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The N6-methyladenosine (m6A) modification is the most abundant internal modification

of messenger RNA (mRNA) in higher eukaryotes. Under the actions of methyltransferase,

demethylase and methyl-binding protein, m6A resulting from RNA methylation becomes

dynamic and reversible, similar to that from DNA methylation, and this effect allows the

generated mRNA to participate in metabolism processes, such as splicing, transport,

translation, and degradation. The most common tumors are those found in the

gastrointestinal tract, and research on these tumors has flourished since the discovery

of m6A. Overall, further analysis of the mechanism of m6A and its role in tumors may

contribute to new ideas for the treatment of tumors. m6A also plays an important

role in non-tumor diseases of the gastrointestinal tract. This manuscript reviews the

current knowledge of m6A-related proteins, mRNA metabolism and their application in

gastrointestinal tract disease.
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INTRODUCTION

Epigenetics refers to heritable changes in gene expression or cell phenotypes that usually occur
without alteration of the DNA sequence but rather result in slight or substantial modifications to
DNA or RNA. To date, more than 100 types of RNAmodifications, including mRNA, tRNA, rRNA,
and lncRNA modifications, have been discovered (1). The most common modification of RNA is
methylation, and the N6-methyladenosine (m6A) modification is the most common modification
of mammalian mRNA (2).

m6A is a posttranscriptional modification through which a methyltransferase methylates the
6th nitrogen atom of adenine (A). m6A was first detected on mRNA in hepatocellular carcinoma
cells (3) and later on non-coding RNAs such as miRNA (4), circRNA (5), lncRNA (6), and snRNA
(7). Similar to the results observed with DNA methylation, the m6A modification of mRNA
is a reversible and dynamic modification process catalyzed by the actions of methylases and
demethylases. The rapid development of immune coprecipitation and RNA sequencing technology
in recent years has led to great progress in research on the m6Amodification of mRNA, which have
led to a deeper understanding of the mechanism of m6A and its role, particularly in tumors. In this
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paper, the relationship between m6A-related proteins, mRNA
metabolism and digestive system tumors is described in detail.

DISCOVERY AND DISTRIBUTION OF m6A

The m6A modification of mRNA is a posttranscriptional
modification in which the 6th nitrogen atom of adenine is
methylated by a methyltransferase (8). This modification can
affect the stability, splicing, transport, nucleation and translation
of mRNA (9–12). m6A was first discovered in bacteria by Dunn
and Smith (13). In 1974, Desrosiers et al. (3) observed the
methylation of mRNA in liver cancer cells and found that m6A
accounted for ∼80% of modifications and could be regarded
as the most important mode of methylation. In general, m6A
can be found on many eukaryotic (14–18) and viral (19–21)
mRNAs. Although m6A was discovered early and is widely
distributed, the related research progress has been slow due to
technical limitations. However, the presence of m6A has gained
recognition, and two studies in 2012 (8, 9) detected more than
12,000 m6A sites in human andmouse cells, including more than
7,000 types of mRNAs andmore than 300 types of lncRNAs. m6A
mainly clusters around stop codons, 3′ untranslated regions (3′

UTRs) and internal long exons of mRNA, and the sites are highly
conserved. In other words, m6A modification mainly occurs in
the highly conserved sequence RRACH (R = G or A; H = A,
C, or U). This modification also occurs on other RNAs, such as
tRNA and rRNA, but the related conserved sequence is different
from that found for mRNA (9). In addition to the type of RNA,
the distribution of m6A is specific in human tissues. For example,
the content of m6A in the liver, kidney and brain is significantly
higher than that in other tissues (8), which indicates that m6A
may also play a vital role in the differentiation and development
of tissues and organs. Furthermore, m6A expression varies
among cancer cell lines and is closely related to the self-renewal
of tumor stem cells in tumorigenesis (22).

m6A-RELATED ENZYMES

The discovery of fat mass and obesity-associated protein (FTO),
a type of m6A demethylase (23), revealed that the m6A
modification of mRNA is a dynamic and reversible process
influenced by three enzymes: methyltransferases (“writers”),
demethylases (“erasers”) and methyl binding proteins (“readers”)
(Figure 1).

