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Abstract: Prevalence of neurocognitive diseases in adult patients demands the use of wearable devices
to transform the future of mental health. Recent development in wearable technology proclaimed
its use in diagnosis, rehabilitation, assessment, and monitoring. This systematic review presents the
state of the art of wearables used by Parkinson’s disease (PD) patients or the patients who are going
through a neurocognitive disorder. This article is based on PRISMA guidelines, and the literature is
searched between January 2009 to January 2020 analyzing four databases: PubMed, IEEE Xplorer,
Elsevier, and ISI Web of Science. For further validity of articles, a new PEDro-inspired technique
is implemented. In PEDro, five statistical indicators were set to classify relevant articles and later
the citations were also considered to make strong assessment of relevant articles. This led to 46
articles that met inclusion criteria. Based on them, this systematic review examines different types of
wearable devices, essential in improving early diagnose and monitoring, emphasizing their role in
improving the quality of life, differentiating the various fitness and gait wearable-based exercises
and their impact on the regression of disease and on the motor diagnosis tests and finally addressing
the available wearable insoles and their role in rehabilitation. The research findings proved that
sensor based wearable devices, and specially instrumented insoles, help not only in monitoring and
diagnosis but also in tracking numerous exercises and their positive impact towards the improvement
of quality of life among different Parkinson and neurocognitive patients.

Keywords: wearable sensors; Parkinson’s patients; Parkinson’s disorder; neurocognitive disorder;
rehabilitation exercises

1. Introduction

Nowadays, millions of people are bearing cognitive deterioration [1]. There is an extensive
range of neurocognitive disorders specified as Alzheimer’s disease, Parkinson’s disease, Traumatic
brain injury, Lewy body disease, Vascular disease, Frontotemporal lobar degeneration, etc. [2,3].
Comparatively, Parkinson’s disease (PD) is the second most frequently observed neurodegenerative
disease [4]. Around seven to ten million people in the world have Parkinson’s disease. The examination
of Parkinson’s disease is a tricky one; research has been done for decades and still there is no robust
test that serves as the best since Parkinson’s disease signs and symptoms vary from person to person
and its features are very similar to other illnesses [5]. PD can be investigated incorrectly and can be
interpreted with other diseases. Characterization of tremors in hands and gait features plays a vital
role in diagnosis and long-term monitoring of Parkinson patients.

Typical gait disorders of PD can be illustrated as freezing of gait (FOG), stooped posture,
shuffling steps, festination, and falling [6]. Current clinical solutions for detecting gait use motion
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sensing technology i.e., camera-based optical motion-capture system, markers attached with body,
force plated on the ground to measure pressure, equipped treadmills with different sensors and for
quantifying tremors, laser displacement sensors, and electromyography (EMG) systems [7,8] are used.
For diagnosis, assessment, and monitoring, there is a need for continuous data from patients and
the solution lies in wearable technology [9]. The role of wearables is multifold, and it starts from
continuously capturing the motion data [10] that helps in diagnosis, monitoring, and tracking the
changes in compliance with exercise training, boosting, and also from clinical trial data. It does not
only monitor PD symptoms but helps in improving them. Hence, the aim of this systematic review
is to find the use of sensor based wearable devices in the diagnosing and monitoring of PD patients,
analyzing their role in enhancing PD patients’ quality of life (QoL) and clearly identifying how
wearables can help in finding the results of various fitness and rehabilitation exercises.

2. Method

2.1. Data Collection

Our systematic literature review collected publications from January 2009 to January 2020 from
the following databases: Elsevier, IEEE Xplorer, and PubMed/Medline. Our search for finding relevant
articles is comprised of five stages based on Preferred Reporting Items for Systematic Reviews and
Meta Analyses (PRISMA) as shown in Figures 1 and 2. In the initial stage, we used three combinations
of keywords: “wearable sensors AND Parkinson disorder”, “wearable sensors AND neurocognitive
disorder”, “Parkinson patients AND rehabilitation exercises” in the three databases mentioned above,
and we got around 3158 articles as result. We also added 102 relevant articles found from other sources
with these keywords and hence we got 3260 articles as shown in Table 1.

Figure 1. PRISMA adapted flow diagram used for the articles’ systematic selection.
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In the second stage, we initially removed 271 duplicates since the same articles were found in
different databases, and we also removed articles on the basis of careful analysis of titles and abstracts.
In this way, 740 records were obtained as shown in Table 2. In the third stage, we filtered out the
articles and considered the ones which are ISI indexed. Based on this criteria, we got 639 articles as
shown in Table 3.

Figure 2. Stages adopted for the systematic selection of articles.

Table 1. Numerical database search results.

Combination of Keywords Elsevier IEEE Xplorer PubMed Other Sources Total

wearable sensors AND parkinson’s disorder 864 90 145 30 1129
wearable sensors AND neurocognitive disorder 116 0 22 12 150
parkinson patients AND rehabilitation exercises 1431 32 458 60 1981

Total 2411 122 625 102 3260

Table 2. Step 2: Relevant articles after screening titles and abstracts.

Elsevier IEEE Xplorer PubMed Other Sources Total

281 97 342 20 740
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Table 3. Step 3: Relevant articles after screening of ISI Web of Science Indexing.

