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‘‘Emerging infections’’ have been defined as infections (including drug-
resistant infections) that have newly appeared, that have appeared pre-
viously but are expanding in incidence and geographic range, or that
threaten to increase in the near future [1,2]. This article focuses on nine
emerging viral infectious agents.

Drug-resistant HIV

Because monotherapy with antiretroviral drugs rapidly leads to the
development of resistant HIV [3], current antiretroviral therapies use
multiple drugs. Nonetheless, drug-resistant HIV is increasingly problematic.
Part of this problem stems from the prevalence of recombination and
mutation observed in HIV [4–6]. Not surprisingly, drug-resistant HIV is
increasingly reported in the literature [5].

The prevalence of drug-resistant HIV varies dramatically with geographic
location—for example, rates in the United States may approach 23%,
whereas in Australia reported rates are as low as 3.3% [5,7,8]. The exact
mechanisms of drug resistance vary as well.Multiple mutations in the RT and
PR genes of HIV that are associated with drug resistance have been identified,
and studies continue to characterize these mutations [9–11]. Current clinical
guidelines recommend resistance typing in HIV patients before beginning
antiretroviral therapy [12,13]. For the moment, antiretroviral therapy guided
by resistance typing appears to improve patient outcomes [14–16].

Filovirus

Filoviruses include Marburg virus (MBOV) and Ebola virus (EBOV) and
cause filoviral viral hemorrhagic fever (VHF). MBOV is currently the only
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virus in its group, whereas EBOV contains four subtypes: Sudan, Zaire,
Reston, and Ivory Coast [17–19]. The natural reservoir for these viruses
remains unknown, although arthropods do not appear to be the reservoir
[20,21].

The hallmark of filoviral VHF is disseminated intravascular coagulop-
athy (DIC), with death usually occurring after 6 to 9 days. Recent studies
observe that lymphoid macrophages and peripheral monocytes infected with
EBOV exhibit increased secretion of tissue factor, which could trigger the
extrinsic coagulation pathway and cause DIC [22]. This model is corrob-
orated by studies of DIC in other contexts (eg, sepsis), where DIC also
correlates with decreased protein C and improves with administration of
recombinant protein C [23–25].

Regarding vaccines, more recent efforts have included recombinant
vaccina virus, recombinant filoviral proteins, and naked DNA [26–28]. A
recent report using adenoviral vectors encoding EBOV glycoprotein led to
a rapid cell-mediated response to EBOV challenge in cynomolgus macaque
monkeys [29]. Regarding antiviral treatments, initial reports using S-
adenosylhomocysteine hydrolase inhibitors demonstrated a protective effect
in mouse models of EBOV infection [30,31]. Recombinant factor VII/tissue
factor inhibitor has been successfully used to treat EBOV VHF in rhesus
macaque monkeys [22]. To date, a clinically proven antiviral drug for
human filoviral VHF remains elusive, and supportive care remains the
mainstay of treatment.

Diagnosis of filoviral VHF has included such approaches as isolation of
the virus in cell culture, enzyme immunoassay (EIA), ELISA, and reverse-
transcriptase polymerase chain reaction (RT-PCR) [32–35]; such work must
be done under biosafety level-4 (BSL-4) conditions. Filoviruses seem to
demonstrate seasonality, with outbreaks tending to occur early in the wet
season [36].

Filoviruses share ‘‘Category A’’ classification (meaning high risk of use)
with smallpox, anthrax, and plague [37], and speculation exists that
filoviruses have already been adapted for use as weapons of mass de-
struction [38].

Hantavirus

The causative agent of the prototypic hemorrhagic fever with renal
syndrome (HFRS)—Korean hemorrhagic fever—was first described in 1978
[39]. 1993 saw the discovery of the Sin Nombre virus (SNV) and hantavirus
pulmonary syndrome (HPS) [40,41]. As of this writing, multiple hanta-
viruses have been described; as a class, hantaviruses cause HFRS, HPS, or
manifestations of both diseases.

