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Abstract: In this work, we would like to present the development of a highly optimized method for
generating the quaternary stereogenic centers in β-keto esters. This enantioselective phase-transfer
alkylation catalyzed by hybrid Cinchona catalysts allows for the efficient generation of the optically
active products with excellent enantioselectivity, using only 1 mol% of the catalyst. The vast majority
of phase-transfer catalysts in asymmetric synthesis work by creating ionic pairs with the nucleophile-
attacking anionic substrate. Therefore, it is a sensible approach to search for new methodologies
capable of introducing functional groups into the precursor’s structure, maintaining high yields and
enantiomeric purity.
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1. Introduction

The generation of a quaternary stereogenic center in organic molecules has for many
years been a demanding challenge that fits into the theme of organic catalysis, even in the
asymmetric variant [1–6]. The development of enantioselective synthetic methods, includ-
ing organocatalysis, has led to the possibility of obtaining synthetic mimetics of compounds
of natural origin [7–11]. The presence of a quaternary carbon center in a molecule is very
often a key factor in the biological activity of natural products or drugs [12–17].

Among the possible substrates, β-dicarbonyl compounds, especially β-ketoesters,
undoubtedly stand out [18–20]. These compounds can undergo numerous organic transfor-
mations (including alkylation) to form a quaternary stereogenic center with a variety of
substituents, allowing further organic transformations and various post-functionalization
processes [21–23]. Optically active α-alkylated β-dicarbonyl compounds are common
building blocks of many natural compounds and pharmaceuticals.

Importantly, this type of derivatives can also provide an important direction for
the synthesis of unnatural β-amino acids and other important building blocks [24–26].
Despite these important advantages, asymmetric synthesis using organocatalysts is still a
major challenge for synthetic chemists. Therefore, the development of so-called “green”
synthetic methods remains an important achievement [27,28]. To date, asymmetric α-
alkylation reactions of β-ketoesters have been catalyzed mainly by palladium and enamine
catalysts [29–31].

Among organocatalytic methods, phase transfer catalytic (PTC) reactions represent
one of the simplest and most efficient tools for enantio-differentiation synthesis [32–35].
The most commonly used chiral catalysts of natural origin are ammonium salts, derivatives
of Cinchona alkaloids, among others, due to their availability and economic considera-
tions [36–39]. Moreover, it has been repeatedly shown that the use of large substituents
on the nitrogen atom of the quinuclidinium ring improves the properties of such a cata-
lyst [40,41].

To date, there are few examples in the literature of the use of PTC in the alkylation
of β-ketoesters, which was initially limited mainly to phosphonium salts. One of the first
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reports dates back to the late 20th century [42]. The diamide catalysts synthesized by
Manabe showed limited catalytic properties, with enantiomeric excesses as high as 50% ee.
A few years later, Maruoka [43] and coworkers used quaternary ammonium catalysts
built on a binaphthalene platform. These highly specialized catalysts showed high activity
in the alkylation reactions of cyclic β-ketoesters as well as in the Michael reaction. The
first examples of the use of Cinchona derivatives as catalysts in β-keto esters alkylation
were presented by the Dehmlow [44] and Chinchilla [45] groups, but in both cases the
maximum enantiomeric excess oscillated around 50% ee. To improve the enantiomeric
excess, Kim [46] and coworkers synthesized catalysts containing phenyl rings substituted
with tert-butyl groups. This type of substituent provides high steric hindrance. On the
other hand, N-substituted Cinchona catalysts allowing high enantiomeric excesses >90%
ee were reported in 2019 [47]. These catalysts have been used in alkylation reactions of
β-ketoesters and β-ketoamides. Recently, our team developed and commercialized a family
of novel hybrid quaternary ammonium salts based on Cinchona alkaloids [48–50] which
are capable of catalyzing a range of organic reactions, for example, the quaternization of
β-ketoesters by introducing a chlorine atom into the product structure [51]. The catalysts of
this type are based on the structure of alkaloids of natural origin, which perfectly fits into
the trends of the so-called “green chemistry”. Moreover, their advantage over the catalysts
presented earlier in the literature consists in the trivial two-step synthesis, which allows to
obtain pure catalysts in crystalline form at any scale with total excellent yields. After the
successful application of our catalysts in chlorination, we decided to test other reactions
and the choice fell on the alkylation of cyclic β-ketoesters, namely various indanone esters
and cyclopentanones.