Elsevier IEEE Xplorer PubMed Other Sources Total

230 64 335 10 639

In the fourth stage, we have developed our own customized PEDro inspired scoring that classified
the most relevant articles fitted for our system review. In PEDro, five statistical indicators are set as
answers to the following questions:

1. Does this article prove that wearable sensors can be used to quantify recovery automatically in a
laboratory setting?

2. In this article, were wearable sensors used to monitor people remotely in their home?
3. How many patients/subjects participated in this study?
4. Does this article discuss the exercise rehabilitation that can enhance the recovery and fitness in

(PD) patients?
5. Is this a Survey/Review article?

In this way, the articles were analyzed by means of the answers to these above presented
questions and we selected those publications that obtained at least four points (“fair”/“high” quality),
by applying the following grading criteria as represented in Equations (1) and (2):

Qn∗ =
n=5

∑
r=1

Qr (1)

Qn∗ =

{
Qn∗ Qn∗ < 4

4 Qn∗ ≥ 4
(2)

Q3 refers to the number of human subjects included in the study for each article, and it is shown
in Table 4. However, this standard does not apply for review articles—for survey papers, a different
perspective is set, following the same calculations. In this case, the references’ quality was considered
as depicted in Table 5. For each criterion, the maximum number of points possible to be obtained
was 1.

Table 4. Scoring of Q3: Number of patients/subjects participated in the study.

No. of Subjects Q3 Ranged (0–5) Q4 Ranged (0–1)

0 1 0.2
1 2 0.4

2–4 3 0.6
5–10 4 0.8
>10 5 1

Table 5. Scoring of Q4 in case of review articles.

No. of References Q4 Ranged (0–5) Q4 Ranged (0–1)

0 0 0
1–10 1 0.2

11–20 2 0.4
21–30 3 0.6
31–40 4 0.8
>41 5 1

A balance between the newly published articles with less number of citations and the older ones
which have more citations have been considered further. For this reason, a new tailored formula is



Sensors 2020, 20, 2713 5 of 20

developed. Its purpose is counting the number of citations obtained each year for each article starting
from the year in which the article was published. Some steps should be mentioned at this point. In the
first stage, Equation (3) gives the number of citations registered every year for one candidate article:

PYCi =
TCi

2020 − Yi
(3)

In the above equation, PYC represents the number of citations per year, TC shows the total
number of citations, and Y specifies the year when the article was published. The equation takes
into account the idea that some articles are published in different years and the number of citations
depends on this aspect. Thus, the newer articles have a different weight than the older ones. In this
context, Equation (4) presents the method of computing the absolute value of quality Qi* for an article
from the citation point of view:

Qi∗ =
5∗PYCi

maxj=1...n(PYCj)
+

6 − min(2020 − Yi, 6)
2

(4)

As it will be seen in Equation (5), all of the absolute values should be inside the interval [0:5].
This final value Qi has been chosen to range the maximal score up to 10 because the total score of each
article is, in fact, the average of each statistical indicator multiplied by 2:

Qi =
{

Qi∗, Qi∗ < 5
5, Qi∗ ≥ 5

(5)

All these selection criteria have been applied according to the discussed equations and the final
number of articles remained to be analyzed became 46. The systematic review will focus further on the
analysis of this reduced set.

2.2. Method of Analysis

After we created our collection of the most relevant articles by the quantitative analysis, the next
phase regards the qualitative analysis of the remaining 46 articles. Considering the main purpose of
this systematic review, we further investigated them following some relevant research questions as:

1. Does motor disability play any role in altering the quality of life of PD patients?
2. Do wearable insoles help in diagnosis, monitoring, and rehabilitation of PD patients?
3. Which gait or fitness exercise impact the quality of life?
4. Which fitness tests lead in proper diagnosis of balance, walking, and aerobics fitness of

PD patients?

3. Outcomes of the Systematic Review

This section is divided into four parts. Each of them revolves around the main aims of this
systematic review.

3.1. Early Diagnosis Wearables and the Effects of Motor Disorders on Quality of Life (QoL)

Preponderance of Parkinson’s and overall motor symptoms affects the QoL of PD patients very
badly [11]. Gait disorders are classified according to an accepted scheme and their associations to
falls. Neuro-psychological measures and QoL have been explored for decades, a fact that proved
that gait impairments significantly diminish QoL. The main motor disabilities faced by PD patients
are elaborated in Table 6 and Figure 3. Gait disorders are the most common among PD patients,
reducing the mobility in the daily life activities and becoming worse as disease advances [12].
The difference between normal and Parkinsonism gait can be seen in Figure 3. Hence, PD leads to major
walking problems, causing falls and hence leading to long-term disability and independence loss.
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The role of wearables in improving early diagnosis and monitoring is further analyzed considering
the great improvements brought by the wearable devices proposed by so many researchers in this
field. The most promising role can be played by the wearables which are less expensive, consume less
power, are unobtrusive, and provide more accurate data in diagnosing, monitoring, and managing
a rehabilitation process. Wearables in PD applications may be helpful in early diagnosis, tremor,
body motor fluctuations, and home and long-term assessment as discussed in [13]. Currently,
PD diagnosis relies on monitoring the motor and non-motor significance and usually doctors check
the severity of PD patients disease by asking them to perform specific tasks and assign them scores
based on Unified Parkinson Disease Rating Scale (UPDRS) or Movement Disorder Society-sponsored
revision of UPDRS and Hoehn and Yahr scale. Many times, the result provides a 40% wrong diagnosis
because of the inter-rater variability among different examiners. Early, prompt, and accurate diagnosis
of PD may improve QoL and, regarding this, wearables play a fundamental role in helping clinicians
perform early diagnosis and objective quantification. In [14], the researchers proposed a pedestrian
dead reckoning (PDR)-based method using a smartphone. The accelerometer sensor in a smartphone
monitors the changes of walking patterns of subject like PD and captures the gait characteristics,
such as step length and step frequency. This early warning diagnosing tool gives about 98% accuracy
of step length estimation. In [15], researchers introduced another early diagnosing wearable wireless
system with a proprietary algorithm. The system is composed of IMUs attached on the patient’s lower
limb. The system is tested on 20 subjects and showed promising results, the maximum error in stride
number estimation was as low as three units.