Like other bunyaviruses, the hantavirus genome consists of three segments
of single-stranded, negative-sense RNA housed in a helical nucleocapsid.
This segmented genome has raised the question of genetic variation in
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hantaviruses. Genetic drift clearly plays a role [42,43]. The role of genetic shift
is less clear. Studies have demonstrated that diploid strains are unstable, but
reassorted virus has been reported with genetic variants of SNV andDobrava
virus [44,45]. Notably, homologous recombination—the first instance of such
recombination in negative-sense RNA viruses—was first described in Tula
virus, and later in Dobrava virus [45,46]. Nonetheless, human infections
appear to be more due to encroachment upon hantavirus host habitats (or
vice versa) than to fundamental changes in the viruses themselves [41,47].

Most hantaviruses are carried by a single rodent species [48]. The
geographic distribution of specific hantaviruses—hence the clinical diseases
they cause—is tied to their host’s natural habitat: hantaviruses native to the
Eastern hemisphere or ‘‘Old World’’ are associated with HFRS, while
hantaviruses native to the Americas are associated with HPS [49,50]. HFRS
and HPS will therefore be discussed separately. In both cases, infection
occurs by means of inhalation of dried rodent excreta, although laboratory-
borne and in utero infections have also been reported [50–53]. Human-to-
human transmission of hantaviruses does not occur, with the notable
exception of HPS caused by Andes virus [54,55].

HFRS is classically defined by four phases [49,50]. (1) It begins with
a febrile phase or prodrome of influenza-like symptoms lasting 3 to 5 days
after a 2- to 3-week incubation period; sudden, extreme albuminuria can
occur the fourth day of the prodrome. (2) A hypotensive phase follows,
marked by DIC that lasts from a few hours to days, reflecting an extensive
vascular leak syndrome [56]. (3) An oliguric phase then follows, with death
usually due to renal failure; this phase can last from a few days to 2 weeks.
(4) Patients who recover progress into a diuretic phase and convalescence,
both of which can last months. The severity of HFRS depends on the
specific causative hantavirus [49,50].

Management of HFRS involves treating shock with pressors and fluids,
as well as albumin and dialysis, which can reduce mortality [50]; volume
management is highly important. Intravenous ribavirin, administered within
the first 4 days of illness, has demonstrated benefit [57].

HPS also appears to follow phases: after a 14- to 17-day incubation
period, a similar febrile phase of 3 to 5 days’ duration occurs; thrombocy-
topenia may be present, but other stigmata of coagulopathy are usually
absent. Cardiopulmonary involvement follows the febrile phase; most
patients are hospitalized during this phase. A triad of thrombocytopenia,
immature granulocytes, and circulating lymphoblasts can be seen on
a peripheral blood smear [56,58]. Renal dysfunction and myositis can also
occur in some cases. Patients who survive typically recover from pulmonary
edema and shock in 3 to 6 days, followed by diuresis of excess fluid. HPS
can prove remarkably lethal: HPS from SNV infection carries a 40% to
60% mortality rate [49,58].

Because the differential diagnosis for HPS also includes bacterial causes,
patients should receive antibiotic therapy consistent with therapy for
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community-acquired pneumonia and sepsis, including Yersinia pestis [56].
Aggressive respiratory support is indicated, as are packed red blood cells (to
maintain oxygen-carrying capacity) as appropriate. In contrast to HFRS,
therapy for HPS with ribavirin has not demonstrated much benefit [59,60].

After inhalation, viral entry into cells for at least some hantaviruses
appears mediated by b3 integrins; such integrins are found on endothelial
cells and platelets [61,62]. A vigorous immune response has been noted that
includes T-lymphocytes and numerous cytokines [63,64]. This immune
response is thought to cause the vascular leak noted in both HFRS and
HPS; a similar reaction can be seen in cancer patients receiving high-dose
interleukin-2 [65].