2. Results

For several years, we have been presenting a new family of hybrid Cinchona catalysts
which, in addition to the standard properties presented by phase-transfer catalysts, pos-
sess hydrogen bond donors in their structure which efficiently supports the generation of
high enantiomeric excess (Figure 1) [48,49]. In addition, the use of aromatic substituents
with appropriate geometry makes it possible to create other non-covalent interactions
(e.g., π-π stacking) which favors the preorganization of the substrate [39]. Thus, we have
presented a family of catalysts effective in the reactions of alkylation of glycine deriva-
tives [48], epoxidation of α,β-unsaturated ketones [50], and recently also in α-chlorination
of β-keto esters [51]. In this paper, we present the development of our methodology for
another reaction, namely, the alkylation of β-keto esters with the formation of a quaternary
stereogenic center.

First, using catalyst L which showed the highest efficiency in our previous studies,
we optimized the β-keto ester 1a alkylation procedure. We screened several bases in
toluene/CHCl3 [7:3, v/v] mixture (Table 1, entries 1–6). In almost all cases, the product
was received in quantitative yield. Using solid bases, as well as 50% aqueous solutions,
provided similar results, however the best ones occurred for solid KF. Next, we screened
the impact of the solvent (Table 1, entries 7–11). As in our previous papers, the best
results occurred for the toluene/CHCl3 [7:3, v/v] mixture. It is worth mentioning that the
reaction enantioselectivity was improved to 72% ee when the temperature was decreased
to 5 ◦C. Moreover, the catalyst loading equal to only 1 mol% was enough to effectively
carry out the reaction. Finally, the optimal conditions are the reaction carried out in the
toluene/CHCl3 mixture [7:3, v/v], 1 mol% of catalyst, 5 ◦C, 2 eq of base (KF), and 1.2 eq of
the alkylating agent.
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Figure 1. Cinchona phase-transfer catalysts A–O.

Next, using the model β-keto ester 1a, we studied the modification of the catalyst
structure, in particular the substituent at the amide group. The only catalyst in our list
with an aliphatic substituent A (adamantyl ring) allowed us to obtain product 2a with
an enantiomeric excess of 60% ee (Table 2, entry 1). The simplest of the catalysts, with
phenyl substituent B, as well as the ortho-substituted catalysts C–E did not increase the
enantiomeric excess (55–61% ee) (Table 2, entries 3–5). The situation was similar after the
introduction of both electron-donating methoxy groups (catalysts G–I, 31–42% ee, Table 1,
entries 8–10), as well as in the presence of electron-withdrawing groups (catalyst J with
–NO2 group, 56% ee and 2,3,4-trifluorophenyl K, 57% ee). Slightly better enantiomeric
excesses were obtained for compounds with biphenyl substituent—F (64% ee, Table 1,
entry 6). In all cases, we observed complete conversion of the substrate within 3–7 h.
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Table 1. Optimization of the reaction conditions for the alkylation of β-keto ester 1a with phase-
transfer catalyst L a.
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1 PhMe/CHCl3 (7/3) K2CO3 25 99 64
2 PhMe/CHCl3 (7/3) 50%aq K2CO3 25 99 62
3 PhMe/CHCl3 (7/3) KF 25 99 67
4 PhMe/CHCl3 (7/3) 50%aq KF 25 99 64
5 PhMe/CHCl3 (7/3) Na2CO3 25 95 65
6 PhMe/CHCl3 (7/3) 50%aq Na2CO3 25 94 61
7 PhMe KF 25 99 67
8 m-Xylene KF 25 99 66
9 CH2Cl2 KF 25 99 66
10 CHCl3 KF 25 99 65
11 PhMe/CHCl3 (7/3) KF 10 99 71
12 PhMe/CHCl3 (7/3) KF 5 99 72

