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The fission yeast Schizosaccharomyces pombe is a widely used model organism to study basic
mechanisms of eukaryotic biology, but unlike other model organisms, its proteome remains largely
uncharacterized. Using a shotgun proteomics approach based on multidimensional prefractiona-
tion and tandem mass spectrometry, we have detected B30% of the theoretical fission yeast
proteome. Applying statistical modelling to normalize spectral counts to the number of predicted
tryptic peptides, we have performed label-free quantification of 1465 proteins. The fission yeast
protein data showed considerable correlations with mRNA levels and with the abundance of
orthologous proteins in budding yeast. Functional pathway analysis indicated that the mRNA–
protein correlation is strong for proteins involved in signalling and metabolic processes, but
increasingly discordant for components of protein complexes, which clustered in groups with
similar mRNA–protein ratios. Self-organizing map clustering of large-scale protein and mRNA
data from fission and budding yeast revealed coordinate but not always concordant expression
of components of functional pathways and protein complexes. This finding reaffirms at the protein
level the considerable divergence in gene expression patterns of the two model organisms that was
noticed in previous transcriptomic studies.
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Introduction

Schizosaccharomyces pombe is a unicellular archiascomycete
fungus displaying many properties of more complex eukar-
yotes. It has been estimated that fission yeast diverged from
budding yeast B1100 million years ago (Heckman et al, 2001),
thus accounting for their considerable divergence in genome
organization (Wood et al, 2002). Despite differences in the
number of genes, the number of introns, and centromere size,
basic cellular processes are highly conserved between the two
yeasts with B3600 proteins being predicted or confirmed
orthologs (Wood, 2006). However, it is still unclear to what
extent mechanisms of gene expression in fission yeast overlap
with those in budding yeast.

S. pombe is a well-established model organism for the study
of cell-cycle regulation, cytokinesis, DNA repair and recombi-
nation, and checkpoint pathways, but only B1500 of its
predictedB4900 genes and proteins have been experimentally
characterized. Although mRNA profiling has begun to address
functional aspects of the fission yeast genome (Mata et al,
2002; Chen et al, 2003; Rustici et al, 2004; Oliva et al, 2005;

Peng et al, 2005; Marguerat et al, 2006), the notion was
expressed that mRNA levels are only a partial reflection of the
functional state of an organism (Greenbaum et al, 2003). It is
widely accepted that a comprehensive understanding of the
genomic information will require, besides other strategies,
means of analyzing quantitative differences in protein expres-
sion on a proteome-wide scale (Anderson et al, 2000; Bakhtiar
and Tse, 2000; Yates, 2000).

Several quantitative methods, including ICAT (Gygi et al,
1999), iTRAQ (Ross et al, 2004), stable isotope labelling (Ong
et al, 2002; Washburn et al, 2002), AQUA (Gerber et al, 2003),
spectral sampling (Liu et al, 2004; Kislinger et al, 2006),
protein abundance indexing (Ishihama et al, 2005), and
whole-genome ORF epitope tagging (Ghaemmaghami et al,
2003; Matsuyama et al, 2006), have been employed for
proteomic analyses of model organisms, in particular budding
yeast. All of these techniques have their intrinsic strengths and
limitations, including the bias of mass spectrometry-based
methods toward proteins of medium to high abundance, and
the potential for interference of epitope tags with endogenous
protein function, expression, and localization. In addition,
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epitope tagging can only interrogate putative known ORFs
and is only applicable to organisms that are readily amenable
to genetic manipulation in a high-throughput format. Mass
spectrometry, on the contrary, can potentially identify new
proteins and is broadly applicable to any proteome for which
a corresponding genome sequence is available.

Weighing the advantages and disadvantages of currently
available methods, we have embarked on a mass spectro-
metry-based approach for relative quantitation of unmodified
fission yeast proteins. In addition, we have compared mRNA
and protein expression profiles in fission yeast and budding
yeast to assess the overall protein–mRNA correlation in these
related organisms.

Results and discussion

Analysis of the S. pombe proteome by
multidimensional prefractionation and LC ESI
MS/MS

We devised the extensive multidimensional biochemical
prefractionation scheme outlined in Figure 1A, starting with

total cell lysate from wild-type fission yeast cells growing
vegetatively in mid-log phase in rich media. Aliquots of the
lysate were fractionated by preparative isoelectric focusing
(IEF) on immobilized pH gradients, or in two different liquid-
phase formats, by one-dimensional (1D) gel electrophoresis,
and by strong ion-exchange chromatography in a spin column
format (Doud et al, 2004), followed by analysis of individual
fractions by 1D liquid chromatography coupled with electro-
spray ionization tandem mass spectrometry (LC ESI MS/MS).
In parallel, total fission yeast lysate was subjected to on-line
2D LC ESI MS/MS (¼‘MudPIT’; Washburn et al, 2001), upon
in-solution digestion into tryptic peptides.