Laboratory diagnosis of hantavirus infection usually rests upon IgM-
detecting enzyme-linked immunosorbent assays or RT-PCR; RT-PCR can
distinguish among the Old World hantaviruses [66,67]. Tissue and serum
specimens should be handled at BSL-3 or -4 levels. Virus isolation is difficult
and not typically done in clinical microbiology laboratories [56]. In addition,
hantavirus maintained in cell culture accumulates mutations not present in
its wild type state [42,68].

Henipavirus

The 1994 outbreak of a highly lethal respiratory syndrome among horses in
Australia led to the discovery of a novel paramyxovirus later named Hendra
virus (HeV) [69]. In 1999, a similar outbreak in pigs caused an outbreak of
human encephalitis in Malaysia with a case-fatality rate approaching 40%
[70]; the causative agent was identified as a distinct but Hendra-like virus later
named Nipah virus (NiV) [70]. Molecular studies demonstrate that these two
viruses define a new genus of paramyxovirus, Henipavirus [71].

Of the two reported human cases of HeV, one patient died after an acute
respiratory disease and the other patient died of leptomeningitis more than
a year after an initial bout of acute aseptic meningitis [72,73]. Otherwise,
HeV is primarily a pathogen of horses [74]. In horses, the disease manifests
as fever and respiratory distress with copious, frothy (and, in some cases,
blood-tinged) nasal discharge.

In its initial emergence, NiV led to the deaths of 105 humans and the
eventual culling of over a million pigs [75]. Human NiV infection led to an
encephalitic syndrome marked by fever, headache, drowsiness, and disori-
entation that could rapidly (within 48 hours) progress to coma and death;
the virus appeared to be contracted by contact with infected pigs [76,77].
Follow-up studies suggest that NiV can lead to a remitting-relapsing pattern
of neurologic disease as well [78]. In pigs, NiV caused an acute respiratory
illness with fever and sometimes nervous signs. A recent outbreak of Nipah
virus in Bangladesh also appeared encephalitic, but was epidemiologically
distinct; contact with pigs was not a major factor [211]. This epidemiologic
distinction has raised speculation about a third henipavirus [79].
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Fruit bats—also called ‘‘flying foxes’’—appear to be the natural reservoir
for these viruses, with an endemic region spanning from the eastern
Australian coast to Pakistan [75]. No human-to-human spread has been
demonstrated for either HeV or NiV, although pathology confirms that the
virus was probably spread among pigs via respiratory routes [74].

The diagnosis of henipavirus infection has involved viral culture using
Vero cells, RT-PCR, immunohistochemistry, and both indirect and capture
enzyme-linked immunosorbent assays for IgG and IgM [70,80]. Cytopathic
effect (CPE) shows as syncytia that detach from the substrate, leaving
punctuate holes in the cell monolayer. Immunohistochemistry can be safely
performed on a wide variety of formalin-fixed tissues, as primary pathology
occurs in the vascular endothelium. Ideally, such work should be done
under BSL-4 conditions [80]. Irradiation, heat inactivation, and detergent
treatment have been used to make laboratory work-up safer where viral
viability is not a concern [80].

Because of its lethality, concerns exist about the possible use of NiV as
a biological weapon; indeed, the Centers for Disease Control and Prevention
(CDC) lists it as a category C agent [81,82]. However, ribavirin was used
open-label in the initial NiV outbreak and seemed to demonstrate some
benefit [83], and an experimental vaccine in hamsters appears promising [84].

Human metapneumovirus

The subfamily Pneumovirinae consists of two genera: Pneumovirus
(typified by human respiratory syncytial virus [hRSV]), and Metapneumo-
virus. Until 2001, the sole member of the Metapneumovirus genus was the
Avian pneumovirus (APV). That year, van den Hoogen et al [85] cultured
a paramyxovirus-like virus that exhibited cytopathic effect indistinguishable
from hRSV. Further characterization demonstrated that this new virus was
more closely related to APV than hRSV, and the virus was therefore named
human metapneumovirus (hMPV) [85].