a Unless otherwise specified, the reactions were performed with 1a (1 equiv.), BnBr (1.25 equiv.), phase-transfer
catalyst L (1 mol%), and base (2 equiv.). b Yields shown are of isolated products. c Determined by chiral HPLC
(Chiralcel AD-H column).

Table 2. Screening of phase-transfer catalysts A–O using substrate 1a a.

Entry Catalyst Time (h) Yield b (%) ee c (%)

1 A 5 99 60
2 B 6 98 55
3 C 5 99 52
4 D 5 99 60
5 E 5 99 61
6 F 4 99 64
7 G 5 98 31
8 H 6 96 49
9 I 7 98 42

10 J 7 97 56
11 K 6 98 57
12 L 4 99 68
13 M 4 99 70
14 N 4 99 73
15 O O’ 3 99 99 80 −84

a Unless otherwise specified, the reactions were performed with 1a (1 equiv.), BnBr (1.25 equiv.), phase-transfer
catalyst (1 mol%), and base (2 equiv.). b Yields shown are of isolated products. c Determined by chiral HPLC
(Chiralcel AD-H column).

Then, we decided to check the activity of catalysts constructed with a quinine core. This
procedure led to a series of reactions in which we were able to obtain higher enantiomeric
excesses. The catalyst with the biphenyl substituent adjacent to the amide group L allowed
us to obtain the product with 68% ee (Table 2, entry 13). Compounds substituted in ortho-
position of the aromatic ring with α- and β-naphthyl rings M and N gave 73% and 70% ee,
respectively. The highest catalytic activity was obtained for the catalyst substituted with
quinoline in ortho-position O (80% ee, Table 2, entry 16). The use of catalysts with a quinine
platform allowed us to shorten the reaction time to 3–4 h. At the same time, it is worth
noting that in all presented cases the reactions occurred with almost quantitative yields
(96–99%).
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After the experiments that led to the determination of the best catalyst, we decided to
check the efficiency of the reactions by increasing the steric hindrance of the ester group
(isopropyl, tert-butyl) and changing the geometric structure of the substrate (indanone,
cyclopentanone), using catalyst O. In reactions with indanone derivatives 1a–c, we observed
that increasing the steric hindrance favors the improvement of the enantiomeric excess,
with the highest values for the tert-butyl 1c (91% ee) ester (Table 3, entry 3). The same
occurred for cyclopentanone derivatives 1d and 1e: increased steric hindrance resulted in
higher asymmetric induction (Table 3, entries 4 and 5). We also performed an additional
comparative experiment for the methyl ester using a quinidine catalyst. This procedure
allowed for an almost complete reversal of the enantiomeric excess (80 vs. –84% ee).

Table 3. Screening of β-keto esters 1a–e a.
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In the next stage, we decided to investigate the influence of the nature of the elec-
trophile used in the reaction. In this series of reactions, we used indanone tert-butyl ester
1c as the optimal β-keto ester substrate. The model benzyl bromide as well as isomers of
methyl benzyl bromide allowed us to obtain products 2c and 3–6 with 89–91% ee (Table 4,
entries 1–4). The presence of chloride in the electrophile molecule 6 did not significantly
change the enantiomeric excess (88% ee, Table 4, entry 5).
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Table 4. Screening of alkylating agents a.
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a Unless otherwise specified, the reactions were performed with 1c (1 equiv.), appropriate alkylating agent
(1.25 equiv.), phase-transfer catalyst O (1 mol%), and base (2 equiv.). b Yields shown are of isolated products.
c Determined by chiral HPLC (Chiralcel AD-H column).