Altogether, B3 million mass spectra were collected and
rigorously searched against the fission yeast protein database
using the SEQUEST algorithm (Eng et al, 1994). Mass spectra
were matched to 12 413 nonredundant peptides (Supplemen-
tary Data File 1), resulting in the identification of 1465 proteins
(Supplementary Data File 2) with a predicted false-positive
peptide identification rate of 1.05%, as determined by
searching against a combined forward and reverse protein
database (Peng et al, 2003a). The identified proteins cover
B29.5% of the predicted fission yeast proteome. To our
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Figure 1 Analysis of the S. pombe proteome by multidimensional prefractionation and LC ESI MS/MS. (A) Flow chart of sample prefractionation. IEF¼isoelectric
focusing; ZOOM, MCE (multicompartment electrolizer)¼liquid-phase IEF devices, IPG¼immobilized pH gradient strips, SAX¼strong anion exchange, LC-MS¼liquid
chromatography and mass spectrometry. (B) Summary of the number of proteins identified with each prefractionation method. The overlap between fractions is
indicated. (C, D) Molecular weight and pI distribution of the identified proteins compared to the theoretical proteome. (E) Fractions of proteins identified that belong to
the indicated categories.
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knowledge, this represents the highest percent coverage of
native, unmodified proteins reported to date for any eukaryotic
proteome. We also confirmed 40 predicted sequence orphans
as well as five hypothetical proteins, and identified three new
proteins, which were listed as dubious ORFs (SPAC13G6.13,
SPBC354.04) or pseudogenes (SPBC16E9.16c) in the S. pombe
genome database.

Although the individual prefractionation techniques
contributed to the total protein count to different extents
(Figure 1B), the extensive scale of the combined approaches
identified a list of proteins that was representative of the whole
proteome across the entire range of molecular weights and
isoelectric points (Figure 1C and D). Most major Gene
Ontology (GO) attributes for S. pombe were represented,
indicating that our study broadly sampled across cell functions
(Supplementary Data File 1). For example, we identified 132 of
141 ribosomal proteins and all subunits of the 26S proteasome
and the CCT chaperonin complex. We also identified all
enzymes of the cysteine, glutamate, glycine, isoleucine,
leucine, proline, threonine, valine, aspartate, adenine and
aromatic amino-acid biosynthesis pathways as well as 45
kinases (23% of all kinases predicted from the genome
sequence), 20 predicted transcriptional regulators (14%),
and 21 mitochondrial proteins (15%).

More detailed analysis revealed equal identification rates for
essential and non-essential proteins (both 36%; Figure 1E)
based on 187 proteins present in our data set for which
information on essentiality is available in fission yeast (83
essential, 104 nonessential genes/proteins). Similarly, yeast-
specific proteins were represented at the same rate as the entire
proteome (30%; Figure 1E). Metazoan ‘core’ proteins
(proteins common to S. pombe, Saccharomyces cerevisiae,
Caenorhabditis elegans, and Drosophila melanogaster; see
Supplementary information), were overrepresented (47%;
Figure 1E), a finding that is consistent with their higher mRNA
levels (Mata and Bahler, 2003). In contrast, we undersampled
proteins containing predicted transmembrane domains (14%)
and S. pombe-specific proteins (10%; Figure 1E). Although not
all membrane proteins may be equally amenable to extraction
under our sample preparation conditions, the underrepresen-
tation of S. pombe-specific proteins is mostly due to their
specialized functions in the sexual differentiation pathway
(data not shown), which cannot be effectively sampled in the
vegetatively growing cells used here.

Label-free relative quantitation of S. pombe
proteins

To quantitatively rank the identified proteins relative to each
other, we used spectral counts. Spectral counts represent the
number of nonredundant mass spectra identifying the same
protein. Whereas spectral counts are predicted to increase
linearly with protein abundance (Liu et al, 2004), this
relationship is amended by protein size, with larger proteins
having a statistically higher probability of being detected. The
relationship is further modified by the sequence-dependent
number of peptides produced by the tryptic cleavage. Finally,
an allowance for up to three enzymatic miscleavages is often
granted during the SEQUEST database search, thus further

distorting the theoretical linear relationship between spectral
count and protein abundance.

To apply an appropriate adjustment of spectral counts to a
measure of protein size, we compared goodness-of-fit statistics
applied to negative binomial regression models to determine
which of the above parameters (number of amino acids,
number of tryptic peptides, miscleavages) figured most
prominently. The models revealed that adjustment to the
number of tryptic peptides with one miscleavage resulted in
the most optimal fit statistics for the experimental LC ESI MS/
MS data (Supplementary Figure 4 and Supplementary Table 1).

Based on adjusted spectral counts (ASCs), we assembled a
ranked list of all 1465 proteins identified (Supplementary Data
File 2). This quantitative ranking reflects the abundance
of each protein relative to all others and their quantitative
distances. The ranked list was validated by comparing it to
absolute quantitation data established for a series of 27
cytokinesis-related fission yeast proteins (Wu and Pollard,
2005). While these absolute measurements rely on epitope
tagging, the tagged alleles were extensively validated for
functionality under various conditions and in various genetic
backgrounds, thus suggesting that tagging did not interfere
with normal protein expression (Wu and Pollard, 2005). Of
the 27 cytokinesis proteins, 10 were represented on our list.
Plotting our ASC data versus the absolute quantitation data
revealed a close correlation (rP¼0.98; Figure 2A), suggesting
that ASCs provide a good approximation of relative protein
abundance.

The range of ASCs spanned more than three orders of
magnitude (Figure 2B). The mean ASC was 68.0, whereas the
median was 14.6, indicating that the vast majority of the 1465
proteins identified are of relatively low abundance compared
to a small number of hyperabundant proteins (Figure 2B). The
group of the 30 most abundant proteins (ASC between 584 and
4269) contained proteins of which all but three have orthologs
in budding yeast that were also detected by whole-genome
TAP tagging (Ghaemmaghami et al, 2003). This group includes
eight glycolytic enzymes, six enzymes involved in biosynthetic
pathways, seven translation factors, five heat-shock proteins,
as well as two thioredoxin peroxidases (Supplementary Data
File 2). The most abundant fission yeast protein is Eno101,
a subunit of the phosphopyruvate hydratase complex
(ASC¼4269), followed by phosphoglycerate kinase (Pgk1,
ASC¼2301) as a distant second.