Retrospective serologic studies suggest that hMPV has been circulating
among humans for almost 50 years [85]. Since its initial discovery, hMPV
has been reported globally [86–89]. hMPV causes disease by itself, but can
be isolated with other viruses, most commonly hRSV [89–92]. Whether
coinfection causes more severe disease is unclear [87,92].

hMPV causes lower-tract respiratory disease in humans of all ages
[93,94]. A flu-like syndrome of malaise, myalgia, and fever has also been
reported in association with hMPV [95]. Like hRSV, the disease appears
more severe in young children [90,94]. Preliminary evidence suggests a winter
seasonal pattern similar to hRSV [87,94,96]. Recent reports indicate that
hMPV is a leading cause of respiratory illness in children [94,96].

Genetic studies suggest four subgroups of hMPV [97]. In terms of
laboratory diagnosis, investigators have used a variety of respiratory
specimens—nose, throat, and nasopharyngeal swabs and washes, and
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bronchoalveolar lavage fluid—but mostly rely on RT-PCR for purposes of
identification [89].

Influenza

In 1997, the first direct transmission of avian influenza virus to humans
was observed with an H5N1 strain [98]. Other H5 influenza viruses continue
to emerge [99], including H5N2 mutants with attenuated immunogenicity
(but not diminished virulence) [100]. Indeed, H5N1 reemerged in Southeast
Asia in early 2004 [101,102]. A similar situation occurred in the Netherlands
with an H7N7 strain, causing an outbreak of viral conjunctivitis and one
human fatality (where the virus had mutations not present in virus from the
other cases) [103,104]. These infections seem to correlate with mutations in
the H5 and H7 viruses [105–107].

Another concern is the increasing prevalence of H6 and H9 strains in
domestic poultry worldwide [108,109]. H9N2 strains can infect humans and
cocirculate with H3N2 strains in pigs [110,111]; indeed, H9 and H3 strains
appear similar even by radiographic crystallography [112].

The H1N1 strain of the 1918 to 1919 influenza pandemic has gained
particular notoriety; recent studies have demonstrated the feasibility of
developing an effective vaccine against its possible reemergence [113].

Poxviruses

Monkeypox

Monkeypox virus (MPV) was first isolated in 1958, and the first human
MPV infection was documented in 1970 [114,115]. Endemic to the rain-
forested regions of Africa, MPV had never been seen outside of Africa until
last year, when the Western Hemisphere’s first case was reported in a 3-year-
old girl in Wisconsin [116]. By the end of this outbreak, 72 cases were
identified in six states, with no fatalities or cases of secondary transmission.
The original source of MPV appears to have been at least one species of
African rodent with which prairie dogs had contact [116]. The CDC and the
US Food and Drug Administration have banned the further import of these
African rodents, although concern exists that MPV may already have
established itself in the rodent population of the United States [117].

Human MPV infection manifests after a 10- to 14-day incubation period,
with a prodrome of fever and malaise that lasts 2 days; development of
lymphadenopathy occurs before the rash. The rash spreads in a centrifugal
pattern and becomes generalized, with lesions resolving over a period of 14
to 21 days [118]. Extracutaneous manifestations include secondary skin/soft
tissue infections, pneumonitis, ocular complications, and encephalitis [119].
Reported case-fatality rates range from zero (in the United States) to 17%
(in Africa) [117,120].
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The clinical diagnosis of MPV infection is difficult, partially because the
rash of MPV infection can resemble the rashes seen in smallpox,
chickenpox, and even herpes simplex virus [121,122]. The lymphadenopathy
of MPV infection appears specific to MPV; a history of contact with exotic
animals is also helpful in making the diagnosis [116,117,120].

Laboratory diagnosis of MPV also can be difficult: only sequence
analysis can distinguish among the orthopoxviruses, but this technique
takes time, and reliable, rapid tests are still needed [122,123]. Recent reports
using real-time PCR and oligonucleotide microarray techniques appear
promising [124–126]. Currently, laboratory diagnosis depends on cell culture
or chick chorioallantoic membrane isolation in conjunction with DNA-
based assays [123]. Cutaneous tissue (eg, vesicular material) and blood can
be used for diagnostic purposes [127]. The reader is referred to the CDC for
more detailed information on specimen collection and transport [82]. MPV
can be safely handled under BSL-2 conditions, but if variola virus is
suspected, referral of specimens to the state public health laboratory for
analysis at the CDC is prudent [82].