Tremor is the most frequently observed symptom among PD patients. It appears in 70% of them.
In [16], a custom-developed device (SNUMAP) is designed using an accelerometer and gyroscope,
fabricated on a wrist module. The system is validated on 92 PD patients and showed more precise
monitoring of PD tremors. In [17], a smartwatch is developed for PD tremor analysis which turns
out to be very reliable, well-correlated with clinical scores, and well-accepted by patients for clinical
follow-up. Bradykinesia is another symptom that severely affects QoL. In [18], the wearable IMUs
are implemented to quantify whole body movements, producing Bradykinesia indices for walking
(WBI) and standing up from a chair (sit-to-stand; SBI) and compute an objective score for whole
body Bradykinesia.

The concept of monitoring patients in their own homes is the future trend in long-term monitoring.
In this context, [19] proposed a multi-sensor monitoring unit (WMSMU) called PERFORM for
monitoring, assessment, and management of patients. In [20], another system using IMUs and
smartphone-based application served as an adequate gait training application in home infrastructure
by improving postural balance and gait activity. The system gave auditory cueing to prevent or
overcome FOG episodes. Similarly, the articles [21,22] proposed on-shoes wearable sensors and
monitoring insoles that helps in gait assessment and monitoring. Thus, an optimal solution for
improving monitoring and assisting PD patients lies in wearable technology which has been proven to
be more flexible to be adopted in both clinical framework and in a home environment.

Table 6. Motor disabilities that affects Quality of Life (QoL)

Motor Disabilities Description

Shuffling gait very small fleeting steps and bent postures
Freezing of gait episodic absence in which feet are glued shut

Masked face (hypomimia) results from unification of Bradykinesia and rigidity
Balance inability to maintain a steady and upright posture to prevent fall
Tremor twitching movements

Bradykinesia slow movement
Dyskinesia spontaneous, abnormal movements of the facial, arms, legs, or trunk
Festination shortened and speedy steps taken during normal walking.

Rigidity inflexibility or stiffness of joints



Sensors 2020, 20, 2713 7 of 20

(a) Normal gait

(b) Parkinsonism gait
Figure 3. (a) shows Normal person gait and (b) shows PD patient gait.

3.2. E-Health Wearables for PD Patients

The current demand of technology for PD appraisal, intervention, and rehabilitation varied in
its requirements and can be counted from cost, usability, working, efficiency, design, and continuous
quantitative and qualitative information [12]. In the beginning, clinical based scales were set to
check motor symptoms severity which resulted in an uneven ratings and wrong measurements.
The introduction of a smart environment such as body attached sensors, ubiquitous networking,
and embedded sensors facilitates healthcare allied assistants to automatically monitor PD patients in
real world environments. For instance, the researchers in [23] monitored full body tremor, which is
one of the dominant symptoms among PD patients, using an inertial measurement unit (IMU) based
motion capture system and detecting tremor against non-tremor dominant individuals among a group
of 40 PD as well as from 20 healthy controls. In [24], the authors focused on another PD debilitating
symptom that is freezing and discussed the variety of lightweight and wearable inertial sensors that
may help in monitoring FOG (freezing of gate) in PD patients which uses dopaminergic medication.
Similarly, in [25], the authors proposed a method for finding gait freezing events amid normal walking
using skin conductance (SC) features and multivariate Gaussians.

The research study in [26] brings the key challenges in using wearable sensors i.e.,
data management, scalability, interoperability, standardization, security, and privacy and also
proposed a smart glove in which flex sensors are attached to detect motor symptoms such as tremor,
rigidity, and slowness of movement. The different endowed e-health wearables that assimilate
contextual data are: DynaPort MiniMod Hybrid (worn on the lower back), Parkinson’s Kinetigraph
(a wrist worn logger), a KinetiSense motion system (for dyskinesia measurements), ActivPAL,
Stepwatch 3 (step activity monitor), Shimmer (records walking and turning), Mobi8Senior mobility
monitor (SMM, Philips), SENSE-PARK system (for gait, hypokinesia, dyskinesia, sleeping),
GAITrite (gait analysis systems), Opal (to asses quality of turning), Actigraphs (to monitor sleep),
and also cueing devices such as auditory cueing devices, visual cueing devices, and somatosensory
stimuli devices [27–33]. All of these devices help in feature classifying of PDs determining the disease
severity, motor impairment, and also the improvements after the exercises.

3.2.1. Wearable Device(s)

Most of the wearable devices are developed based on inertial sensors that are comprised of an
accelerometer and gyroscope. Accelerometers are used to measure accelerations but are unable to
measure the rotations or angles. Therefore, these can not help with detecting the turns during walking
activities. On the other side, gyroscopes serve in detection of angular velocity of body and also there
are less chances of mechanical noise than in an accelerometer’s case, hence turning is better assessed
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during motion. Being critical with gyroscopes, it can be mentioned that their drawback relates to
the high power consumption during long-term recording. Battery life, type, and number of inertial
sensors, sampling rate, recording and processing time, and, most importantly, the learning algorithm
is the key factor that makes the difference between the accuracy and precision of wearable devices.
In this section, we highlight the ones that assess motor symptoms of PD patients and offer insights in
diagnosis, cueing, and testing.

