THSs were defined as the
peak regions called with MACS2 using the -q 0.05 setting
(Zhang et al. 2008). MACS2 called between 3,480 and
27,599 THS peaks per sample (supplementary table S11,
Supplementary Material online) and peaks within each sam-
ple which were within 150 bp from each other were merged
together following previous studies (Rodgers-Melnick et al.
2016; Maher et al. 2018). For the population-wide ACR as-
sessment, only THS peaks found in at least two of the three
technical replicates were considered as ACR in an individual.
Following our peak merging strategy within samples, THS
peaks found in different replicates from a single individual
were considered identical if they were within 150 bp from
each other. Overall, the pairwise comparison of ATAC-seq
samples from different plants to two technical replicates
revealed a significantly lower overlap between the THS
detected in two different individuals than between two tech-
nical replicates (t-test, df ¼ 49.9, two-sided P-value < 0.005).
In this study, only ACRs found on one of the eight main
scaffolds of the C. rubella v1.0 reference genome were in-
cluded in the downstream analyses, which represented 92%
of all the detected ACRs. Furthermore, ACRs present in one
individual (<7%) and with no overlap with any other ACRs
present in other individuals were labeled uACR, ACRs present
in 2 to 13individuals (>10% and <85%) were labeled cACR,
ACRs present in at least 14 individuals (>85%) were labeled
hACR. Here, ACR present in multiple individuals were only
considered identical if they had at least one overlapping base
pair. ACRs located in the proximity of genes (2 kb up- and
downstream), where most cis-regulatory regions can be
expected, were labeled as proximal ACR (pACR) and ACRs
more than 2 kb away from genes were labeled ACR) following
Lu et al. (2019).

Identification of Mappable Regions of the Genome
To be able to compare intergenic ACRs to other nonacces-
sible intergenic regions of the genome, we first identified the
mappable regions of the genome to which potential ATAC-
seq reads can be mapped and, therefore, can serve as negative
control regions. To do so, 100-bp long reads were generated
based on the reference genome using the create-reads-for-te-
sequences.py script from PopoolationTE2 v1.10.04 (Kofler et
al. 2016). The simulated reads were mapped back to the ref-
erence using the same pipeline as used for the ATAC-seq data
and the genomic regions with mapped reads were then de-
fined as mappable regions following Lu et al. (2019).

DNA Sequencing
For whole-genome resequencing, DNA was extracted from
leaf tissue sampled in a similar way to the ATAC-seq samples
(i.e., young and still extending leaves) from the 16 individuals
used in the ATAC-seq and from an additional 24 individuals
from the same population using the DNeasy Plant Mini Kit
(Qiagen, Hilden, Germany). For DNA library preparation, we
used the TruSeq Nano DNA sample preparation kit (Illumina,
San Diego, USA) and sequencing (paired-end 150-bp reads,
average coverage of 34x per individual) on the Illumina
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HiSeqX was performed by the Swedish National Genomics
Infrastructure (SNP&SEQ Technology Platform in Uppsala).

Single-Nucleotide Polymorphisms Identification
Whole-genome resequencing reads were trimmed with
Trimmomatic 0.36 (Bolger et al. 2014) and mapped with
BWA mem 0.7.17 (Li 2013) to the v1.0 C. rubella reference
genome (Slotte et al. 2013) using the default settings. The
mapped reads were then sorted with SAMtools 1.9 (Li et al.
2009) and PCR duplicates were removed with the Picard
toolkit 1.118 (http://broadinstitute.github.io/picard). SNPs
and invariant sites were called using GATK 4.1.1 (McKenna
et al. 2010) with the HaplotypeCaller and GenotypeGVCFs
tools and filtered with SelectVariants. For each call site, we
requested the following criteria to be met: QD < 5.0; FS >
20.0; SOR> 3.0; MQ< 50.0;�2.5>MQRankSum> 2.5 and
�2.0> ReadPosRankSum > 2.0. Additionally, we removed
sites in each sample with a coverage below 5 and above
200 and sites with more than 20% of missing data in our
population were also removed from the analyses. Finally,
only sites on the eight main scaffolds of the v.1.0 C. rubella
reference genome were included in the downstream analyses.