Both pre- and postexposure vaccination with vaccinia virus can prevent
MPV infection [127]. No data are available regarding the efficacy of
antiviral treatment for MPV, although cidofovir and vaccinia immune
globulin can be used for patients with severe MPV infection or patients with
MPV who are immunodeficient [127,128].

Concern exists about the potential use of MPV as a weapon of
bioterrorism. While human case-fatality rates tend to be low, there is
debate on the questions of how efficiently aerosol transmission leads to
secondary cases and whether such transmission would be more lethal
[129,130]. Evidence indicates that MPV causing human infections has
remained stable over the last few decades, and that MPV and variola virus
evolved independently—suggesting that wild-type MPV is unlikely to evolve
into a variola-like virus [131,132]. Nonetheless, some experts cite the results
of Jackson et al [133] with IL-4–modified ectromelia as evidence of how
MPV could be genetically modified into a highly lethal biological weapon.

Tanapox

Tanapox virus (TPV) infection in humans has historically been rare.
Recent cases have been reported, however [134,135]. TPV is harbored in
nonhuman primates and is transmitted to humans mostly by arthropods
[136]. Human TPV disease is typically mild, with an onset of mild fever
(38(C to 39(C), headache, and myalgia. One to a few papules develop,
forming nodules with regional lymphadenopathy that resolve about 6 weeks
after the onset of clinical disease [137]. This presentation differs markedly
from smallpox, whose onset includes high fever and multiple lesions. No
vaccine or treatment currently exists for TPV infection, but historically the
disease is self-limiting [135].
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TPV is a member of the Yatapoxvirus genus, along with Yaba monkey
tumor virus (YMTV) and Yaba-like disease virus (YLDV). These members
are all closely related [138,139]. Recent studies demonstrate that TPV
is > 98% identical to YLDV at the nucleotide level [140]; also, human
YLDV infection is clinically identical to TPV infection [141,142]. These
latter observations have led some investigators to conclude that TPV and
YLDV are strains of the same virus [138].

Smallpox

Smallpox has been extensively described in the literature [119,143,144].
Recent studies have focused on antiviral treatment, vaccination, and rapid
testing for variola virus (VV). Some studies show promise regarding the use
of cidofovir and other investigational drugs to treat smallpox, but human
clinical data is lacking [128,145]. Efforts to prepare against possible use of
VV as a weapon have therefore focused on vaccination, but complications of
such vaccination give some observers pause [146–149]. As a partial solution,
research into new vaccines for VV continues [147]. Allegations persist that
unauthorized stocks of VV exist, and that biological weapons research with
VV continues today [38,150]. To develop rapid tests for VV, current efforts
have gravitated toward real-time PCR and DNA microarray techniques
[125,126,151,152].

Severe acute respiratory syndrome

In November 2002, cases of a new pulmonary disease, later named severe
acute respiratory syndrome (SARS), were noted in the Guandong Province
of China. The causative agent was identified in April 2003 as a novel
coronavirus (SARS-CoV) [153,154]. By the end of the first outbreak of
SARS-CoV in July 2003, SARS had afflicted over 8000 people worldwide
with over 770 fatalities [155]. Because human coronaviruses cycle period-
ically [156], the reappearance of SARS could be anticipated, and indeed new
cases of SARS were identified early in 2004 [157].

The animal reservoir and origin of SARS-CoV are not known, although
the virus has been isolated from civet cats and other wild animals [155].
SARS-CoV is genetically distinct from the other three classes of coronavi-
rus, but shares homology with both Group II and Group III coronaviruses
(Fig. 1) [153,154]. Recent studies suggest a mixed mammalian and avian
lineage, possibly by means of recombination [158]. During the epidemic
spread of SARS in 2002 to 2003, other strains were also cocirculating in
Guandong [159], raising questions about whether one strain of SARS-CoV
is more transmissible than another.