The group of the 30 least abundant proteins detected
(ASC¼0.93–0.95) contains a variety of enzymes involved in
RNA metabolism (two helicases, Argonaute 1, two RNA-
binding proteins) and ubiquitin-mediated proteolysis, two SH3
domain proteins, three kinases, as well as eight proteins of
unknown function (Supplementary Data File 2). Notably, 10
out of these 30 proteins do not have orthologs in budding
yeast. In addition, seven out of those 20 that do have orthologs
did not give signals in the TAP-tagging approach (Ghaemma-
ghami et al, 2003).

Our quantitative data also indicated that the median
abundance of metazoan core proteins (ASC¼24.2) is signifi-
cantly higher than that of all proteins detected (ASC¼14.6,
Po0.05), whereas the abundance of S. pombe-specific proteins
is considerably lower (ASC¼5.5; Figure 2C). This finding is
consistent with the higher representation of core proteins in
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our data set (Figure 1E) and with their higher mRNA levels
as reported previously (Mata and Bahler, 2003). In addition,
essential proteins are considerably more abundant (median
ASC¼12.6) than non-essential proteins (ASC¼7.5). This
finding can be rationalized by the enrichment of highly
expressed core proteins in the set of essential proteins
(Supplementary Data File 2).

Analysis of 10 protein complexes for which we identified
greater than 80% of their known or predicted subunits, and
which are involved in a large variety of cellular processes,
indicated that the translation initiation factor eIF4 is the most
abundant protein complex in S. pombe (median ASC¼85.7;
Figure 2D). eIF4 is similar in abundance to the ribosome
(ASC¼70.7), but three- to four-fold more abundant than eIF2
(ASC¼21.7) and eIF3 (ASC¼32.0), two other translation
initiation factor complexes (Figure 2D). Although, during the
process of translation initiation, all of these eIFs are known to
join a stoichiometric 43S initiation complex, it is thought that
eIF2 and eIF3, but not eIF4, dissociate from the mRNA upon
successful scanning for the initiator AUG codon (Gebauer and
Hentze, 2004). Our finding that eIF2 and eIF3 are considerably
less abundant than eIF4 and the ribosome therefore, underpins
the concept that the former eIFs are only transiently involved
during the initiation reaction, whereas the cap-binding eIF4
complex and the ribosome stay on the mRNA during

translation. Our data also indicate that the protein synthesis
machinery (ribosome, eIFs) and the protein folding and
degradation machinery (CCT chaperonin, proteasome) are
among the most abundant molecular modules in fission yeast
and perhaps other eukaryotes (Figure 2D).

Comparison of S. pombe proteome data with
S. cerevisiae

We compared the abundance ranked list of S. pombe proteins
with similar lists of S. cerevisiae proteins. This was carried out
for the subset of proteins that have known or predicted
orthologs in budding yeast (1285 of 1465 proteins based on
ortholog mapping information in S. pombe GeneDB (www.
genedb.org/genedb/pombe/index.jsp). Two data sets of
S. cerevisiae proteins were used. The first was derived from
published 2D LC ESI MS/MS data (Liu et al, 2004) that we
subjected to our adjustment of spectral counts to the number
of tryptic peptides (¼Cerevisiae-ASC data set). This set
contained 473 pairs of orthologous proteins that were detected
in both studies. The second list was assembled from the
absolute quantitation data derived from whole-genome ORF
tagging with the TAP epitope (Cerevisiae-TAP data set;
Ghaemmaghami et al, 2003). This data set contained 1033
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orthologs, 252 fewer than the theoretically possible 1285,
because B20% of the native fission yeast proteins we detected
by 2D LC ESI MS/MS could not be quantified when TAP tagged
in budding yeast (Ghaemmaghami et al, 2003). For example,
our data set contained all 32 subunits of the 26S proteasome
(Finley et al, 1998; Supplementary Data File 4), whereas only
25 of these subunits were detected in the ORF tagging
approach (Ghaemmaghami et al, 2003). Similarly, we identi-
fied 94% of all cytosolic ribosomal subunits, whereas only
76% were identified by TAP tagging in budding yeast
(Supplementary Data File 4).

Both budding yeast data sets correlated with the fission yeast
protein list as indicated by Pearson correlation coefficients of
0.56 and 0.45 and Spearman rank correlation coefficients rs of
0.55 and 0.42, respectively (Figure 2E; Supplementary Figure 1).
Notably, our data showed an overall stronger correlation with
the budding yeast 2D LC ESI MS/MS data presented by Liu et al
(2004) (¼Cerevisiae-ASC). This finding reinforces previously
expressed notions regarding the limitations of comparing mass
spectrometry-based proteomics data to absolute quantitation
based on ORF tagging (Liu et al, 2004). However, organism-
specific differences in protein expression are also expected to
distort the correlation (see Figure 5).

Nonetheless, our LC ESI MS/MS data showed a remarkable
overlap with the Cerevisiae-TAP data set in the relative frequency
distribution of the detected proteins across the entire dynamic
range (Supplementary Figure 2). For example, 88% of the 1033
budding yeast proteins, for which we have identified the fission
yeast orthologs, are present at under 50000molecules/cell, 62%
are under 10000molecules/cell, and 11% are under 1000mole-

cules/cell. This finding suggests that the dynamic range of
multidimensional prefractionation and LC ESI MS/MS analysis is
not necessarily inferior to that of the wholeORF tagging approach.