To gain a better insight into the complexing process, we decided to conduct compu-
tational studies indicating a plausible intermediate state (Figure 2). After the first step,
namely the deprotonation of the substrate, the complex of phase-transfer catalyst and eno-
late is formed. The nucleophilic substrate can be stabilized by two intermolecular hydrogen
bonds: with amide function of the catalyst and in addition with the hydroxyl group. A
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key element determining the high enantioselectivity is the quinoline ring which blocks the
re-face of the enolate. These interactions synergistically stabilize the complex and further
increase the selectivity of the underlying nucleophile attack. Conducted computational
studies are in agreement with the obtained results. The lowest energy conformation of
the complex of catalyst with enolate was found after conducting a conformational search
analysis and selected conformers with the lowest energies which were then optimized
without any constrains at DFT/M06-2X/6-31G(d) level of theory using program Spartan’18
Parallel Suite [52–56].

Figure 2. Model of a possible intermediate state for the reaction.

3. Materials and Methods
3.1. Reagents and General Methods

All reagents were used as received. The solvents were dried by distillation over the
appropriate drying agents. All solvents were obtained from common suppliers and used
as received. TLC was carried out on Merck Kieselgel F254 plates. Melting points were
determined using a Boëtius M HMK hot-stage apparatus and were uncorrected. The NMR
spectra were recorded on a Bruker Mercury 400 MHz and Bruker 500 MHz and Varian
600 MHz instruments (see SI). Chemical shifts are reported in ppm (δ) and are set to the
solvent residue peak. J coupling constants values are re-ported in Hz. Mass spectral
analyses were performed with the ESI-TOF technique on a Mariner mass spectrometer
from PerSeptive Biosystem. The enantiomeric excesses of products were determined by
chiral HPLC analysis using Chiralcel AD-H column (see Supplementary Materials).

Amide-based Cinchona catalysts A–L were prepared according to our previous pro-
cedure [48]. Catalysts M-O have not been previously reported. Alkylated indanone and
cyclopentanone derivatives 2a–e and 4 are known from the literature and their analytical
data fully matched those reported previously in the literature [43,45,47].

General procedure for the asymmetric alkylation of β-keto esters 1a–e. A mixture of
the appropriate β-keto ester 1a–e (0.2 mmol), catalyst (0.002 mmol), and KF (0.4 mmol)
was stirred in toluene/CHCl3 [7:3, v/v] for 30 min. Subsequently, the mixture was cooled
to 5 ◦C and alkylating agent (0.24 mmol) was added in one portion. The reaction was
mixed for 4 h. Then, the mixture was filtered through a short pad of silica and eluted
using hexane/ethyl acetate [8:2, v/v]. The organic solvents were evaporated under reduced
pressure to obtain a pure product 2a–e and 3–6 in the reported yields and enantiopurities.
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3.2. Synthetic Procedures
3.2.1. Synthesis of (1S,2S,4S,5R)-5-Ethenyl-2-[(R)-hydroxy(7-methoxyquinolin-4-yl)methyl]-
1-({[2-(naphthalen-2-yl)phenyl]carbamoyl}methyl)-1-azabicyclo [2.2.2]octan-1-ium
bromide (M)