Inferring the Site-Frequency Spectrum
Unfolded site-frequency spectrum (SFS) were generated using
est-sfs (Keightley and Jackson 2018) to polarize the filtered
sites called by GATK. The polarization was done based on a C.
rubella, A. thaliana and A. lyrata whole-genome alignment
generated by Steige et al. (2017). Est-sfs was run using A.
thaliana and A. lyrata as the two outgroups and a Jukes-
Cantor DNA substitution model (Jukes and Cantor 1969;
Keightley and Jackson 2018). The number of divergent sites
for each class of sites was estimated through parsimony using
the C. rubella, A. thaliana, and A. lyrata whole-genome align-
ment (Steige et al. 2017).

Quantifying Selection
Per-site nucleotide diversity (p) and Tajima’s D in regions of
interest were estimated using VCFtools 0.1.15 (Danecek et al.
2011) and we obtained per-site estimates of Watterson’s
theta (w) based on the number of variant, total sites called
and the sample size in each region of interest (Watterson
1975). Divergence between Capsella and Arabidopsis was es-
timated based on a C. rubella, A. thaliana, and A. lyrata whole-
genome alignment generated by Steige et al. (2017) followed
by a Jukes–Cantor correction (Jukes and Cantor 1969). We
identified 4-fold and 0-fold degenerate sites as in Steige et al.
(2017).

The DFE of new mutations and the proportion of fixed
substitutions through positive selection (a) in each region of
interest was estimated using DFE-alpha v.2.16 (Keightley and
Eyre-Walker 2007; Eyre-Walker and Keightley 2009; Schneider
et al. 2011). To account for the effect of demography on the
estimates of DFE and a, DFE-alpha requires a SFS for puta-
tively neutrally evolving sites (Keightley and Eyre-Walker
2007). Therefore, a set of comparable presumably neutrally
evolving sites were defined as follows: 4-fold degenerate sites

were considered neutral while estimating DFE and a for 0-fold
degenerate sites, whereas when running DFE-alpha on inter-
genic ACRs, intergenic sites located within 1 kb next to the
ACR were considered to be comparable neutral sites. All neu-
tral intergenic sites used in the DFE-alpha analyses were re-
quired to be within the mappable regions of the genome,
more than 500 bp away from any CNS and not within any
other ACR. Here, we defined neutral intergenic sites close to
our sites of interests to avoid biases due to differences be-
tween the two groups of sites such as different recombination
rates, mutation rates, or strong differences in GC content.
Unfolded SFS and 100 SFS bootstrap replicates were gener-
ated as described above and used as input for DFE-alpha. For
each estimate and bootstrap, the run with the highest likeli-
hood out of five independent runs was retained and 95%
confidence intervals for the estimated parameters were
obtained from 100 bootstrap replicates. We used the one-
and two-epoch demographic models implemented in DFE-
alpha to account for demographic effects. Results generated
when running DFE-alpha with a two-epoch demographic
model had higher Akaike Information Criterion (AIC), but
the 95% CI of the AIC from the one- and two-epoch models
were largely overlapping (supplementary table S3,
Supplementary Material online). Therefore, the simplest
model (one-epoch model), which assumes a constant popu-
lation size, was chosen. An inferred constant population size is
consistent with previous inference of demographic history in
C. grandiflora (Foxe et al. 2009; Slotte et al. 2010; St. Onge et al.
2011; Douglas et al. 2015; Mattila et al. 2019).

We also obtained a second estimate of DFE and a using
polyDFE v2.0 (Tataru et al. 2017; Tataru and Bataillon 2019).
The set of presumably neutrally evolving sites were defined as
above. PolyDFE was run as described by Tataru and Bataillon
(2020) and all estimates were based on a model averaging
approach that included all models (A, B, C, D). For full de-
scription of the procedure, see Supplementary Methods,
Supplementary Material online. All polyDFE runs were run
with and without using the divergence data. The results gen-
erated by polyDFE were analyzed and bootstrap-based 95%
confidence intervals of the observed DFE and a were gener-
ated by generating 100-bootstrap replicate estimates follow-
ing Tataru and Bataillon (2020).