Correlation of protein and mRNA levels in fission
yeast

We next determined the overall correlation of our protein data
set with mRNA abundance as estimated by cDNA microarray
analysis. Total RNA was prepared from the same S. pombe
strain maintained under identical growth conditions as used
for the proteomic analyses, followed by hybridization onto
S. pombe cDNA microarrays (Oliva et al, 2005; Zhou et al,
2005). Background subtracted hybridization values averaged
from three parallel experiments (see Supplementary Data File
2) were used to estimate mRNA abundance. Although it is
clear that the hybridization values obtained on cDNA
microarrays are influenced by factors other than mRNA
abundance (probe length, GC content, etc.), these variations
are relatively minor with probes longer than 500 bp as used
here (Lyne et al, 2003). Similarly, Mata and Bahler (2003) have
previously used absolute hybridization signals as approximate
measures of mRNA levels in fission yeast.

The comparison of 1367 protein–mRNA pairs for which data
were obtained (Supplementary Data File 2) revealed a Spear-
man rank correlation coefficient (rS) of 0.61 and a Pearson
correlation coefficient (rP) of 0.58 (Figure 3A), indicating a
substantial correlation between mRNA and protein abundance
in fission yeast. The extent of correlation is very similar in
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budding yeast as determined with the whole-genome TAP
tagging data set (rS¼0.57, Ghaemmaghami et al, 2003), and
by an independent re-evaluation of additional large-scale
budding yeast data sets (rP¼0.66; Greenbaum et al, 2003).

The mean mRNA intensity of proteins detected in our
multidimensional analysis was 2462, whereas for undetected
proteins the number was 420 (Supplementary Figure 3). This
comparison confirmed the expectation that mass spectro-
metry-based proteomics has a bias towards detecting proteins
encoded by highly expressed mRNAs. However, a significant
portion of low-abundance mRNAs may encode proteins that
never accumulate in the vegetative state. Consistent with this
notion is the demonstration that 1033 genes are induced more
than four-fold during nitrogen starvation and meiosis (Mata
et al, 2002). The actual vegetative translatome may therefore
be devoid of many of the proteins encoded by such
developmentally regulated mRNAs. These proteins may also
escape detection by ORF tagging and immunoblotting, thus
explaining why the dynamic range of our LC ESI MS/MS
analysis was comparable to the whole-genome ORF tagging
approach employed in budding yeast (Ghaemmaghami et al,
2003; Supplementary Figure 2).

Functional pathway analysis

Although the overall protein–mRNA correlation is surprisingly
high, we wondered whether this correlation is maintained
throughout specific functional pathways, protein families, and
multisubunit protein complexes. We calculated the Pearson
correlation coefficients for several subclasses of protein–
mRNA pairs that were highly represented in our data set (see
Supplementary Data Files 3 and 4 for individual proteins).
Whereas a high coefficient was obtained for kinases (rP¼0.80;
Figure 3B), the correlation was weak for transporters (rP¼0.21)
and the unfolded protein response (UPR) pathway (rP¼0.12),
and moderately strong for glycolytic enzymes (rP¼0.36) and
transcription factors (rP¼0.42). Correlations similar to those
observed for all proteins (rP¼0.58) were found for the
categories amino-acid biosynthesis (rP¼0.63), signal trans-
duction (rP¼0.61), protein translation (rP¼0.5), stress
response (rP¼0.58), and cell-cycle regulation (rP¼0.67;
Figure 3B).

For the majority of multisubunit protein complexes, very
low or even negative correlation coefficients were obtained
(Figure 3B). Previous bioinformatics studies have suggested
that a high protein–mRNA correlation (i.e. the higher the
mRNA, the higher the protein) as observed here for kinases
and cell-cycle components reflects control of protein abun-
dance primarily at the level of mRNA synthesis, whereas poor
correlation is indicative of post-transcriptional control (Green-
baum et al, 2003). By extension, negative correlations indicate
extensive control at the post-transcriptional level (i.e. the
higher the mRNA, the lower the protein and vice versa). The
subunits of presumed stoichiometric protein complexes such
as the 80S ribosome, the 26S proteasome, and the CCTcomplex
would therefore be controlled substantially at the post-
transcriptional level.

The poor protein–mRNA correlation for complexes would
be expected, if their subunits were coordinately regulated. For
example, if all subunits of a protein complex had exactly equal

protein and mRNA levels, say 5.0 units and 1.0 unit, respec-
tively, then all data points would coincide at the very same
coordinates of a protein versus mRNA plot (x¼5; y¼1; protein–
mRNA ratio¼5). Consequently, the protein–mRNA correlation
would be zero for the subunits of this protein complex.

Indeed, we noticed that the protein and mRNA data points
for many protein complexes were not randomly scattered
over the entire data map, but tended to cluster together. To
comprehensively illustrate this, we determined the protein–
mRNA ratio individually for every protein in a given pathway,
family, or complex, and compared it to the entire data set.
Individual ratios of functional pathway components were used
to determine their location and relative distance on the ratio
distribution curve of the entire data set of 1367 protein–mRNA
pairs. This reference curve indicates the extent and orientation
of the deviations of all observed ratios from the median ratio,
which was arbitrarily set to 1.0. The partitioning of pathway
components along this curve thus informs about the degree to
which they cluster around certain protein–mRNA ratios and
their distances from the median. The graphical representation
of clustering effects was enhanced by displaying the data
points for specific pathway components at equal distance laid
over the reference curve, thus causing informative phase shifts
of the curves.