m6A Writers
The m6A methyltransferase complex comprises
methyltransferase-like 3 (METTL3), methyltransferase-like
14 (METTL14) and Wilms tumor 1-associated protein (WTAP).
The complex utilizes S-adenosylmethionine (SAM) as the methyl
group donor to methylate the 6th nitrogen atom of adenine
to form m6A. METTL3, which is also called MT-A70, was the
earliest discovered m6A methyltransferase and was originally
isolated and purified from HeLa cells (24). METTL3 has
SAM-binding activity and is highly conserved (25, 26). Because
almost all m6Amethylation modifications are lost after METTL3
knockdown (27), METTL3 is a key component of the m6A

methyltransferase complex and the only methyltransferase that is
currently known to bind to SAM. METTL14, another member of
the methyltransferase complex, showed high (43%) homology to
METTL3 (28). As observed in previous studies, the knockdown
of METTL14 in HeLa cells decreases the m6A methylation level;
thus, METTL14 is another important component of the m6A
methyltransferase complex (28). Although METTL14 exhibits
high homology withMETTL3, it lacks a SAM-binding region and
thus cannot bind to SAM. METTL14 is mainly responsible for
the identification and localization of subunits, whereas METTL3
has catalytic activity (28). METTL3 and METTL14 interact
at a 1:1 ratio to form a stable methyltransferase complex and
catalyze the m6A modification of mRNA in vivo (29). Moreover,
in vitro experiments have shown that METTL14 exhibits higher
enzyme activity than METTL3, and their heterodimer exhibits
markedly enhanced enzyme activity than either enzyme alone,
which indicates that the two enzymes play a synergistic role in
the methylation process (28, 30–32). WTAP is the third most
important component of the methyltransferase complex. Similar
to METTL14, WTAP lacks a SAM-binding region and has no
catalytic activity. However, the knockdown of WTAP results
in the absence of METTL3 and METTL14 at nuclear speckles
and decreases the m6A level. Therefore, WTAP may colocalize
at nuclear speckles by recruiting the METTL3-METTL14
heterodimer to promote the m6A modification of mRNA (33).
In recent years, many new methyltransferase components,
such as KIAA1429, RBM15/RBM15B, and METTL16, have
been identified. KIAA1429 is mainly involved in mRNA 3′UTR
and stop codon methylation, and its silencing reduces the
m6A levels (34). Another study showed that interfering with
the expression of KIAA1429 in lung cancer cells decreases
the level of m6A, and the effect was more obvious than that
observed with METTL3 or METTL14. Nevertheless, the role of
KIAA1429 in the methyltransferase complex remains unclear
(35). RBM15/RBM15B can interact with METTL3 and bind
to the U-rich region near the m6A modification site to recruit
methyltransferases to a methylation site, which requires the
participation of WTAP (36, 37). METTL16, a newly discovered
methyltransferase, correlates positively with m6A expression
and is mainly involved in the methylation modification of
U6 nucleolar RNA (U6 snRNA) and methionine adenosine
transferase 2A (MAT2A) mRNA (7, 38).

m6A Erasers
The main m6A demethylases are FTO and AlkB homolog 5
(ALKBH5). FTO is a member of the Fe(II)- and α-ketoglutarate-
dependent dioxygenase ALKB protein family, which is widely
found in human tissues and primarily involved in the regulation
of fat and energy metabolism (39). FTO also plays an important
role in diabetes, cardiovascular diseases and tumors (40, 41).
In 2011, FTO was proven to be a demethylase involved in the
demethylation of m6A (23). Indeed, the knockdown of FTO
increases the m6A level but does not affect the expression
of METTL3, which indicates an independent modification of
m6A by FTO. Overall, the m6A modification of mRNA is a
reversible and dynamic process, and a new era of m6A research
has begun. ALKBH5, the second discovered demethylase, also
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FIGURE 1 | m6A participates in various metabolic processes related to mRNAs.

