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Trypanosoma cruzi, the causative agent of Chagas 
disease, has been divided into six discrete taxonomic 
units (DTUs) named T. cruzi I-VI (Zingales et al. 2009). 
Recently, many authors have attempted to determine the 
geographical distribution of T. cruzi DTUs and their re-
lationships with transmission dynamics and clinical out-
comes. As summarised by Vallejo et al. (2009a), studies 
using TCC/TC1/TC2 primers designed for the spliced-
leader intergenic region (SL-IR) (Souto et al. 1996) have 
demonstrated that T. cruzi I predominates in Colombian 
domestic and sylvatic vectors, with 2.1-78.6% having 
been detected in naturally-infected Rhodnius prolixus, 
Rhodnius colombiensis and Rhodnius pallescens mid-
gut specimens. Studies of Colombian Chagas disease pa-
tients have also revealed the predominance of T. cruzi I 
over other DTUs in blood and tissue explants (Zafra et al. 
2008, 2011, Mantilla et al. 2010, Ramírez et al. 2010).

Although there is a current consensus regarding the 
predominance of T. cruzi I in Colombian, Venezuelan 
and Central American countries, T. cruzi I has tremen-

dous genetic variability, as demonstrated by several mo-
lecular markers (Guhl & Ramírez 2011). Based on the 
SL-IR region, four T. cruzi I genotypes associated with 
Chagas disease transmission cycles have been described 
in Colombia (Ia, Ib, Ic, Id) and corroborated through the 
American continent by the detection of a novel genotype, 
named T. cruzi Ie, associated with Mepraia species in 
Bolivia and Chile (Herrera et al. 2007, 2009, Cura et al. 
2010). Specific primers have also been developed to iden-
tify three of these four genotypes (Ia, Ib and Id) (Falla et 
al. 2009). Other molecular markers have confirmed the 
intraspecific variability within T. cruzi I, suggesting the 
emergence of novel genotypes such as a TcI clade, which 
has been named TcIDOM (formerly TcIa ⁄VENDOM) and is 
associated with the domestic transmission cycle through-
out the American continent (Ramírez et al. 2012c). Sev-
eral authors have thus proposed the separation of the two 
main T. cruzi I groups based on associations with do-
mestic and sylvatic cycles (Llewellyn et al. 2009, Ocaña-
Mayorga et al. 2010, Ramírez et al. 2012a, b).

The domestic and sylvatic cycles of T. cruzi are 
not strictly separated. Several reports have shown that 
sylvatic triatomines can invade housing units and con-
taminate food with T. cruzi, causing outbreaks of “oral 
Chagas disease”. For example, the application of high-
resolution molecular markers to biological clones from 
strains isolated during such outbreaks have incriminated 
T. cruzi I sylvatic strains and clones as causal agents of 
oral Chagas disease outbreaks in Colombia (Ramírez et 
al. 2013). This association between domestic and sylvat-
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A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanoso-
ma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 
bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-
coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments 
and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of 
oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked 
to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or 
clones previously characterised as T. cruzi I to distinguish TcIDOM from sylvatic genotypes in studies of transmission 
dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infec-
tions by both T. cruzi I genotypes in Colombia.
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ic cycles in T. cruzi I highlights the potential for further 
research in this field. The objective of this present study 
was to develop a method for single polymerase chain re-
action (PCR) amplification of the SL-IR to discriminate 
between domestic and sylvatic genotypes and to obtain 
a better understanding of domestic and sylvatic cycles as 
well as the transmission dynamics of this DTU.

SL-IR sequences (accessions AM259467-AM259477 
and EU626722-EU626738) were retrieved from GenBank 
and subsequently aligned. The 1Am primer (5’-TGTGT-
GTGTATGTATGTG-3’) was designed and used with 
primer 1B (5’-CGGAGCGGTGTGTGCAG-3’) (Falla et 
al. 2009) to perform PCR reactions in a total volume of 20 
µL containing 2 µL of 10X reaction buffer (Invitrogen), 
200 µM of a mixture of deoxynucleotide triphosphates, 
1.5 mM MgCl2, 25 µM each primer, 0.5 units of Taq DNA 
polymerase (Invitrogen). The template (20 ng) included 
DNA from a strain or clone previously characterised as 
T. cruzi I using different molecular markers, including 
multilocus enzyme electrophoresis or PCR of large su-large su-
bunit rDNA (Souto et al. 1996), PCR-restriction fragment 
length polymorphism (RFLP) of heat shock protein 60-
EcoRV or glycosylphosphatidylinisotol-HhaI (Westen-
berger et al. 2005), PCR-RFLP of COll-Alul (Freitas et al. 
2006) and PCR with TCC/TC1/TC2 primers designed in 
the SL-IR (Souto et al. 1996), as shown in Fig. 1A.

All PCR reactions were conducted for 35 amplifi-
cation cycles using a thermal minicycler (MJ Research 
PTC-150-16). Cycling include a denaturing step at 94ºC 
for 30 s (4 min for initial denaturing), annealing at 51ºC 
for 30 s, extension at 72ºC for 30 s and a final extension 
step at 72ºC for 10 min.