This analysis revealed strong deviations from the reference
curve for several protein complexes, suggesting more con-
sistent protein–mRNA ratios for individual subunits than
observed for all proteins. Ribosomal subunits clustered with
relatively higher levels of mRNA than protein (Figure 3C;
Supplementary Data File 5), whereas the shape of the ratio
distribution curve for eIF3, the COP1 complex, and several
other protein complexes (Supplementary Data File 5) indicated
clustering around the median ratio (Figure 3C). This differ-
ential distribution was even more pronounced for the eight
subunits of the CCT complex (Figure 3C). In other words, all
eight subunits of the CCT complex displayed highly similar
protein–mRNA ratios, and therefore appear to be coordinately
regulated at the mRNA and protein levels. Thus, although the
protein–mRNA correlations were low for multisubunit protein
complexes, clustering of their protein–mRNA ratios around
similar values indicated coordinate regulation of complex
subunits (Table I). Although this regulation could principally
occur at any level, the low protein–mRNA correlation suggests
a substantial contribution of post-transcriptional mechanisms
(Greenbaum et al, 2003). Notably, the UPR pathway showed a
similar pattern in correlation and ratio distribution (Figure 3B
and C), perhaps suggesting that components of this pathway
are also present in stoichiometric amounts.

The reverse scenario, clustering of protein–mRNA ratios
around similar values, but relatively high protein–mRNA
correlation, was observed for the stress response pathway as
well as for glycolysis and amino-acid biosynthesis (Figure 3B
and C). This pattern indicated that protein and mRNA
expression varied widely among the members of these groups
(Table I). This might reflect the fact that proteins involved in
hierarchical signal transduction cascades or linear and circular
metabolic pathways do not necessarily cooperate in stoichio-
metric amounts. Rather signal amplification and the specific
activities of metabolic enzymes may govern the varying levels
of protein required for these functions.
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Most other pathways and protein families showed a
considerable overlap of protein–mRNA ratios with the
reference curve, indicating no clustering. Among those were
entities with low (transporters; Figure 3B) and high (kinases;
Figure 3B) protein–mRNA correlation. For these remaining
cases, high protein–mRNA correlations would suggest control
primarily at the transcriptional level, whereas low correlations
would indicate extensive post-transcriptional control (Table I)
(Greenbaum et al, 2003).

Protein and mRNA relationship as a correlate of
post-translational modifications

Although no specific enrichment strategies were employed,
rigorous interrogation of our peptide data sets obtained by
mass spectrometry provided high confidence indications for
post-translational modification (PTM) of 53 peptides, which
were matched to 51 proteins. A total of 40 proteins contained at
least one peptide that was phosphorylated on either serine,
threonine, or tyrosine (Table II). The set of phosphoproteins
was enriched for protein kinases (15% versus 1.6% in the
entire proteome), a finding that is consistent with the known
propensity of these enzymes to autophosphorylate and/or be
part of kinase cascades. The budding yeast orthologs of eight
of these proteins were previously shown to be phosphorylated
by methods other than mass spectrometry. In one case, acetyl
coenzyme-A carboxylase, the serine phosphorylation site we
mapped in fission yeast exactly corresponds to the same
position where the budding yeast protein was found to be
modified (Ficarro et al, 2002).

For another set of 11 proteins, we mapped the precise sites of
modification with the diglycine moieties created upon trypsin
digestion of ubiquitylated lysines (Table II). Independent
evidence for ubiquitylation of the budding yeast ortholog of
one of these proteins was provided previously (Peng et al,
2003b). Five proteins contained both phosphorylated and
ubiquitylated peptides (Table II), a finding that is consistent
with the well-established connection between phosphoryla-
tion and ubiquitylation (Karin and Ben-Neriah, 2000).

The median abundance of phosphorylated (ASC¼3.58) and
ubiquitylated (ASC¼2.84) proteins was considerably lower
than the abundance of all 1465 proteins in the data set
(ASC¼14.6; Figure 4A). Ubiquitylated proteins also showed
a stark dissociation of median mRNA levels, which were
relatively high (633 versus 757 in the entire data set), from
protein levels, which were very low (2.84 versus 14.6;
Figure 4A). This finding indicates that extensive proteolytic
control of these proteins through the ubiquitin–proteasome

pathway may be dominant over their relatively high mRNA
expression levels. This conclusion was further strengthened by
comparing individual protein–mRNA ratios of ubiquitylated
proteins to median adjusted ratios for the entire data set. This
analysis revealed clustering of ubiquitylated proteins with
relatively higher mRNA than protein levels, whereas phos-
phoproteins showed a distribution largely congruent with the
reference curve (Figure 4B).

Steady-state proteome and transcriptome
comparison of S. pombe and S. cerevisiae

The generation of quantitative fission yeast protein and mRNA
data sets and the availability of corresponding data sets for
budding yeast enabled the first large-scale comparison of
mRNA and protein levels of two eukaryotic organisms. For
this, we used the Cerevisiae-MS data (Liu et al, 2004) with
adjustment of spectral counts to the number of tryptic peptides
and published mRNA data derived from cDNA microarray
analysis of wild-type S. cerevisiae grown under conditions
comparable to those of our fission yeast strains (Gasch et al,
2001). As the raw values of the four data sets were on different
scales, they were log-transformed and standardized (see
Supplementary information). As a result, each data set
contained a continuum of mRNA and protein values ranging
from high to low abundance for 445 distinct entities common
to all four data sets. A self-organizing map (SOM) algorithm
was used to arrange the four data sets into distinct clusters (see
Supplementary information). The algorithm was instructed
to assemble 16 clusters, because this number achieved good
performance in reproducibility (data not shown), average
cluster homogeneity (0.81), and separation (�0.048).