belongs to the ALKB family, and its expression is negatively
correlated with the m6A modification of mRNA (42). Unlike
other members of the family, ALKBH5 only demethylates m6A
on single-stranded RNA/DNA (43). Although ALKBH5 and FTO
are homologous, they act independently, do not interfere with
each other and exhibit some differences. ALKBH5 is mainly
localized to the nucleus and can directly alter the m6A levels
via demethylation. Most FTO is located in nuclear speckles,
and hm6A and fm6A, which are known as intermediates, is
needed for m6A demethylation by FTO (44). ALKBH5 is mainly
expressed in the testis and is involved in sperm formation (42),
whereas FTO exists in a wide range of human tissues but is
mainly expressed in the brain. In addition to its effect on m6A,
FTO demethylates m6Am, and its activity on m6Am is 100 times
higher than that on m6A. The real substrate of FTO may be
m6Am rather than m6A (45).

m6A Readers
In addition to methyltransferase and demethylase, the m6A
modification of mRNA requires the involvement of methyl-
binding proteins that recognize m6A sites. The readers identified
to date mainly include YTH domain proteins, eukaryotic
translation initiation factor 3 (eIF3) and human heterogeneous
nuclear ribonucleoprotein A2B1 (HNRNPA2B1). The YTH
domain proteins are further divided into the DC (YTHDC1
and YTHDC2) and DF (YTHDF1, YTHDF2, and YTHDF3)
families. The three YTHDF proteins exhibit a similar structure,
are mainly distributed in the cytoplasm, and can bind to all m6A
sites on mRNA (9, 11). Among these proteins, YTHDF2 was
the first reader found to degrade m6A RNA through the CCR4-
NOT complex (46). YTHDF1 is involved in protein translation,
but the process requires eIF3 and other factors (12). Although
the regulatory function of YTHDF3 remains unclear, it has
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been reported to act in synergy with YTHDF1 to promote the
translation of methylated RNA and synergizes with YTHDF2 to
accelerate mRNA decay (47, 48). YTHDC is mainly distributed
in the nucleus. YTHDC1 is involved in the modification of
immature mRNA, and some nuclear non-coding RNAs regulate
mRNA splicing and mediate the transfer of m6A mRNA from
the nucleus to the cytoplasm (49, 50). YTHDC2 can improve
the target translation efficiency and reduce the mRNA abundance
(51). Studies have also shown that YTHDC2 can promote colon
cancer metastasis throughHIF-1 and is a potential diagnostic and
therapeutic target of this tumor (52). eIF3 mediates translation
initiation by binding to the 5′UTR of m6A mRNA in two
ways: direct binding and indirect binding through YTHDF
(12, 53). HNRNPA2B1, which is mainly located in the nucleus,
recognizes m6A sites on precursor miRNAs through interaction
with DGCR8, participates in the splicing and processing of
precursor miRNAs and thus regulates the generation of mature
miRNAs (54).

m6A AND mRNA

m6A is involved in mRNA metabolism (Figure 1).

m6A Influences mRNA Maturation
mRNA maturation includes 5′-capping, 3′-tailing and intron
splicing. More m6A sites are found on premRNA than on mature
mRNA, which indicates that introns also contain m6A sites. The
m6A modification mainly occurs in the nucleus with the splicing
of introns, which leads to a reduction in the number of m6A
sites on mature mRNA (55). Many m6A modification-related
proteins, writers (such as METTL3, METTL14, and WTAP),
erasers (such as FTO and ALKBH5) and readers (YTHDC1),
are primarily found in nuclear speckles (23, 33, 42, 49, 56). As
mentioned above, the m6A modification may occur mainly in
the nucleus, where m6A plays a role in mRNA splicing. The
knockdown of METTL3 in mouse embryonic stem cells results in
exon hopping and intron retention splicing abnormalities (27).
Serine/arginine-rich splicing factor 2 (SRSF2) is an important
splicing factor. Zhao et al. found that the knockdown of FTO
in 3T3-L1 preadipocytes increases the m6A level in premRNA,
which further promotes the binding ability to SRSF2 and results
in an increase in target exons (57). FTO regulates differentiation
by regulating the m6A levels around splice sites to control exon
splicing of the adipogenic regulator RUNX1T1. YTHDC1 can
block the binding of SRSF10 (SRp38) to mRNA by recruiting
SRSF3 (SRp20), promoting an increase in the exons of targeted
mRNA and thus aiding the selective splicing of mRNA (49).
Dominissini et al. (9) found that the knockout of METTL3
reduces the level of m6A onmRNA and also decreases the level of
gene expression through effects on the p53 signaling pathway and
apoptosis. Thus, m6A plays an important role in mRNA splicing
and promotes mRNA maturation through splicing.