Following the literature procedure [48] and using the corresponding bromoamide
(1.0 g, 2.9 mmol), the catalyst M (1.9 g, 2.9 mmol, 97%) was obtained as colorless powder
(m.p. 122–123 ◦C). 1H NMR (400 MHz, DMSO-d6): δ 10.21 (s, 1H), 8.77 (d, J = 4.2 Hz, 1H),
7.98–7.90 (m, 3H), 7.68 (d, J = 6.6 Hz, 2H), 7.60–7.28 (m, 10H), 6.63 (s, 1H), 6.56 (s, 1H), 5.91
(s, 1H), 5.82 (s, 1H), 5.71–5.42 (m, 1H), 5.12 (d, J = 13.9 Hz, 1H), 5.00 (d, J = 14,1 Hz) 4.82
(t, J = 14.9 Hz, 1H), 4.43–4.21 (m, 1H), 4.37–4.22 (m, 2H), 4.06 (dd, J = 15.9, 7.6 Hz, 1H),
3.74 (s, 3H), 3.12 (t, J = 11.3 Hz, 2H), 2.68 (s, 1H), 2.59 (s, 1H), 1.98 (s, 2H), 1.88–1.76 (m,
2H). 13C{1H} NMR (101 MHz, DMSO-d6): δ 163.2, 157.9, 150.3, 147.2, 145.4, 143.7, 143.3,
138.0, 136.4, 134.3, 131.4, 130.7, 128.4, 128.2, 127.7, 126.2, 125.9, 125.4, 122.2, 121.5, 120.2,
115.5, 100.9, 65.7, 63.0, 59.6, 58.7, 56.5, 56.0, 36.6, 25.3, 24.7, 21.2. HRMS ESI (m/z): calc for
C38H38N3O3 [M]+: 584.2913, found: 584.2919.

3.2.2. Synthesis of (1S,2S,4S,5R)-5-Ethenyl-2-[(R)-hydroxy(7-methoxyquinolin-4-yl)methyl]-
1-({[2-(naphthalen-1-yl)phenyl]carbamoyl}methyl)-1-azabicyclo [2.2.2]octan-1-ium
bromide (N)

Following the literature procedure [48] and using the corresponding bromoamide
(1.0 g, 2.9 mmol), the catalyst N (1.8 g, 2.8 mmol, 95%) was obtained as colorless powder
(m.p. 135–136 ◦C). 1H NMR (500 MHz, DMSO-d6): δ 10.22 (d, J = 6.7 Hz, 1H), 8.79–8.75 (m,
1H), 7.98–7.92 (m, 3H), 7.72–7.66 (m, 2H), 7.61–7.27 (m, 10H), 6.61 (d, J = 3.5 Hz, 1H), 5.91 (s,
1H), 5.82 (s, 1H), 5.70–5.43 (m, 1H), 5.10 (d, J = 13.9 Hz, 1H), 4.98 (d, J = 12.6 Hz, 1H), 4.82
(dd, J = 20.7, 13.8 Hz, 1H), 4.44–4.17 (m, 1H), 4.37–4.21 (m, 2H), 4.06 (dd, J = 16.1, 10.8 Hz,
1H), 3.74 (s, 3H), 3.32–3.07 (m, 2H), 2.66 (s, 1H), 2.58 (s, 1H), 2.05–1.94 (m, 2H), 1.84–1.77
(m, 2H). 13C{1H} NMR (126 MHz, DMSO-d6): δ 163.6, 163.4, 157.9, 147.3, 143.7, 143.4, 137.7,
135.8, 134.3, 133.4, 131.4, 131.2, 128.3, 127.9, 127.5, 127.1, 127.0, 126.8, 126.2, 125.8, 125.5,
125.2, 125.0, 122.1, 120.3, 115.4, 101.0, 65.6, 63.6, 63.1, 59.3, 58.7, 56.3, 56.0, 36.5, 25.2, 24.7,
21.2. HRMS ESI (m/z): calc for C38H38N3O3 [M]+: 584.2913, found: 584.2915.

3.2.3. (1S,2S,4S,5R)-5-Ethenyl-2-[(R)-hydroxy(7-methoxyquinolin-4-yl)methyl]-1-({[2-
(quinolin-8-yl)phenyl]carbamoyl}methyl)-1-azabicyclo [2.2.2]octan-1-ium bromide (O)