Intergenic Negative Control Regions
To contrast the observed genetic patterns in pACRs and
dACRs to comparable proximal and distal negative control
intergenic regions, a set of proximal (2 kb up- and down-
stream of genes) and distal (more than 2 kb away from genes)
intergenic regions were selected using shuffle in BEDtools
(Quinlan and Hall 2010). The include option of BEDtools
was used to only include regions of the genome in the prox-
imal and distal intergenic negative control regions that were
not in genes, ACRs or CNSs. These regions were then labeled
as proximal and distal control regions (p-control and d-con-
trol) and DFE-alpha was run on these negative controls as
described above.
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eQTL and CNS Data
In this study, we intersected our ACR with two data sets of
previously identified cis- and trans-eQTL in leaf tissues from
another Greek C. grandiflora population from the same region
(Josephs et al. 2015, 2017, 2020). In these studies, RNA sam-
ples were collected from two to three young full-grown leaves
from approximately 5-week-old plants during the dark period
(Josephs et al. 2015, 2017, 2020). The eQTL data were gener-
ated from leaves at a comparable developmental stage to the
samples used in this study. The cis-eQTL data set analyzed
included 4,233 eQTL in genes and 2,233 proximal eQTL (2 kb
up- and downstream of genes) located on one of the eight
main scaffolds. The trans-eQTL data set included 3,686 distal
eQTL (at least 5 kb away from genes) located on one of the
eight main scaffolds. We also analyzed CNS identified in C.
grandiflora by Williamson et al. (2014). The CNS data set
included 95,182 CNSs located on one of the eight main scaf-
folds, with a median length of 38 bp (length distribution: 12–
658 bp).

Transposable Element Detection
TE insertions in the C. grandiflora population were identified
with PopoolationTE2 v1.10.04 (Kofler et al. 2016) following
the recommended workflow running each individual sample
separately. Briefly, a TE-merged reference was generated
based on the C. rubella TE library published by Slotte et al.
(2013) using RepeatMasker 4.0.8 (Smit et al. 2013–2015), as in
Horvath and Slotte (2017). The DNA-seq data were mapped
to the TE-merged reference with bwa bwasw 0.7.8 (Li and
Durbin 2010) and PopoolationTE2 was run with the joint
setting and the following requirements for each detected
TE insertions: a minimum mapping quality of 15; a maximum
proportion of other TE insertions and structural variants of
50% as well as a minimum coverage of 2 for each individual.

Association between ACRs and eQTL, CNS, and TEs
To investigate whether eQTL were associated with ACRs in C.
grandiflora, we used a permutation approach. Only ACRs in
and around genes (5 kb up- and downstream) were included
when testing for an association between cis-eQTL and ACRs,
because the cis-eQTL data only included SNPs in these regions
(Josephs et al. 2015). When testing for an association between
trans-eQTL and ACRs only distal trans-eQTL and distal ACRs
(at least 5 kb away from genes) were included. The observed
number of cis- and trans-eQTL in ACRs was obtained by
counting the number of observed cis- and trans-eQTL over-
lapping with ACRs. We then permuted cis- and trans-eQTL
designations among all SNPs investigated by Josephs et al.
(2015, 2017, 2020) 1,000 times, and for each permutation
we recorded the number of random cis- and trans-eQTL
SNPs overlapping with ACRs. To elucidate the biological func-
tion of genes affected by eQTL found in intergenic ACRs, a
GO term enrichment test was performed on genes affected
by eQTL in dACRs and pACRs and their 500 bp surroundings
using the topGO R package (Alexa and Rahnenfuhrer 2021).
To investigate whether CNSs and TEs were associated with
ACRs, the ACRs of interest were shuffled using BEDtools
(Quinlan and Hall 2010) to generate 1,000 random samples

of the same number of sites within the mappable regions of
interest. Two-sided P-values were calculated based on the
results of the permutation tests. ACR, eQTL, CNS, TE, SNP,
and GC content density plots were generated and smoothed
over 20-bp windows using deepTools v3.1.0 (Ram�ırez et al.
2016).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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