m6A Affects mRNA Export
Gene expression involves transcription, i.e., mRNA synthesis,
and translation, i.e., protein synthesis, which utilize DNA and
mRNA as templates, respectively. The connection of the two

processes requires the transfer of mRNA from the nucleus to
the cytoplasm, which is a process termed export. Changes in
export, including enhancement and suppression, alters gene
expression. m6A can affect the export of mRNA. Fustin et al.
found that silencing the m6A methylase METTL3 inhibits m6A
methylation, which suppresses the export of mRNA and delays its
processing (58). ALKBH5 also affects the export ofmRNA, and its
knockdown enhances the process (42).

m6A Affects mRNA Translation
There is no unified conclusion regarding the effect of m6A
on mRNA translation: m6A can promote or inhibit translation
or may have no effect. Earlier studies have suggested that the
translational effect of m6A-containing mRNA is 1.5 times greater
than that of m6A-free mRNA (59). METTL3 can improve the
translation of a target mRNA by recruiting eIF3 to the translation
initiation complex, and this process is independent of its
methyltransferase activity (60). Additionally, YTHDF1 promotes
mRNA translation with eIF3 participation (12), although m6A
also reportedly decreases mRNA translation (61). Hess et al.
found that the knockdown of FTO in mice lead to an increase in
m6A and a significant increase in mRNA, and the corresponding
protein levels increase, decrease or show no significant change
(62). The reasons for these observations remain unclear but may
be related to tissue specificity or m6A sites, and further study
is needed.

m6A Regulates mRNA Stability
m6A can affect not only the splicing, translation and export
of mRNA but also its stability. Dominissini et al. found that
the knockdown of METTL3 decreased the m6A mRNA and
gene expression levels, which indicates that m6A promotes the
stability of mRNA (9). However, Wang et al. studied mouse
embryonic stem cells and found that m6A is negatively correlated
with mRNA stability (32). The knockdown of METTL3 and
METTL14 decreases the level of mRNA m6A, which promotes
the binding of human antigen R (HuR) to mRNA and thus
increases its stability. Xie et al. (63) found that METTL3 could
induce the downregulation of BATF2 expression in gastric cancer
(GC) becauseMETTL3 catalyzes them6Amodification of BATF2
mRNA, which reduces mRNA stability. Yan et al. (64) also
reported that METTL3 can reduce the stability of PTEN mRNA
and thus promotes the proliferation, migration and invasion
of GC cells. Interestingly, METTL3 reportedly increases mRNA
stability in GC.Wang et al. (65) found that H3K27 could acetylate
METTL3 to increase its expression in GC, and this increased
METTL3 level could induce the m6A modification of HDGF
mRNA to increase its mRNA stability. HDGF promotes tumor
growth and liver metastasis by promoting tumor angiogenesis.
In addition, METTL3 can increase its stability through the m6A
modification of ARHGAP5 mRNA in GC cells, which results in
drug resistance (66). In colorectal cancer (CRC), Sec62 binds to
β-catenin to inhibit its degradation and enhance WNT signaling,
which leads to increased stemness and chemoresistance in CRC
cells. The increase in Sec62 is caused by METTL3 increasing the
stability of its mRNA (67). YTHDF2 also affects mRNA stability.
Wang et al. reported that the C-terminal domain of YTHDF2
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selectively binds to mRNA-containing m6A but that the N-
terminal domain is responsible for binding to the YTHDF2-
mRNA complex and directing it to the cellular RNA decay
site for mRNA degradation (11). The knockdown of YTHDF2
increases the mRNA stability and prolongs the lifespan. Du et
al. also confirmed that YTHDF2 can reduce the stability of
m6A mRNA through the CCR4-NOT complex, which leads
to its degradation (46). In CRC, YTHDF2 can increase the
m6A modification of GSK3β mRNA, reduce the stability of
GSK3β mRNA, and promote its degradation, which induces
CRC cell proliferation and tumor progression (68). In addition,
insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs)
dynamically promote RNA stability and/or increase mRNA
storage under different physiological conditions (69). The above-
mentioned studies indicate that the regulation of mRNA stability
by m6A is not merely related to the cell type; that is, the same
m6A-related protein may play opposite roles in different cells,
and these different roles may also be related to external factors.