Following the literature procedure [48] and using the corresponding bromoamide
(1.0 g, 2.9 mmol), the catalyst O (1.9 g, 2.9 mmol, 98%) was obtained as colorless powder
(m.p. 150–151 ◦C). 1H NMR (600 MHz, DMSO-d6): δ 10.01 (s, 1H), 8.79 (d, J = 4.5 Hz,
2H), 8.41 (d, J = 6.3 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.76–7.63 (m,
4H), 7.53–7.47 (m, 3H), 7.45–7.37 (m, 3H), 6.65 (s, 1H), 5.96–5.88 (m, 2H), 5.21 (dd, J = 17.6,
14.0 Hz, 2H), 4.41 (d, J = 15.7 Hz, 1H), 4.30 (t, J = 9.1 Hz, 1H), 4.26 (t, J = 9.2 Hz, 1H),
4.04–3.95 (m, 1H), 3.73 (s, 4H), 3.44 (s, 1H), 3.13 (d, J = 9.6 Hz, 1H), 2.70 (d, J = 7.2 Hz, 1H),
2.01 (d, J = 10.2 Hz, 1H), 1.89–1.75 (m, 3H), 0.89–0.83 (m, 1H). 13C{1H} NMR (151 MHz,
DMSO-d6): δ 163.1, 157.9, 150.3, 147.2, 145.5, 143.7, 143.3, 136.5, 136.4, 134.4, 131.3, 130.9,
128.4, 128.2, 127.6, 126.3, 125.7, 122.1, 121.5, 120.4, 117.1, 101.6, 66.0, 63.8, 60.1, 59.0, 56.5,
56.0, 37.1, 26.2, 22.8, 20.4. HRMS ESI (m/z): calc for C37H37N4O3 [M]+: 585.2866, found:
585.2859.

3.2.4. Methyl 2-Benzyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2a)

Following the general procedure, the product 2a (55 mg, 0.2 mmol, 99%, 80% ee) was
obtained as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 7.7 Hz, 1H), 7.51 (t,
J = 7.4 Hz, 1H), 7.35–7.29 (m, 2H), 7.19–7.09 (m, 5H), 3.70 (s, 3H), 3.61 (d, J = 17.3 Hz, 1H),
3.47 (d, J = 14.0 Hz, 1H), 3.28 (d, J = 14.0 Hz, 1H), 3.15 (d, J = 17.3 Hz, 1H). 13C{1H} NMR
(126 MHz, CDCl3) δ 202.2, 171.3, 153.3, 136.5, 135.4, 135.3, 130.1, 128.4, 127.8, 127.0, 126.4,
124.8, 61.8, 53.0, 39.9, 35.5. HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm,
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hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 11.7 min, tminor = 9.0 min. Analytical data
fully matched those reported previously in the literature [45,47].

3.2.5. Propan-2-yl 2-Benzyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2b)

Following the general procedure, the product 2b (60 mg, 0.2 mmol, 98%, 85% ee) was
obtained as colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 7.7 Hz, 1H), 7.52 (t,
J = 7.4 Hz, 1H), 7.32 (dd, J = 12.8, 7.4 Hz, 2H), 7.19–7.10 (m, 5H), 5.09–4.96 (m, 1H), 3.61
(d, J = 17.3 Hz, 1H), 3.48 (d, J = 14.1 Hz, 1H), 3.27 (d, J = 14.1 Hz, 1H), 3.15 (d, J = 17.3 Hz,
1H), 1.18 (dd, J = 6.3, 2.4 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3) 202.4, 170.3, 153.4,
136.7, 135.4, 135.3, 130.1, 128.3, 127.6, 126.8, 126.3, 124.7, 69.5, 61.9, 39.7, 35.6, 21.7, 21.6.
HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v],
0.8 mL/min; tmajor = 14.4 min, tminor = 15.8 min. Analytical data fully matched those
reported previously in the literature [47].