After standardising the reaction conditions using the 
previously described primers, the TcIDOM and clones pro-
duced the expected 231 bp amplification product; how-
ever, the sylvatic clones and strains produced 450-550 
bp amplification products when using the same primers 
(Fig. 1B). Several T. cruzi I samples and clones isolated 
from sylvatic triatomines and reservoirs produced the 
450-550 bp profile, as shown in Fig. 1B. The ORT15 
strain, isolated by xenoculture from a rectal ampulla 
from R. colombiensis in the department of Tolima, was 
correctly typed after its isolation in February 2013 (Fig. 
1B, Lane 3). T. cruzi I clones from the intestinal contents 
of R. colombiensis, R. pallescens and sylvatic R. prolixus,  
obtained by direct plating in a sensitive solid medium 
(Yeo et al. 2007), produced the 450-550 bp profile (Fig. 
1B, Lanes 4-8). The D1 and D2 strains, isolated from Di-
delphis marsupialis and maintained in culture in bipha-
sic medium, also produced the sylvatic profile (Fig. 1B, 
Lanes 9, 10). The existence of mixed profiles in T. cruzi I 
strains is possible, as 175 of 182 (96.2%) clones obtained 
from sylvatic R. colombiensis, R. pallescens and R. pro-
lixus produced the 450-550 bp profile and seven of these 
182 clones (3.8%) produced a 231 bp profile (data not 
shown). These results support the assertion that the 450-
550 bp profile is predominant in sylvatic cycles.

Alternately, MHOM/CO/04/MG, a human strain that 
is maintained by periodic passages in mice, produced the 
231 bp profile (Fig. 1B, Lane 1) as did two human CG strain 
clones (Fig. 1B, Lanes 2, 13). Three domestic samples had 

mixed profiles. The X-1081 and X-1082 strains, which 
were isolated by xenoculture from the intestinal content 
of domiciliated R. prolixus in the department of Boyaca 
and kept in culture for several years, displayed the 231 
and 450-550 bp profiles (Fig. 1B, Lanes 11, 12). A similar 
mixed profile was observed in the human EH strain (Lane 
14), suggesting a mixed infection of both genotypes, as 
previously reported by Ramírez et al. (2013).

Domestic or sylvatic reservoirs may also select for 
subpopulations within T. cruzi I. The possibility that 
domestic or sylvatic vectors may selectively transmit T. 
cruzi I genotypes cannot be excluded, as the selective 
transmission of both Trypanosoma rangeli genotypes has 
been demonstrated for various Rhodnius species (Pulido 
et al. 2008, Vallejo et al. 2009b, Urrea et al. 2011).

When diagnostic or molecular characterisation tech-
niques are developed, it is necessary to verify that the 
technique is specific to T. cruzi and demonstrate a lack 
of cross-reaction with T. rangeli, as T. rangeli frequently 
occurs in mixed infections with T. cruzi in triatomines 
and in vertebrate reservoirs in Colombia. We emphasise 
that the purpose of this work was to use a PCR reaction 
with 1Am/1B primers in strains that had previously been 
typed as T. cruzi I sensu lato and thus we initially used 
strains or clones that were previously characterised as 
T. cruzi I. Nevertheless, because mixed T. rangeli infec-
tions in vectors and vertebrates can be found in nearly all 
T. cruzi-endemic areas in Colombia, strains can there-
fore be isolated together with T. cruzi I and T. rangeli. T. 
rangeli DNA and 1Am/1B primers, which did not pro-
duce any amplification products, were used as controls 
to rule out cross-reactions (data not shown).

Our results demonstrated that Colombian domestic 
and sylvatic T. cruzi I strains can be discriminated using 
a single PCR amplification of the SL-IR from TcIDOM (for-
merly TcIa/VENDOM) and sylvatic strains. Nine isolates 
from patients suffering acute Chagas disease involving 
different transmission routes and different clinically di-
agnosed symptomatology were used to verify whether 
this single PCR reaction could be used to discriminate 
between T. cruzi I infections of TcIDOM and sylvatic gen-
otype origin. Six of the nine isolates had the sylvatic pro-
file, corresponding to three cases of acute myocarditis 
in outbreaks of oral transmission (Santander, Colombia), 
a congenital case (Santander, Colombia) and two cases 
of sylvatic vector transmission (Putumayo, Colombia) 
(Fig. 2). The remaining three cases were identified as T. 
cruzi II when using D71/D72, V1/V2 primers (Brisse et 
al. 2001). T. cruzi II was found in two congenital cases 
(Boyaca, Colombia), as previously described (Pavia et 
al. 2009), and in a case of reactivation caused by human 
immunodeficiency virus/acquired immune deficiency 
syndrome (Caquetá, Colombia). Human T. cruzi strains 
were isolated by haemoculture during the acute phase 
of infection and were typed long after isolation and thus 
there was no patient follow-up to obtain new isolates for 
further characterisation. Selection among T. cruzi geno-
type mixtures when maintained in culture or in animal 
models could not be ruled out, as selection towards TcII 
in mixed infections with TcI strains (with subtle TcII 
parasites or clones) has been reported (Pena et al. 2011). 
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Our single PCR reaction for discriminating T. cruzi I 
genotypes could be of great use for determining the gen-
otype frequency as well as follow-up analyses compar-
ing the profiles of initially isolated genotypes with their 
later stability or selection after maintenance in culture or 
biological models for varied lengths of time.

The results of this present study corroborated previ-
ous reports by Ramírez et al. (2013) highlighting the fact 
that the sylvatic T. cruzi I genotype is implicated in oral 
and sylvatic vector transmission in Colombia. New stud-
ies involving a greater number of human isolates should 
further support these observations.

In summary, after T. cruzi I has been diagnosed in 
any isolate, we propose that an additional PCR reaction 
be used with a single pair of primers for discriminating 
between TcIDOM and sylvatic T. cruzi I. This methodolo-
gy has led to the identification of the genotypes involved 
in outbreaks of oral Chagas disease as well as supporting 
studies of the transmission dynamics of T. cruzi as the 
causal agent of Chagas disease in Colombia. Our results 
agree with those of other investigators reporting that T. 
cruzi I encompasses two main groups that, to date, are 

not known to be stable in time and space. Further inves-
tigation will be useful for verifying population selection 
within hosts and detecting the frequency of mixed geno-
types of T. cruzi I in Colombia.
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