In [27], the authors proposed a device named Opal, with a weight of 22 g. It is built using inertial
sensors, a battery, and includes 8 GB of memory storage. The device is tested in a research study
in which users wore three Opals, one on the belt and the remaining two inside shoes. Data were
recorded at 128 Hz and later uploaded to a laptop. The data from this device help in assessing the
quality of turning. The researchers in [29] introduced a Kinesia system that consists of a software
application, a hybrid sensor worn on the finger, and an automated web-based symptoms assessment
system. The patients wore the sensors on the index finger of the most affected hand. The assessment is
based on five motor tasks each of 15 s to predict finger tapping, dyskinesia, hand opening and closing,
and also the postural tremor. The Parkinson’s Kinetigraph from [30,32] is used to measure the wrist
movements and is worn like a wrist bracelet. It weighs around 35 g, and it has a three-axis iMEMS
accelerometer (ADXL345 analog device) that records acceleration with a value of ±4 g at sampling
frequency of 50 samples/s. The device is developed using a digital microcontroller with flash memory
along with a rechargeable battery. The sensor apprehends the Bradykinesia and dyskinesia values in a
two-minute span for 10 days using a fuzzy logic algorithm. The device is preferred to be worn at the
most affected limb of PD patients. The GAITRite in [30] is a walkway with a length of 4.6 m connected
with Windows XP through the serial port. The thickness of passageway is 1/800 and has 16,128 sensors
attached between two layers of vinyl and a rubber. It helps with demonstrating Bradykinesia and
can be used in the replacement of conducting a traditional timed test such as a TUG test or filling
questionnaires from PD patients [28]

Actigraphs are movement detectors, which are constructed with accelerometers and a memory
for recording the movements for few weeks. The programs are developed to determine the levels of
rest/movement, rhythmic parameters, and running/sitting parameters. In [27], Actigraphs, in the
form of wrist worn activity sensor, are used for sleep monitoring. The KinetiSense motion system
in [30] served for accurate measurements of tremors, Bradykinesia, and dyskinesia. It is built using
accelerometers and gyroscopes that are attached on three areas of the body. This system is considered
to be beneficial in developing new therapies. Stepwatch 3 is called an ankle acceleromater, fixed on the
leg for counting stride rate. It is one of the devices with most valid and reliable results in monitoring
ambulatory activity as discussed in [27,30]. ActivPALTM in [31] is a small, lightweight activity monitor
device that has a uni-axial accelerometer fixed on the upper thigh, at 10 Hz sampling frequency.
The raw data in form of spreadsheet are exported for further analysis in MATLAB. The SENSE-PARK
System in [31] has a set of inertial sensors (three are used during daytime and one in night phase)
that helps in detecting movements of PD subjects i.e., FOG, dyskinesia, tremor, and sleep using an
algorithm. The system also has a Wii balance board for collecting information such as body weight
and sway.

In the study [31], SHIMMER sensors are introduced. These are kinematic sensors developed with
gyroscope and an accelerometer that performs sampling at 102.4 Hz. These are attached in the form
of elastic bands. The recorded data are transferred to computer wireless using Bluetooth. A total of
21 features are selected for reliability analysis from the recorded data. Another ambulatory assessing
device is Mobi8 proposed in [31], which is a multichannel data logger with a dimension of 11.4 ×
9.8 × 3.7 cm3, weighs up to 165 g, has a 3D sensor (Analog Devices ADXL330), and is worn on the
lower back. It records anterior-posterior, vertical, and mediolateral, respectively. For finding daily life
activities such as walking, the Senior Mobility Monitor (SMM) [31] was implemented. It is comprised
of an accelerometer and barometer. The data are sampled at 50 Hz for the accelerometer and 25 Hz
for the barometer. SMM is required to be worn at sternum height. The data are analyzed using a



Sensors 2020, 20, 2713 9 of 20

wavelet-based decision tree algorithm in MATLAB R©, version 2013a. DynaPort MiniMod Hybrid
in [32] weighs 74 g and has dimensions of 87 × 45 × 14 mm. It is attached on a belt on the back
to show lower body movements in performing DLA. The device consists of accelerometer with a
limitation of ±2 g, a resolution of ±1 mg, and a triaxial gyroscope. The readings are stored on an
SD card at a frequency of 100 Hz and transferred in MATLAB Software for further analysis of gait
features. The system aids in monitoring and classifying the quality and quantity of gait in PD faller
and non-faller groups.

The study [33] provides a technological review on available wearable cueing devices,
highlighting the current auditory, visual, and somatosensory cueing devices. The auditory cueing
devices include Android applications based on Google Glass, GaitAssist (equipped with two inertial
sensors and a smartphone with android application and wired headphones), FoG detection devices
with wireless ear sets, Metronome Peterson bodyBeat and Metronome SDM300 SAMICK (Peterson
Electro-Musical Products, Inc., Alsip, IL, USA), and devices with a movement sensor enabled with
Bluetooth and wired headphones. These devices produce a typical and distinctive sounding tones
(i.e., tap, tick, click, and beat) in beats/minute. In this way, it generates temporal information such
as step interval, through the rhythmical beat. Some visual cueing devices are: Laser shoes, Smart
Gait-Aid (Android app on binocular smart glasses), and Visual-auditory walker. These devices
demonstrated that visual stimuli can diminish the FOG occurrence during walking. Parallel patterns
aid in conveying spatial parameters’ information, such as step duration. Some somatography cueing
devices are: CueStim (two channel electrical stimulator), Vibrating waistband, and a Vibrating system
named VibroGait.