m6A AND GASTROINTESTINAL TRACT
TUMORS

Hepatocellular Carcinoma and
Cholangiocarcinoma
Digestive system tumors are the most common types of tumors,
and many m6A-related proteins play important roles in the
development and onset of these tumors. As the core component
of the m6A methyltransferase complex, METTL3 is significantly
increased in HCC tissues and associated with the clinical aspects
of tumors (70). METTL3 inhibits the expression of SOCS2
through anm6A-YTHDF2-dependentmechanism and thus plays
a role in HCC.

The knockdown of METTL3 inhibits HCC growth and
metastasis, whereas its overexpression has the opposite effect.
Interestingly, another study found that the m6A levels in normal
liver tissues, adjacent normal liver tissues, and HCC tissues
are successively reduced, which indicates that the m6A levels
decrease from normal tissues to HCC tissues and that a low
level of m6A is mainly associated with the downregulation of
METTL14 (71). In addition to the occurrence of HCC,METTL14
downregulation is related to the downregulation of micRNA126
by interacting with DGCR8 to promote HCCmetastasis. Cellular
experiments have also demonstrated that METTL14 is negatively
associated with HCC invasion and metastasis. This study also
found that FTO is significantly downregulated in liver cancer
tissues. A possible explanation is that METTL14 downregulation
causes a decrease in the m6A levels and thereby leads to
the downregulation of FTO to compensate for demethylation.
Although m6A methylation appears to be a dynamic reversible
process, there is no direct evidence. For the same tumor, two
studies found that different m6A-related proteins play a major
role, which may be due to sample error, and further investigation
is thus needed. Another study found that YTHDF2 exhibits
significantly higher expression in HCC tissues, whereas the
change in YTHDF2 is negatively regulated by micRNA145 (72).
In HepG2 cells, micRNA145 targets and binds to the 3′UTR

of YTHDF2 mRNA, which causes a decrease in the YTHDF2
mRNA and protein levels and a decrease in the m6A levels.
However, this study only found changes in the expression of the
reading protein YTHDF2 in liver cancer and did not address the
role of m6A in liver cancer. Moreover, only one liver cancer cell
line, HepG2, was used, and no in vivo or in vitro experiments
were performed. Regardless of these limitations, these two studies
show that m6A-related proteins and miRNAs can interact and
regulate each other and play a role in the occurrence and
development of liver cancer. YTHDF1 has also been confirmed
to be abnormally expressed in liver cancer, and its expression
is upregulated in tumor tissues (73). Unfortunately, this study
was based only on clinical data, and no in vivo and in vitro
experiments were performed for verification; thus, the role of
YTHDF1 in liver cancer needs to be further explored.