The SOM revealed many similarities in the mRNA and
protein abundance patterns in the two yeasts, but also marked
differences. The most frequent patterns represented roughly
equal mRNA and protein levels in both organisms (clusters 3,
4, 7, 9, 10, and 13; Figure 5A). In addition, one pattern was
indicative of concordantly low mRNA and high protein
abundance in both yeasts (cluster 6), whereas cluster 15
showed the opposite pattern. Among the discordant patterns
were those with higher mRNA and protein levels in S. pombe
(cluster 1), as well as various patterns where either mRNA or
protein levels found in one yeast deviated from what was
found in the other (clusters 2, 5, 8, 11, 12, 14, and 16).

The clusters were further interrogated for overrepresented
S. pombe GO terms using the FuncAssociate tool (Berriz et al,
2003). In total, seven nonredundant GO attributes were found
significantly (Pp0.0005) overrepresented in the clusters

Table I Protein–mRNA relationships

Protein—mRNA ratio

Clustering No clustering

High Metabolic and signal transduction pathways Protein families (kinases), cell cycle
Protein–mRNA correlation Non-coordinate expression Transcriptional control

Low Multisubunit protein complexes; UPR Protein families (transporters)
Coordinate regulation Post-transcriptional control
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Table II Post-translationally modified peptides

Name Product Phosphopeptide Xcorr DeltCN ObsM+H+ SpScore Ion%

sup45 Translation release factore RF1 K.FHT#EALAELLES#DQR.F 2.8454 0.1142 1920.1 424.4 0.536
tpi1 Triosephosphate isomerase

mitochondrial ribosomal protein
subunit

R.RT#IFKES#DEFVADK.T 2.6786 0.1308 1845.7 265.6 0.462

SPAC16E8.10c S7 K.AKAEKIVAT#ALS#IIQK.E 2.6066 0.1585 1845.1 433.1 0.5
SPBC16G5.07c Prohibitin R.FS#RILT#PGVAFLAPIIDK.I 3.3233 0.111 2118.3 474.6 0.441
SPAC18B11.11 GTPase activating protein K.VLS#EWLT#DLFTIIDDM*R.A 3.1806 0.1099 2244.04 273.3 0.406
SPAC23G3.12c Serine protease R.Y#VEVCGAKFHNLSYQLAR.Q 2.6886 0.1181 2177.5 643.3 0.412

K.K@GT#ALVLDKDKGLAVT#S#R.S 3.0538 0.1095 2225.3 809 0.5
SPAC20H4.09 ATP-dependent RNA helicase R.T#LS#T#DLLLGVLK.R 3.0509 0.1078 1513.53 268 0.545
SPAPB2B4.04c p-type calcium ATPase R.T#EGQAT#PLQLRLS#R.V 2.789 0.1696 1809.92 257.4 0.462
SPBC342.02 Glutaminyl-Trna synthetase R.LMFLPDPIKVTLENLDDS#Y#R.E 2.6182 0.1042 2540.22 574.3 0.447
cek1 Serine/threonine protein kinase

Cek1
K.PENLLIS#QNGHLK.L 3.2289 0.1179 1543.77 585.9 0.625

cut6 Acetyl-CoA carboxylase R.LQS#VSDLSWYVNK.T 3.9381 0.1559 1618.63 1756.7 0.792
ef1a-c Translation elongation factorEF-1

alpha
K.MVPS#KPMCVEAFTDYAPLGR.F 3.8162 0.4103 2293.29 985.8 0.5

ncs1 Related to neuronal calcium sensor
Ncs1

K.NKDGQLTLEEFCEGS#KR.D 2.7358 0.1945 2033.72 335.4 0.406

nog1 GTP binding protein Nog1 R.EGYYDS#DQEIEDADEEEVLEK.A 4.3428 0.1168 2584.66 837.1 0.475
psm3 Mitotic cohesin complex subunit

Psm3
K.S#KVALELQSSQLSRQIEFSK.K 3.1029 0.1884 2357.52 699.9 0.447

rps1201 40S ribosomal protein S12 R.QAHLCVLCES#CDQEAYVK.L 2.8358 0.2407 2119.43 519.4 0.412
tef3 Translation elongation factor3 R.FKLRKYLGNMS#EFVK.K 2.6666 0.1287 1940.79 389.6 0.464
tif471 Translation initiation factor eIF4G R.SGSQVSDQVVESPNSSTLS#PR.N 5.5144 0.1612 2241.52 1063.1 0.55
win1 MAP kinase kinase kinase Win1 R.LSDNELAS#FVK.E 2.7442 0.1567 1302.75 1234.8 0.8
SPCC4B3.11c BolA domain K.S#K@AFQGKNTLAQHR.L 2.7209 0.1147 1780.73 296.8 0.462
SPCC16C4.02c Sequence orphan K.NLSSATVILS#NLLK.A 2.4108 0.1971 1553.65 521.2 0.462
SPAC4G8.09 Leucine-tRNA ligase K.VQLSYQKM*S#K.S 2.6622 0.3681 1308.15 645 0.722
SPBC27B12.08 AP-1 accessory protein K.VVS#LMIELLENLTAVNDPK.L 3.3324 0.1322 2178.22 600.8 0.444
SPAC25A8.01c Fun thirty related protein Fft3 K.KS#QVLDALPKKTR.I 2.6176 0.1062 1563.11 631.2 0.542
SPBC8D2.06 Isoleucine-tRNA ligase K.NVIVS#GLVMAEDGKKM*SK@R.L 2.9176 0.1584 2273.37 515 0.417
mug28 Meiotically upregulated gene