SARS appears to be spread by droplets or fomites by means of contact
with mucous membranes (directly or indirectly) [155]. In some instances,
‘‘super spreaders’’—a few cases causing a disproportionate number of
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successive transmissions—have been noted [160,161]. SARS-CoV has been
isolated from multiple specimen types, including blood, suggesting systemic
spread through the body [162,163]. Clinical features of SARS include an
incubation period of 2 to 10 days with a mean of 6 days [155,164]. Initial
symptoms include fever (>38(C), malaise, myalgia, and chills or rigors
[155,164], with respiratory symptoms and sometimes watery diarrhea
occurring later in the course of illness [155]. SARS is less commonly
associated with upper respiratory symptoms like rhinorrhea or sore throat
[155]. Regarding severity, one third of patients improve spontaneously,
whereas 20% to 30% of patients will require intensive care, most of which
will need mechanical ventilation [164,165]. In autopsy specimens, diffuse
alveolar damage is seen in various levels of progression and severity (Fig. 2)

Fig. 1. (A–D) Phylogenetic analyses of proteins from SARS-CoV, demonstrating that SARS-

CoV is a novel coronavirus. (From Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson

A, Butterfield YS, et al. The genome sequence of the SARS-associated coronavirus. Science

2003;300:1400; with permission.)
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[154]. Age (older than 65) and coexisting illness predict a worse course.
Death is attributed to respiratory failure, multiple organ failure, or
comorbidity with existing medical conditions [155,164]. Some studies
suggest that interferons and corticosteroids may improve the clinical course
of SARS [166,167], but data from randomized placebo-controlled trials are
still needed to demonstrate efficacy; in addition, the possible long-term
sequelae of such therapy are unclear [168]. Investigators are currently
studying the efficacy of antiviral drugs as well [169].

Fig. 2. (A,B) Hematoxylin and eosin stains of lung tissue from a SARS patient, demonstrating

diffuse alveolar damage and multinucleated syncytial cells. (From Ksiazek TG, Erdman D,

Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with Severe

Acute Respiratory Syndrome. N Engl J Med 2003;348:1953; with permission.)

Fig. 3. Cytopathic effect of SARS-CoV in Vero E6 cells, showing foci of cell rounding, cell

refractiveness, and occasional syncytia. (From Ksiazek TG, Erdman D, Goldsmith CS, Zaki

SR, Peret T, Emery S, et al. A novel coronavirus associated with Severe Acute Respiratory

Syndrome. N Engl J Med 2003;348:1951; with permission.)
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Before the identification of SARS-CoV, clinical diagnosis of SARS was
based largely on exposure history and case definitions of ‘‘suspect’’ and
‘‘probable’’ cases [170]. RT-PCR methodologies were rapidly developed to
assist in the laboratory diagnosis of SARS [163,171,172]. In cell culture,
SARS-CoV demonstrates CPE in the Vero E6 cell line as foci of cell
rounding and cell refractiveness, with occasional syncytia (Fig. 3) [154].
However, real-time RT-PCR assays currently represent the mainstay of
laboratory diagnosis; nasopharyngeal aspirates and swabs are the typical
specimens of such tests. DNA microarray techniques may also be appearing
in the near future [173]. Convalescent sera can be used to establish SARS
infection retrospectively using whole virus immunoassays [155]. Biosafety
protocols for handling materials containing SARS-CoV exist [174] and
should be adhered to strictly: laboratory-acquired infections with SARS-
CoV have occurred in Singapore and Taipei (the latter case in a BSL-4
laboratory) [175,176].

West Nile virus

West Nile virus (WNV) was first isolated in Uganda in 1937 [177] and
first emerged in the United States in 1999. Since that time, the number of
cases of WNV in the United States has continued to climb [178]. The
American strain of WNV appears to have originated from the Middle East,
although the specific mechanism of introduction into the United States
remains undetermined [179].