After primary liver cancer, CCA is the second most common
malignant tumor of the hepatobiliary system, accounting for 10–
15% of all hepatobiliary malignancies. Due to the absence of
obvious symptoms at the early stage and the lack of specific
diagnostic markers, most CCA cases are at an inoperable stage at
the time of diagnosis (74). Although few studies have investigated
m6A in CCA, a previous study showed that WTAP expression
is increased in CCA tissues and that its overexpression or
knockdown affects the metastatic ability of CCA. Nonetheless,
this study failed to indicate whether the effect of WTAP on
CCA is related to the m6A modification (75). The relationship
between m6A and CCA is relatively clear with regard to FTO
(76). FTO is significantly reduced in intrahepatic CCA and is
associated with tumor differentiation and patient prognosis. The
knockdown or overexpression of FTO decreases or increases the
sensitivity of intrahepatic cholangiocarcinoma cells to cisplatin,
respectively. FTO overexpression also inhibits tumor growth
in mice. However, the study only examined intrahepatic CCA,
excluded a large proportion of extrahepatic CCA cases, and did
not elucidate the exact mechanism of action of FTO. Therefore,
the role of m6A in cholangiocarcinoma remains unclear.

GC
In recent years, a number of studies have shown that m6A,
particularly METTL3, is closely related to the occurrence and
development of GC. Wang et al. found that the expression of
METTL3 is significantly increased in GC tissues and associated
with poor prognosis (65). Through a process mediated by
P300, H3K27 acetylates METTL3 to increase its expression,
and increased METTL3 promotes the m6A methylation of
the mRNA of the downstream protein HDGF to enhance its
stability. HDGF promotes tumor growth and liver metastasis by
promoting tumor angiogenesis on the one hand and activating
the expression of GLUT4 and ENO2 on the other hand, which
results in promotion of glycolysis in GC cells. This study also
comprises the first investigation that combines m6A with glucose
metabolism to study its role in GC. Su et al. found that most
m6Amethylation-related proteins (METTL3, METTL14, WTAP,
KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1,
YTHDF2, HNRNPC, and FTO) are more highly expressed
in GC tissues than in normal tissues and that patients with
poor prognosis exhibit higher FTO expression (77). Yang et al.
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observed higher levels of m6A in GC tissues than in adjacent
tissues (78). Subsequently, these researchers detected methylases
related to m6A and found that the mRNA levels of METTL3 and
METTL14 are significantly increased but that WTAP, ALKBH5,
and FTO did not exhibit significant changes. The role ofMETTL3
in the genesis and development of GC has been elucidated
through its downstream targeting of the MYC pathway, and the
results show that METTL3 acts as an oncogene in GC. However,
both of these studies have shortcomings. The former study did
not include any practical investigations, and all the results were
based on database analysis and thus cannot be easily applied
to clinical treatment. Although the latter study investigated the
m6A modification of downstream targets, it did not specify
which protein was regulated by m6A and did not evaluate the
function of downstream targets. Liu et al. also confirmed that
the m6A level is increased in GC tissues compared with adjacent
tissues and found that METTL3 playa a major role among m6A-
related proteins (79). METTL3 is elevated in tumor tissues and
increases with progression of the tumor stage: a higher expression
is associated with a worse prognosis. Cellular experiments have
further demonstrated that METTL3 affects the proliferation and
migration ability of GC cells by regulating the expression levels
of GFI-1 and epithelial-mesenchymal transition (EMT). Xie et
al. (63) found that BATF2 is a tumor suppressor in GC and
exhibits significantly decreased mRNA and protein levels in GC
tissues. However, the downregulation of BATF2 is due to the
m6A modification of its mRNA by METTL3, which reduces
its stability. This study combined the regulation of mRNA
metabolism by m6A with its role in tumors and fundamentally
illustrated the action of m6A in GC. In addition, Lin et al. (80)
found that METTL3 can promote the proliferation, migration
and invasion ability of GC cells by inhibiting apoptosis and
activating the AKT pathway. Yue et al. (81) also reported that the
expression of METTL3 is higher in GC tissues than in adjacent
normal tissues and increases with progression of the tumor stage.
Mechanistically, METTL3 affects the migration and invasion
ability of GC cells by regulating the expression of zinc finger
MYM-type containing 1 (ZMYM1) and promoting EMT. This
process also involves the reader protein HuR. In addition to the
role of m6A in GC through its effects on other factors, its related
proteins themselves may also be regulated by non-coding RNAs
and play a role in GC. Yan et al. (64) showed that the lncRNA
LINC00470 is highly expressed in GC tissues. With involvement
of the reader protein YTHDF2, the lncRNA LINC00470 affects
the stability of PTEN by regulating the expression of METTL3,
and this lncRNA also affects the proliferation, migration and
invasion ability of GC cells. He et al. (82) confirmed thatMETTL3
affects the proliferation and apoptosis of GC cells by regulating
SEC62, even though METTL3 itself is inhibited by miR-4429.
These experiments all indicate that METTL3 expression is
increased in GC but through different pathways, which indicates
that the same m6A-related protein might play a role in the
same tumor via different mechanisms. m6A is involved in the
occurrence and development of GC and also plays an important
role in the chemotherapy resistance of GC. METTL3 increases
the stability of ARHGAP5mRNA through the m6Amodification
and thereby causes drug resistance (66).