Mug28
K.VHDKENAFAEATGTSILS#S#K.A 2.8545 0.2187 2264.5 582.9 0.421

sec26 Coatomer beta subunit R.AS#LGEVPILAS#EEQLLK.D 2.6189 0.2339 1956.93 265.6 0.406
SPBC29A3.09c AAA family ATPase voltage-

dependent anion-selective
K.ELEELS#KDQTADQAIS#R.R 3.04 0.2224 2093.99 300.9 0.406

SPAC1635.01 Channel K.Y#ALDKDT#FVK.G 2.7147 0.1355 1360.55 456.1 0.611
mal1 Alpha-glucosidase Mal1 R.TPM*HWDSSPNGGFT#K.A 2.9814 0.2203 1759.18 1212 0.607
ppk22 Serine/threonine protein kinase -.MARET#EFNDK.S 3.1204 0.2113 1321.71 530 0.722
uso1 Armadillo repeat protein K.LT#KQLDDIK@NQFGIISSK.N 3.3203 0.1539 2241.64 614.4 0.412
SPBC947.10 Zinc finger protein K.RAFSEIKNAT#FLNIPER.V 3.1877 0.114 2086.23 748.3 0.5
ppk18 Serine/threonine protein kinase

Ppk18
K.QKTELAT#FT#TY#K.E/ 2.4263 0.104 1671.67 311.6 0.5

K.QKTELAT#FTT#Y#K.E 2.4263 0.104 1671.67 311.6 0.5
cwf19 Complexed with Cdc5 protein

Cwf19
R.KYGQNYEY#AKQIAK.D 2.908 0.1413 1783.43 394.4 0.5

erg8 Phosphomevalonate kinase K.GY#ASTTTLDDKCGTVRVK.S 3.0426 0.1915 1995.3 900.7 0.529
ppk14 Serine/threonine protein kinase K.SGK@FY#AM*KVLSKQEM*IK.R 3.3777 0.1358 2215.44 1034.9 0.562
rga1 GTPase activating protein K.NSGAIY#DKNDGTQK.G 2.6184 0.1953 1592.09 492.5 0.462
SPAC11E3.12 Conserved eukaryotic protein K.IY#GVNTKEKLVDIM*EALTQK.K 2.6351 0.115 2388.2 257.5 0.421
SPAC2F3.13c Queuine tRNA-ribosyltransferase R.ELVAWILLQLY#VYIKEHGK.E 2.8689 0.103 2396.72 526.9 0.5

Name Product Ubiquitylated peptide Xcorr DeltCN ObsM+H+ SpScore Ion%

ppk14 Serine/threonine protein kinase K.SGK@FY#AMKVLSKQEM*IK.R 3.3777 0.1358 2215.44 1034.9 0.562
SPAC589.10c Ribosomal-ubiquitin fusion

protein
R.TLSDYNIQK@ESTLHLVLR.L 4.396 0.4338 2244.78 1164.9 0.559

kap1 Kinesin-associated protein K.IGSSATSGSFPVIKSLM*DK@R.S 4.3064 0.2151 2211.84 2044.8 0.408
SPAC23G3.12c Serine protease K.K@GT#ALVLDKDKGLAVT#S#R.S 3.0538 0.1095 2225.3 809 0.5
ago1 Argonaute K.NK@SDGDRNGNPLPGTIIEK.H 2.7063 0.1565 2138.62 282 0.444

K.LT#KQLDDIK@NQFGIISSK.N 3.3203 0.1539 2241.64 614.4 0.412
SPCC4B3.11c BolA domain K.S#K@AFQGKNTLAQHR.L 2.7209 0.1147 1780.73 296.8 0.462
gtp1 GTP binding protein Gtp1 R.LARLPK@SVVISCNM*K.L 2.8006 0.2104 1888.6 551.5 0.5
cct5 CCT-complex epsilon subunit K.EKFQEM*IK@HVK.D 2.4524 0.2364 1547.71 369.7 0.65
SPCP1E11.11 RNA-binding protein K.VASKLIVIIK@K.Y 2.2838 0.1112 1326.54 443.2 0.55
rnp24 RNA-binding protein Rnp24 R.FNDAESLGQEDKPNFK@RAR.K 2.6686 0.174 2335.83 296.2 0.444
SPBC8D2.06 Isoleucine-tRNA ligase K.NVIVS#GLVMAEDGKKM*SK@R.L 2.9176 0.1584 2273.37 515 0.417

# denotes phosphorylated residues, @ denotes ubiquitylated residues, * denotes oxidated residues.
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(Figure 5A). As noise is a notorious feature of large-scale
functional genomics data, the biological significance of these
patterns will require further validation by more targeted
experiments. However, as not a single GO attribute was
enriched in SOM clusters derived from a random data set
under identical conditions (data not shown), our data suggest
that many pathways and complex subunits are coordinately,
albeit not necessarily concordantly regulated in both fission
and budding yeasts. For example, 6/13 components of the
microtubule cytoskeleton organization GO category present in
our data sets were coordinately and concordantly regulated
in both yeasts (cluster 10; Figure 5B). In contrast, ATPases
and entities involved in chromatin remodelling and intra-
cellular transport were coordinately, but discordantly regu-
lated with mRNA levels being low in budding yeast (cluster 14,
Figure 5C–E).