3.2.2. Insoles Models and Technical Features

According to primary research studies, there are two ways to evaluate motion activities of PD
patients: subjective and objective. The subjective methods are based on questionnaires, UPDRS criteria,
or Hoehn and Yahr scales in which there are more chances of getting an incorrect evaluation and
error in scaling. The objective assessment is based on a huge variety of body worn sensors such
as accelerometers, gyroscopes, magnetometers, force sensors, etc. that detect each fine movement
and angles of a person performing (daily life activities) DLA, but the criterion validity of these
wearable e-health devices vary from one to another. Not all the aforementioned devices in [27–33]
are appropriate for daily routines in people with Parkinson’s disorder, and it is hard to find a single
wearable device for diagnosis, monitoring, and rehabilitation of PD. A systematic review in [34]
provided a potential solution for continuous and unobstructed appraisal of Parkinson’s patients that
resides in smart insoles.

There is no doubt that humans wear shoes continuously, and the insoles are much cheaper than
other wearable devices commercially available in the market. Table 7 presents an overview of the insole
models discussed in papers [35–39]. These insoles can extract gait features and help in classification
of PD stages and in daily monitoring for rehabilitation purposes. The results of the comparative
study [34] emphasize that the data validity of smart insoles is 75% to 100% accurate, 75% to 100%
precise, and the specificity lies between 73% to 100%. In this way, we can say that smart wearables [40]
allow quantitative, objective, and reliable evaluation of motor activities.
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Table 7. Wearable insoles models for diagnosis, monitoring, and rehabilitation.

First Author
[Ref] Year

Technology
Description

Clinical Scoring
System

Data Transmission
Methods Subjects Algorithms Features Clinical Feature

Activity Main Results

Rosevall, J [35]
2014

Pressure and Inertial
Sensors (three-axis
accelerometer and
three-axis gyroscope).
Comfortable, flexible,
portable, and suitable
for clinical and
home setting

Fall efficacy
scale(FES),
modern falls
efficacy scale
(MFES) and
UPDRS scaling

1/2 wavelength
dipole antenna and
Bluetooth low
energy

14
Pattern
Recognition
algorithm

Stride time,
step length,
foot clearance,
and postural sway

The system analyses
several gait
parameters and finds
patterns, markers and
thresholds that
differentiate between
fallers and non-fallers.

They measured the fall risk.
Sensors are connected
between a voltage supply
level and a multiplexer that
can be controlled to
connect one sensor at a
time to the input of a
transimpedance amplifier
which is read using an
ADC on a microcontroller
that can scan the pressure
distribution up to 50 times
per second. The standard
deviation is of order 10%.

Hatton, Anna
L. [36] 2016

Smooth insoles and
textured insoles worn
for 14 weeks.
Commercially
available,inexpensive,
non-invasive, and
previously used in many
research strategies.

Multiple
sclerosis walking
scale (MSWS-29),
MS QoL-54 and
modified fatigue
impact scale

NA 176

General linear
models (repeated
measures analysis
of variance
ANOVA)

Stride length,
stride time variability,
double-limb support
time, velocity,
gait kinematics (hip,
knee, and ankle joint
angles, toe clearance,
trunk inclination,
arm swing,
mediolateral pelvis),
foot sensation (light
touch-pressure,
vibration, two-point
discrimination) and
proprioception (ankle
joint position sense)

The results of the
study suggest that the
textured effect is
clinically significant,
the study has the
potential to identify a
new, evidence-based
footwear intervention
which has the capacity
to enhance mobility
and independent
living in people with
multiple sclerosis

This study may generate
vital evidence to inform the
development of more
effective, multi-faceted,
and multi-disciplinary
rehabilitation programs,
for specific gait
impairments

Han, Yingzhou
[37] 2016

Piezoelectric staves are
inserted between the
upper and lower plates
on which there are wavy
ribs and grooves. The
force on upper plate is
capable of recognizing
different human
movements

UPDRS,
MDS-UPDRS
and Unified
Dyskinesia
Rating Scale
(UDysRS)

NA 3 Own customized
algorithm

Features extracted
from various kinds of
voltage waveforms,
which reflect
variations in plantar
pressure.

Forefoot and heel
strike features helps in
distinguishing normal
and abnormal gait
parameters

Monitor DLAs and the
total accuracy is 93.33%,
Self-detecting accuracy is
100%, and the
non-self-detecting accuracy
is 91.67%.
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Table 7. Cont.

First Author
[Ref] Year

Technology
Description

Clinical Scoring
System

Data Transmission
Methods Subjects Algorithms Features Clinical Feature

Activity Main Results

Qiu, Feng [38]
2013

Textured insoles provide
a passive intervention
that is an inexpensive
and accessible means to
enhance the
somatosensory input
from the plantar surface
of the feet

UPDRS,
MDS-UPDRS
and Unified
Dyskinesia
Rating Scale
(UDysRS)

NA
20 healthy
and 20
patients

Mixed model
analysis of
variance
(ANOVA)

Anterior posterior and
medial lateral sway
also standard
deviation

Effect of surface
standing on the foam
compared to the firm
surfaces (F(1,78) =
208.885, p < 0.001) also
effect of insoles
(F(2,156) = 5.825, p =
0.004) and post-hoc
comparisons with
barefoot

ML postural sway SD was
greater for the PD
participants compared with
the control (F(1,78) =
13.165, p = 0.001). ML
postural sway SD was not
much different between the
smooth and textured
insoles (Fisher’s LSD:
p = 0.127)

Mustufa, Ys
Ashad [39] 2015

Multi-layered rugged,
low cost, scalable and
durable packaged
insoles. Developed with
Piezoelectric,
temperature,
accelerometer and force
sensors

Timed up and go
test (TUG)

Bluetooth
communication
protocol (LMX9834)

NA NA

Plantar pressure,
temperature,
rotational angels of
feet

The second phase will
oversee the collection
of a dataset for n = 10
healthy individuals
which will be used to
inform the generation
of a key feature set.