Pancreatic Cancer
The role of m6A in pancreatic cancer has also been probed.
Studies have found that both the mRNA and protein levels of
YTHDF2 in pancreatic cancer tissues are significantly higher
than those in paratumor tissues, and the expression of YTHDF2
tends to increase as the stage of the disease advances (83).
Interestingly, this study found that YTHDF2 plays a different role
in the proliferation, invasion, metastasis and EMT of pancreatic
cancer cells. The knockout of YTHDF2 inhibits the proliferative
ability of pancreatic cancer cells, although the invasive and
metastatic abilities and EMT are enhanced, possibly due to
different modes of action. Nonetheless, the study had an obvious
deficiency, namely, a lack of clinical specimens. The analysis
of the clinical relationship between YTHDF2 and pancreatic
cancer was based only on a database analysis without any actual
verification, and no in vivo studies were performed. The role
of the m6A demethylase ALKBH5 in pancreatic cancer has
also been reported (84): the mRNA level of m6A in pancreatic
cancer tissues is significantly increased due to a decrease in
the demethylase ALKBH5. ALKBH5 acts as a tumor suppressor
in vitro and in vivo in pancreatic cancer and can inhibit its
growth and metastasis by targeting PER1. Moreover, Zhang et
al. (85) found that the expression of miR-25-3p is significantly
higher in tumor tissues than in adjacent tissues from patients
with pancreatic cancer who smoke and that a higher expression
was associated with a worse prognosis. This phenomenonmay be
related to m6A, i.e., cigarette smoke condensate (CSC)-induced
promoter hypomethylation upregulates METTL3 expression,
and METTL3 promotes the maturation of miR-25-3p by the
m6A modification. In short, smoking plays a role in the
development and progression of pancreatic cancer through the
METTL3/miR-25-3p/PHLPP2/AKT regulatory axis. This study is
very interesting because it links smoking with m6A, which not
only highlights new directions for pancreatic cancer treatment
but also provides evidence that smoking is a risk factor for
pancreatic cancer. m6A can influence not only the occurrence
and metastasis of pancreatic cancer but also its resistance to
drugs (86). The knockdown of METTL3 in pancreatic cancer
cell lines increases the sensitivity of the cells to gemcitabine,
cisplatin and other drugs, even though the morphology and
proliferative abilities of the cells did not change, providing a new
potential target for the treatment of pancreatic cancer. However,
this study has some shortcomings, such as too few cell types and
no in vivo experiments. The study was only superficial and did
not explain the mechanism through which METTL3 increases
drug sensitivity. Further research is needed.

CRC
In addition to liver, stomach and pancreatic cancers, the clinical
characteristics of CRC are also related to m6A. As the major m6A
methyltransferase, METTL3 plays an important role in CRC (87–
89). Peng et al. (87) found abnormal m6A modification in CRC.
In normal tissues, paracancerous tissues and tumor tissues, the
expression level of m6A exhibits a gradually increasing trend,
and this change is mainly caused by increased expression of
METTL3. Both in vivo and in vitro experiments have shown that
the downregulation and upregulation of METTL3 reduces and
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TABLE 1 | The roles and mechanisms of the m6A modification in digestive system tumors.