3.2.6. Tert-Butyl 2-Benzyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2c)

Following the general procedure, the product 2c (64 mg, 0.2 mmol, 99%, 91% ee) was
obtained as colorless oil. For the reaction using 1 mmol of 1c (232 mg), the product 2c
was obtained in an amount of 319 mg (1.0 mmol, 99%). 1H NMR (500 MHz, CDCl3) δ
7.72 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.32 (dd, J = 14.0, 7.3 Hz, 2H), 7.20–7.10
(m, 5H), 3.57 (d, J = 17.1 Hz, 1H), 3.44 (d, J = 14.1 Hz, 1H), 3.27 (d, J = 14.1 Hz, 1H),
3.12 (d, J = 17.1 Hz, 1H), 1.38 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 202.8, 169.9,
153.5, 137.0, 135.6, 135.1, 130.1, 128.3, 127.6, 126.8, 126.2, 124.6, 82.2, 62.6, 39.5, 35.8, 27.9.
HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v],
0.8 mL/min; tmajor = 6.1 min, tminor = 5.5 min. Analytical data fully matched those reported
previously in the literature [47].

3.2.7. Methyl 1-Benzyl-2-oxocyclopentane-1-carboxylate (2d)

Following the general procedure, the product 2d (46 mg, 0.2 mmol, 99%, 61% ee) was
obtained as colorless oil. 1H NMR (600 MHz, CDCl3) δ 7.21–7.17 (m, 2H), 7.17–7.13 (m,
1H), 7.05 (d, J = 7.0 Hz, 2H), 3.65 (s, 3H), 3.14 (d, J = 13.8 Hz, 1H), 3.04 (d, J = 13.8 Hz,
1H), 2.38–2.27 (m, 2H), 2.01–1.94 (m, 1H), 1.92–1.86 (m, 1H), 1.85–1.78 (m, 1H), 1.57–1.49
(m, 1H). 13C{1H} NMR (151 MHz, CDCl3) δ 215.0, 171.5, 136.6, 130.3, 128.5, 127.0, 61.6,
52.8, 39.3, 38.5, 31.8, 19.6. HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm,
hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 7.1 min, tminor = 8.1 min. Analytical data
fully matched those reported previously in the literature [47].

3.2.8. Tert-Butyl 1-Benzyl-2-oxocyclopentane-1-carboxylate (2e)

Following the general procedure, the product 2e (53 mg, 0.2 mmol, 96%, 74% ee) was
obtained as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.20–7.15 (m, 2H), 7.15–7.11 (m,
1H), 7.07 (d, J = 6.9 Hz, 2H), 3.05 (s, 2H), 2.32–2.24 (m, 2H), 1.92–1.77 (m, 3H), 1.53–1.45
(m, 1H), 1.36 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3): δ 215.5, 170.5, 137.1, 130.5, 128.4,
126.8, 82.1, 62.1, 38.9, 38.4, 32.1, 28.0, 19.6. HPLC-separation conditions: Chiralcel AD-H,
20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 8.2 min, tminor = 9.6 min.
Analytical data fully matched those reported previously in the literature [43].

3.2.9. Tert-butyl(2R)-2-[(2-methylphenyl)methyl]-1-oxo-2,3-dihydro-1H-indene-2-
carboxylate (3)

Following the general procedure, the product 3 (66 mg, 0.2 mmol, 98%, 90% ee) was
obtained as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.77 (d, J = 7.6 Hz, 1H), 7.54 (t,
J = 7.1 Hz, 1H), 7.35 (t, J = 7.9 Hz, 2H), 7.12–6.98 (m, 4H), 3.71 (d, J = 17.1 Hz, 1H), 3.58
(d, J = 15.3 Hz, 1H), 3.19 (d, J = 15.3 Hz, 1H), 2.99 (d, J = 17.0 Hz, 1H), 2.28 (s, 3H), 1.36 (s,
9H). 13C{1H} NMR (126 MHz, CDCl3) δ 203.0, 170.0, 153.7, 137.1, 135.9, 135.2, 130.4, 128.9,
127.6, 126.6, 126.3, 126.0, 124.7, 82.2, 62.3, 36.1, 35.6, 27.8, 20.3. HPLC-separation conditions:
Chiralcel AD-H, 20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 9.6 min,
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tminor = 8.6 min. HRMS ESI (m/z): calc for C22H24O3Na [M + Na]+: 359.1623, found:
359.1615.