The system records the
plantar pressure,
temperature, acceleration,
and the rotation angle of
the foot to provide an
unobtrusive and
ubiquitous hardware.
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3.2.3. Algorithms for Analysis of Gait Pattern

However, besides the acquisition of a robust data set from wearable insoles, another noteworthy
aspect regards the algorithms that accurately learn from the data and also accurately predict [41].
Machine learning algorithms are currently considered as the pervasive part of the smart environment,
but PD data are different in a more sophisticated way from the traditional clinical data as it is comprised
of high-frequency continuous digital sensors readings of around tens of thousands per second.

ML algorithms such as random forest (RF), decision trees (DTs), logistic regression (LR),
support vector machine (SVM), hidden Markov models (HMMs), naive Bayes, clustering algorithms,
and neural networks (NNs) have been implemented successfully in medicine [32] and recently
expanded to use them for sensor based PD motor assessment. A systematic study [42] revealed
that ML algorithms depend on the data and on the features that are needed to be extracted as it
is discussed in [43], where a TRIS (treatment response objective index) algorithm is discussed that
examines clinical effectiveness with regard to dose response.

The outcome of studying these insoles models proved that smart insoles can identify either
the subjects are sitting, standing, walking, or lying and can also differentiate between normal gait
and Parkinsonism gait features. Last but not least, these can be useful to find the improvements in
movement after exercises.

3.3. Clinical Effects of Rehabilitation Exercises on PD Patients

Research has proved that gait disorder creates disability and determines poor QoL because of the
cardinal symptoms i.e., FOG (freezing of gate), tremors, and falls in people with PD. Systematic reviews
and guidelines confirmed that the motor exercise is an effective method to rectify the gait and the
overall physical functioning, improving QoL. Many fitness exercises like physiotherapy, center or
home based workouts, treadmill training, visual or acoustic cueing and upper and lower body strength
exercises have become an integral part of managing Parkinson’s disease. However, clinical trials
have been unsuccessful in identifying which motion oriented gait exercise method can give the best
results. In this systematic review, one of our objectives is to compare the results of different training
activities [44–52] as elaborated in Table 8, and to assess the overall changes in movement related
disorders and QoL.

“Exercise is medicine” [49] are the perfect words that fit for PD patients. Improvement in QoL
appears to be the most general form of rehabilitation, even if it is resulted just based on home exercises,
tailored center based training, robotic, or treadmill. Our study based on different reported research
works reveals the fact that most of the training is conducted outside the home [53]. Home based
exercise gives similar results to the instrumental based one, and it is applied to patients who are
not in an advanced stage of PD. It is also observed that cognitive and psychological rehabilitation
is just at the beginning, but it is an emerging area of research. The majority of interventions missed
taking inter-professional approach planned without the consent of patients and conducted in a
home environment. Considering all the interventions, it is observed that PD rehabilitation needs
more concentration and research. Coordination between distinctive health care professionals and
multidisciplinary support teams is needed to tackle the complexity of PD and more work is needed in
this area [54]. Such multidisciplinary support must be tailored keeping the desires and objectives of
each individual PD patient.
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Table 8. Rehabilitation exercises and assessment tests.

First Author [Ref]
Year Exercise Type Subjects/Patients Duration Evaluation Test Conclusions

Capecci, Mariana
[44] 2019

Robot assisted gait and
Treadmill training (TT)

Total 96 subjects (48 with robot
assisted and 48 with treadmill
training)

20 sessions of 45 min gait
training assisted by an end
effector robot device (G-EO
system or TT)

6 min walking test, TUG test,
FOG questionnaire, UPDRS
QoL questionnaire-39
administered before To and T1.

Results are better with
robot assisted than TT

Flynn, Allyson[45]
2018 Home based exercise PD subjects 4 sessions over 2 weeks

Pooled based analysis as
outcome of exercise also
correlation of score with follow
ups of post intervention

Recovery in balance
and gait speed with
mild to moderate PD

Gordt, Katharina
2018 [46]

Wireless sensor training:
1. static; 2. dynamic; 3.
Proactive balance training

8 randomized control trials
(RCTs) were included

1 day (1 session) to 8 weeks (15
sessions in total)

Conventional balance training
controls specific gait parameters
and proactive balance
measures.

Better results with
steady state balance

Raccagni C. [47] 2019 Physiotherapy

Group of 10 individuals of
Parkinsonian variant of
multiple system atrophy and 10
subjects with PD Hoehn and
Yahr stage(<=3)

5 day physiotherapy program
followed by a 5-week
unsupervised home based
training.