Although 48 out of 121 fission yeast ribosomal subunits
present in all data sets were coordinately regulated, they
partitioned into two distinct clusters (3 and 16, Figure 5A).
Both clusters indicated that fission yeast ribosomal protein
mRNAs are typically higher than the subunits they encode
(Figures 5Fand 3C). Notably, higher mRNA than protein levels
were previously reported also in human cells (Ishihama et al,
2005). Coordinate post-transcriptional regulation of ribosomal
proteins in both budding and fission yeasts was already
observed in previous reports (Washburn et al, 2003; Bachand
et al, 2006). Ribosomal proteins are known to be subject
to extensive transcriptional and post-transcriptional control
as indicated by short mRNA half-lives (Li et al, 1999) and
extensive translational regulation (Meyuhas, 2000; Bachand
et al, 2006). Although presumably serving to provide
stoichiometric amounts of complex subunits, such control
might also ensure the excess availability of individual
ribosomal subunits that fulfill extraribosomal functions
(Wool, 1996), a repertoire, that may vary from one organism
to another.

Overall, our comparison reinvigorates the conclusion
gained from previous functional genomics studies that
similarities in the control of gene expression in the two yeasts
are less pronounced than expected from genome comparisons
(Mata et al, 2002; Rustici et al, 2004; Oliva et al, 2005). Only a
remarkably small fraction of transcriptomic changes during

cell-cycle progression (Rustici et al, 2004; Oliva et al, 2005)
and sexual differentiation (Mata et al, 2002) is shared among
the two yeasts. True organism-specific differences are
therefore likely to underlie the moderate overall correlation
in protein abundance in the two yeasts (Figure 2E and
Supplementary Figure 1) as well as the different patterns of
mRNA and protein expression revealed here by SOM cluster-
ing (Figure 5).

Conclusions

Shotgun proteomics employing multidimensional prefractio-
nation and tandem mass spectrometry, aided by mathematical
modelling of spectral count information, enabled a label-free
relative quantitation of B30% of the theoretical fission yeast
proteome corresponding to an estimated 50% of the entire
vegetative translatome. Whereas Eno101, a subunit of the
phosphopyruvate hydratase complex, was revealed as the
single most abundant protein, the translation initiation factor
eIF4 represents the most abundant protein complex. Highly
abundant proteins also included the core set of proteins
conserved in metazoans. Among the least abundant proteins
observed in this study were S. pombe-specific proteins, a series
of nonessential proteins, as well as proteins modified by
phosphorylation and ubiquitylation. Whereas there was a
positive overall correlation between protein and mRNA
abundance in fission yeast similar to what was observed in
other organisms, simple correlations proved insufficient to
asses regulatory patterns of gene expression. Contrasting
individual protein–mRNA ratios to the ratio distribution curve
representing all entities suggested common schemes of control
for subunits of protein complexes, unstable ubiquitylated
proteins, and several functional pathways. The first large-scale
comparison of mRNA and protein abundance in two related
eukaryotic model organisms indicated frequently coordinate,
but rarely concordant regulation, an observation that further
underscored the marked differences in gene expression in the
two yeasts noted previously (Mata et al, 2002; Rustici et al,
2004; Oliva et al, 2005). The data presented should become
a valuable resource for the fission yeast community as well
as researchers mining comprehensive gene expression data
sets for systems biology.
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Materials and methods

Preparation of fission yeast cell lysate

S. pombe cells (DS 448/2¼927 h- leu-1-32 ura4d-18) were grown in
50 ml YES to mid-log phase (OD595¼0.68). Cells were washed in STOP
buffer (150 mM NaCl, 10 mM EDTA, 50 mM NaF, 1 mM NaN3) and
lysed in 450ml buffer containing 7.7 M urea, 2.2 M thiourea, 0.55%
CHAPS, 10 mM Tris (pH 8.5), 200 mM DTT and protease inhibitors by
bead lysis in a Fastprep device (Bio 101). The cell homogenate was
cleared by centrifugation and the bead lysis was repeated once with the
pellet of insoluble debris. The two homogenates were pooled (950ml)

and incubated at room temperature (RT) for 30 min. Avolume of 5.2 ml
of 99% N,N-dimethylacrylamide (Sigma) was added, followed by
another incubation at RT for 30 min after which 10ml 2 M DTT was
added for 5 min at RT. The homogenate was cleared by centrifugation
for 15 min at 14 000 g, resulting in a denatured, reduced, and alkylated
sample with a concentration of B10 mg/ml.

Sample prefractionation

Sample prefractionation by IEF on the ZOOM device (Invitrogen), the
multicompartment electrolizer (MCE, Proteome Systems), on immo-
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bilized pH gradient (IPG) gel strips, by strong anion exchange (SAX)
membrane adsorber spin columns (VivaScience), and by 1D-PAGE was
performed as described in detail in Supplementary information.

LC ESI MS/MS

Trypsin digestion before LC MS analysis as well as protein identifica-
tion by 1D Nano-LC tandem mass spectrometry and on-line 2-D LC
ESI-MS/MS analysis on a Thermo Electron LCQ Deca XP Plus ion trap
instrument are described in Supplementary information. This section
also contains details on the SEQUEST database searching criteria and
the parameters for adjusting the false positive peptide identification
rate to 1% as determined by searching a combined forward and reverse
S. pombe proteome database. Search parameters for the identification
of PTMs are also stated in Supplementary information.

Statistical analysis

Spectral count modelling by likelihood-based goodness-of-fit criteria
was performed by negative binomial log-linear regression. The best-fit
statistics were obtained for a model considering the number of fully
tryptic peptides assuming one miscleavage. This model was used for
adjusting spectral counts to protein size. rp and rs between ASCs and
mRNA and budding yeast protein data sets were computed. For SOM
cluster analysis, data were preprocessed by log-transforming and
subsequent standardization. Each of the variables was standardized by
subtracting its mean and dividing by its standard deviation. A full
description of all statistical methods is presented in the Supplementary
information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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