3.2.10. Tert-Butyl 2-[(3-Methylphenyl)methyl]-1-oxo-2,3-dihydro-1H-indene-2-
carboxylate (4)

Following the general procedure, the product 4 (65 mg, 0.2 mmol, 97%, 91% ee)
was obtained as colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 7.7 Hz, 1H),
7.54–7.49 (m, 1H), 7.33 (dd, J = 14.5, 7.4 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.99–6.92 (m,
3H), 3.57 (d, J = 17.2 Hz, 1H), 3.43 (d, J = 14.1 Hz, 1H), 3.19 (d, J = 14.1 Hz, 1H), 3.11
(d, J = 17.2 Hz, 1H), 2.24 (s, 3H), 1.39 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3) δ 202.7,
169.8, 153.5, 137.8, 137.0, 135.6, 135.1, 130.9, 128.2, 127.5, 127.5, 127.1, 126.3, 124.6, 82.2,
62.7, 39.5, 35.8, 27.9, 21.5. HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm,
hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 7.9 min, tminor = 7.2 min. HRMS ESI (m/z):
calc for C22H24O3Na [M + Na]+: 359.1623, found: 359.1613. Analytical data fully matched
those reported previously in the literature [45].

3.2.11. Tert-Butyl 2-[(4-Methylphenyl)methyl]-1-oxo-2,3-dihydro-1H-indene-2-
carboxylate (5)

Following the general procedure, the product 5 (65 mg, 0.2 mmol, 98%, 89% ee) was
obtained as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.73 (d, J = 7.6 Hz, 1H), 7.51 (t,
J = 7.3 Hz, 1H), 7.32 (dd, J = 15.2, 7.5 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 7.9 Hz,
2H), 3.54 (d, J = 17.2 Hz, 1H), 3.40 (d, J = 14.2 Hz, 1H), 3.22 (d, J = 14.2 Hz, 1H), 3.11 (d,
J = 17.2 Hz, 1H), 2.24 (s, 3H), 1.38 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 202.8, 169.9,
153.6, 136.3, 135.6, 135.1, 133.9, 130.0, 129.0, 127.5, 126.3, 124.6, 82.1, 62.7, 39.1, 35.7, 27.9, 21.1.
HPLC-separation conditions: Chiralcel AD-H, 20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v],
0.8 mL/min; tmajor = 10.8 min, tminor = 13.2 min. HRMS ESI (m/z): calc for C22H24O3Na
[M + Na]+: 359.1623, found: 359.1621.

3.2.12. Tert-Butyl 2-[(4-Chlorophenyl)methyl]-1-oxo-2,3-dihydro-1H-indene-2-
carboxylate (6)

Following the general procedure, the product 6 (71 mg, 0.2 mmol, 97%, 88% ee) was
obtained as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 7.7 Hz, 1H), 7.53 (t,
J = 7.4 Hz, 1H), 7.36–7.31 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 3.54 (d,
J = 17.2 Hz, 1H), 3.37 (d, J = 14.1 Hz, 1H), 3.25 (d, J = 14.2 Hz, 1H), 3.06 (d, J = 17.1 Hz, 1H),
1.37 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 202.6, 169.8, 153.3, 135.5, 135.4, 135.3, 132.7,
131.5, 128.5, 127.7, 126.3, 124.7, 82.4, 62.3, 38.7, 35.8, 27.9. HPLC-separation conditions:
Chiralcel AD-H, 20 ◦C, 254 nm, hexane/iPrOH [98:2, v/v], 0.8 mL/min; tmajor = 14.5 min,
tminor = 11.0 min. HRMS ESI (m/z): calc for C21H21ClO3Na [M + Na]+: 379.1077, found:
379.1085.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27082508/s1: Copies of 1H and 13C NMR spectra of
compounds synthesized, chromatograms of enantioenriched mixtures.
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