Questionnaires along with gait
motion analysis

Results are better with
robot assisted than
treadmill training

Hu, Bin [48] 2019 Wearable technology 300 patients 17 months
Detection of episodic gait
freezing using Ambuloson
during walking or stepping

UPDRS scoring
decreased by
0.3 points

Koop, Mandy Miller
[49] 2019 Aerobics 59 patients with idiopathic PD 8 week high intensive aerobic

exercise TUG test Progress in lower limb
movements

Carpinella [50] 2017

Wearable sensor based system
named Gamepad operated as
real time visual and acoustic
feedback compared with
physiotherapy

42 PD subjects randomized into
experimental and control group

20 sessions training for balance
and gait.

Assessed by blinded examiner
with a one-month follow up. In
addition, considered Berg
balance scale (BBS), 10 MWT
and questionnaires

Gait improvements
and enhanced transfer
of training effects
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Table 8. Cont.

First Author [Ref]
Year Exercise Type Subjects/Patients Duration Evaluation Test Conclusions

Taghizadeh [51] 2018
Sensory motor training (SMT)
on hand and upper extremity
sensory and motor function

40 patients with PD for SMT 10 sessions of SMT i.e.,
5 days/week for 2 weeks

Pre- and post-testing sessions
considering tactile acuity,
proprioception, touch threshold,
weight and texture
discrimination, and haptic
performance.

SMT subjects with
severity levels 1 to 3 of
the Hoehn and Yahr
scale showed progress
in sensory and motor
actions

Mohammadi- Abdar
[52] 2015 Smart bike 47 riders

Two algorithms that are static
(inertial load) mode, or
dynamic (speed reference)
mode to collect data i.e., rider
heart rate, cadence, and power
at a high sampling rate.

Clinical tests

Effective tool in
estimating the procure
of new control
paradigms for
reforming the motor
disabilities
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3.4. Fitness Test for Objective Evaluation of Rehabilitation

After selecting the type of exercise, the location, approach, and the intensity duration required to
achieve motor benefits, the next relevant concern is how to find a robust evaluation test that correctly
shows the results of rehabilitation. The assessment of motor activity in PD has been growing in recent
years among research communities. Previous rehabilitation tests have varied with every individual, but
researchers have considered the timed up and go (TUG) test as more efficient. In this test, individuals are
asked to perform some tailored motor activities (i.e., sitting, in stood posture, turning, climbing) and
the positive feedback proves the improvement of specific rehabilitation training. However, the TUG
test gives promising results by just counting on the total time taken by patients to complete the task,
and addresses some lower extremities’ dysfunctions. These two factors are not enough for evaluation
of PD patients’ motor recovery. Hence, numerous tests have been proposed in recent years. Table 8
depicts the type of test for each research study used to predict the amount of benefits of each training.

In addition to TUG tests acquired using the wearable sensors, two other examination methods
using wearable sensors are described in articles like [38,39]. In [38], the Ambulosono wearable works
with an iOS GaitReminder App that produces auditory instructions while continuously recording
step sizes via iOS gyro and accelerometers (after correcting the limb length, angular excursion,
signal filtering, and drift). During the tests, the patients uniformly received a set of standardized
auditory instructions, tailored by clinical guidelines, through wireless headphones, which contain
verbal encouragement, specification of walking speed (e.g., comfortable or fast), and reminders of
completed walking time. Step features collected via GaitReminder App show an average of <10%
difference when it was tested against direct video measurements, and an analogous error rate was
conjointly found once the App was used for treadmill walking or over-ground walking activities.
A new generation of the Ambulosono sensor was designed, and it demonstrated a <5% error rate in
gait measurement.

Another wearable based method is the combination of TUG and different subsystems. As TUG
gives promising results in evaluation of lower extremity dysfunctions, the total time to finish
the TUG does not give insight into turning and transitioning from standing to sitting actions.
Hence, [39] highlighted the importance of segmenting the TUG into phases. In their study,
they proposed that IMU data should be extracted from an iPad coupled with a custom built application.
The Cleveland Clinic Mobility and Balance Application (CC-MB) could be used to segment the TUG
into the subtasks. However, the study is in an infant stage and needs validation and more work to
verify the results.

Table 8 clearly emphasizes the idea that currently the TUG test and the 6 or 10 min walking test are
mostly considered for evaluation. However, a new paradigm is set to quantify the rehabilitation phase
using IMU (inertial measurement unit) for the TUG test [45]. The research is still in an incipient phase,
but it can provide crucial factors that helps in distinguishing the recovery rates. In the case of upper
limb neuro-rehabilitation, the researchers pay more attention to automatic assessment systems as they
are described in the systematic review [46]. They proposed a framework of automated assessment
rehabilitation systems that will be more autonomous and objective.

Table 8 clearly emphasizes the idea that the TUG test and 6 or 10 min walking test are mostly
considered for evaluation. However, a new paradigm is set to quantify the rehabilitation phase
using IMU (inertial measurement unit) for TUG test [55]. The research is still in an incipient phase,
but it can provide crucial factors that helps in distinguishing the recovery rates. In the case of upper
limb neuro-rehabilitation, the researchers pay more attention to automatic assessment systems as it
is described in the systematic review [56]. They proposed a framework of automated assessment
rehabilitation systems that will be more autonomous and objective.