WNV is a member of the family Flaviviridae, genus Flavivirus;
serologically, WNV is a member of the Japanese encephalitis virus antigenic
complex. WNV is maintained in a cycle of transmission from mosquito to
bird and back to mosquito. Although Culex species mosquitoes appear to be
the primary vector [180], WNV has been found in other species (and in ticks
in the Eastern Hemisphere) [181]. North American bird species can serve as
hosts for WNV, and bird migration appears to play a role in the
maintenance and propagation of the virus in nature [182,183]. Natural
mammalian infection with WNV has been documented only in horses and
humans, both of which are considered dead-end hosts. However, case
reports of transmission in utero, via breast-feeding, and through accidental
percutaneous laboratory exposure, organ transplantation, and blood trans-
fusion have been reported [184–190]. The last two routes have led to revision
of blood donor deferral criteria and nucleic acid testing of donated blood
[191,192].

In humans, about 20% of cases of infection with WNV lead to clinical
disease, typically after an incubation period of 2 to 6 days. Uncomplicated
cases begin with a sudden onset of fever (>39(C), headache, myalgia, and
often gastrointestinal symptoms; a maculopapular rash and lymphadenop-
athy may also occur in half of these patients [193,194]. Such cases usually
last less than a week, although a lingering fatigue is common [181].
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Almost 1% of patients infected with WNV develop more severe illness,
ranging from uncomplicated viral meningitis to debilitating flaccid paralysis
[195]. Age (over 50 years) is the most important risk factor for central
nervous system (CNS) complications, which include tremors, myoclonus,
and seizures [196,197]. Patients with WNV-associated flaccid paralysis are
relatively young with asymmetric weakness and no sensory involvement.
CNS involvement carries a 10% to 14% mortality (WNV encephalitis
appears particularly lethal [197,198]) and long-term morbidity: almost two
thirds of patients with WNV encephalitis have lingering neurologic
difficulties 1 year after their acute illness [197,199].

Initial replication of WNV is thought to occur in the skin and regional
lymph nodes, seeding the reticuloendothelial system; the resulting secondary
viremia may then seed the CNS, with adhesion and neuroinvasion mediated
by the E protein [200,201]. Pathologic CNS findings include diffuse
inflammation of the brainstem, with microglial nodules and areas of
perivascular inflammation in the proximal brainstem [200,202]. In animal
infections of WNV, anterior horn cells showed degeneration and neuronal
cell death, with WNV antigen localized mainly within the gray matter of the
spinal cord. This finding provides a pathologic explanation for WNV-
associated flaccid paralysis [203,204]; similar findings were recently reported
for a fatal human case of WNV [205]. The affinity of WNV for these tissues
remains unexplained.

Serology with acute and convalescent sera remains the primary means of
laboratory confirmation of WNV infection; a panel of other flaviviruses also
should be included in the comparison [181]. A presumptive diagnosis can be
made with enzyme immunoassays and immunofluorescent antibody assays
for anti-WNV IgM, although such IgM can persist in patients several
months after acute infection [206]. Isolation of WNV from clinical speci-
mens has proved difficult; molecular assays exist, but because of the low
magnitude and transient viremia in humans, they are of limited clinical
value [181,207].

A number of antiviral treatments for WNV show promise in vitro,
including nucleoside analogues (eg, ribavirin), interferon-a, and human
immunoglobulin, but no clinical data support their use in patients [198,208–
210]. For the moment, supportive management with ventilatory support and
treatment for cerebral edema is the key measure; the benefits of prophylactic
steroids or osmotic agents remain unknown. Human vaccines for WNV are
not currently available, but are under research.

Summary

Today’s emerging viral infections will be superseded by yet other viral
infections in the future. We see hints of how these future viral infections will
emerge in the infections covered by this article: by encroaching on
previously unvisited habitats (eg, hantaviruses), by air travel (eg, SARS),
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and by accidental importation (eg, monkeypox). The example of SARS
demonstrates not only how quickly emerging viral infections can spread but
also how quickly they can be identified and contained with motivated
cooperation. Likewise, research into vaccines and antiviral treatments for
these viruses must continue.
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