4. Conclusions

In the context of fast development of wearable technologies, more and more solutions for
diagnosis, rehabilitation, assessment, and monitoring of patients with Parkinson’s disease have been
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discussed and presented in the scientific literature. This systematic review is comprised of two parts.
The first one regards a quantitative analysis in which we collected more than 3000 articles from four
databases, based on the PRISMA technique. We used a PEDro inspired method to reduce our set to
46 worthy articles. Furthermore, in the second part, a qualitative analysis has been realized based
on recent solutions developed for PD diagnosis and rehabilitation. Considering all the factors and
research works, we can conclude that motor disability of Parkinson’s patients significantly reduces the
QoL as it is not diagnosed at initial stages and the clinical diagnoses are based on UPDRS scaling and
other clinical systems scoring that proved to be limited by individual assessment and patients’ status.
The existing wearable technology is playing a leading role in terms of treatment, diagnosis, and motor
activity improvement of PD.

Researchers have proposed many different wearable solutions for monitoring and diagnosis of
PD by putting more efforts in finding the most dominant features during gait activity such as heel
off, step length, stride length, stride time, and plantar pressure. The most suitable wearable sensor
devices for finding these features are wearable insoles, IMU based monitoring systems attached at
lower limb, smart bands, EMG based devices, Actigraphs, GAITrite, ActivPals, and gait monitoring
system using a smart-phone equipped with inertial sensors. Among all these, the insoles proved to
be more dominant and useful, suggesting that these wearable solutions must be exposed to a larger
population for validity. From the selected articles, it is demonstrated that repetitive intense motion
activities proved to be effective for PD patients especially to those with severe motor disabilities.
Great advantages are observed with treadmill and sensory motor training’s but still the results depend
on the optimal location, amount of training under supervision, mode of delivery, intensity of exercise,
and the type of training required to get the benefits.

With respect to rehabilitation evaluation, the TUG, 6MWKT, and 10MWKT tests are traditional
gold standard examination tests for monitoring gait deflation, providing treatment analysis such as of
physical therapy and various exercises. However, these tests are time consuming and task performance
related, and the results are affected by many multiple variables like walking area, task complexity
assigned to patient, physical exertion by participant, and incapability to finish the task as a result of
fatigue. Among these, the TUG test has been used for decades, but currently new methods are being
introduced from which the automatic assessment system brings remarkable results. These wearable
devices help not only for rehabilitation exercises and motor improvement but also in analyzing the
evolution or involution of this disease. However, there is a lot of research and development work
left in this healthcare area especially on the accuracy, precision, reliability, and objective support from
patients and healthcare systems for validation and adoption of these wearable solutions.

As a high number of initiatives in the previous research shows that most of the wearable devices
use uni-modal sensor or bi-modal sensors, in the future, we will investigate the effectiveness of the
multi-modal sensor approach for the assessment of PD. Our next directions will also focus on the
role of invasive sensors. The aforementioned technology in which sensors reside inside the patient
body has been proved to be very useful providing continuous information for monitoring and also
diminishing PD effects like tremor or bradykinesia. Hence, we will investigate the articles regarding
the impact of invasive sensors on PD patients, challenges in operation of minimally invasive sampling
techniques, their application to larger community for telemedicine or telehealthcare, and their useful
deployment in healthcare industry.

Author Contributions: The concept of article is proposed by N.P., and the data resources and validation have
been contributed by A.C. and V.C. The formal analysis, investigation, and draft preparation are performed by
A.C. The supervision and review of study are headed by N.P. The final writing was critically revised by N.P. and
V.C. and finally approved by all the authors. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 Research and Innovation program
under the Marie Skodowska Curie grant agreement No. 813278 (A-WEAR: A network for dynamic wearable
applications with privacy constraints).



Sensors 2020, 20, 2713 17 of 20

Acknowledgments: The authors gratefully acknowledge funding from European Union’s Horizon 2020 Research
and Innovation program under the Marie Skłodowska Curie grant agreement No. 813278 (A-WEAR: A network
for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PD Parkinson’s disease
QoL Quality of life
UPDRS Unified Parkinson’s disease rating scale
FOG Freezing of gait
DLA Daily life activities
IMU Inertial measurement unit
TUG Timed up and go

References

1. Alzheimer’s Disease and Healthy Aging-Cognitive Impairment. 2020. Available online: https://www.cdc.
gov/aging/pdf/cognitive_impairment/cogimp_poilicy_final.pdf (accessed on 25 January 2020).

2. Strydom, A.; Fleisher, M.H.; Deb, S.; Ring, H.; Esralew, L.; Dodd, K.; al Janab, T.; Trollor, J.;
Whitwham, S.L. Neurocognitive Disorders. Available online: https://www.ucl.ac.uk/intellectual-
developmental-disabilities-research/sites/intellectual-developmental-disabilities-research/files/DMID-
2_Neurocognitive_disorders.pdf (accessed on 9 May 2020).

3. Durand, V.M.; Barlow, D.H. Essentials of Abnormal Psychology; Cengage Learning: Belmont, CA, USA, 2012.
4. Naqvi, E. Parkinson’s Disease Statistics. 2020. Available online: https://parkinsonsnewstoday.

com/parkinsons-disease-statistics/?fbclid=IwAR3_8-8t1AzNT510ObUf6IdZ9PcyLHj_
A2XFIUQAifBAbsSGfrbGh1lzDe0 (accessed on 25 January 2020).

5. Parkinson’s Disease. 2018. Available online: https://www.mayoclinic.org/diseases-conditions/parkinsons-
disease/symptoms-causes/syc-20376055 (accessed on 25 January 2020).

6. Chen, P.H.; Wang, R.L.; Liou, D.J.; Shaw, J.S. Gait disorders in Parkinson’s disease: assessment and
management. Int. J. Gerontol. 2013, 7, 189–193. [CrossRef]
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