Cancer m6A

Regulator

Type Role Change Mechanism References

HCC METTL14 Writer Suppressor Down METTL14 downregulates micRNA126 by reacting with DGCR8. (71)

METTL3 Writer Promoter Up METTL3 represses SOCS2 expression through an

m6A/YTHDF2-dependent mechanism.

(70)

YTHDF2 Reader Promoter Up miR-145 modulates the m6A levels by targeting the 3’-UTR of

YTHDF2 mRNA.

(72)

YTHDF1 Reader Promoter Up YTHDF1 regulates HCC cell cycle progression and metabolism. (73)

CCA WTAP Writer Promoter Up WTAP induces the expression of MMP7, MMP28, cathepsin H

and Muc1.

(75)

FTO Eraser Suppressor Down FTO regulates ICC progression through multiple key oncogenes

and suppressors.

(76)

GC METTL3 Writer Promoter Up The METTL3-mediated m6A modification of HDGF mRNA

promotes GC progression.

(65)

FTO Eraser Promoter Up NA (77)

METTL3 Writer Promoter Up METTL3 regulates the MYC pathway. (78)

METTL3 Writer Promoter Up METTL3 affects the proliferation and migration abilities of GC

cells by regulating the expression level of GFI-1 and EMT.

(79)

METTL3 Writer Promoter Up METTL3 regulates BATF2 mRNA and represses its expression. (63)

METTL3 Writer Promoter Up METTL3 promotes the proliferation, migration and invasion of

GC cells by activating the Akt pathway.

(80)

METTL3 Writer Promoter Up METTL3 enhances ZMYM1 mRNA expression through the

m6A/HuR-dependent pathway.

(81)

METTL3 Writer Promoter Up LINC00470 promotes GC progression through the

METTL3/PTEN axis.

(64)

METTL3 Writer Promoter Up miR-4429 inhibits GC progression through the METTL3/SEC62

axis.

(82)

METTL3 Writer Promoter Up ARHGAP5-AS1 recruits METTL3 for the m6A modification of

ARHGAP5 mRNA.

(66)

Pancreatic

cancer

YTHDF2 Reader Promoter Up YTHDF2 regulates EMT probably via YAP signaling. (83)

ALKBH5 Eraser Suppressor Down ALKBH5 loss downregulates the PER1 mRNA levels in a

m6A/YTHDF2-dependent manner.

(84)

METTL3 Writer Promoter UP Cigarette smoke promotes the development and progression of

pancreatic cancer via the METTL3/miR-25-3p/PHLPP2/AKT

regulatory axis.

(85)

METTL3 Writer Promoter Up METTL3 influences the sensitivity of pancreatic cancer cells to

anticancer reagents via a ubiquitin-dependent process, RNA

splicing and the regulation of cellular processes.

(86)

CRC METTL3 Writer Promoter Up METTL3 promotes metastasis of CRC via the

miR-1246/SPRED2/MAPK signaling pathway.

(87)

METTL3 Writer Promoter Up METTL3 facilitates CRC progression via a

m6A/IGF2BP2-dependent mechanism.

(88)

METTL3 Writer Suppressor Down METTL3 suppresses CRC proliferation and migration through

p38/ERK pathways.

(89)

METTL3 Writer Promoter UP β-catenin suppresses miR455-3p to increase the m6A

modification of HSF1 mRNA.

(92)

METTL3 Writer Promoter UP m6A modification/Sec62/β-catenin molecular axis. (67)

YTHDF1 Reader Promoter Up The oncogenic transcription factor c-Myc regulates YTHDF1 in

CRC.

(90)

YTHDF1 Reader Promoter Up YTHDF1 inhibits Wnt/β-catenin pathway activity. (68)

YTHDF2 Reader Promoter Up miR-6125/YTHDF2/GSK3β/β-catenin/cyclin D1 regulatory axis (93)

Colon tumor YTHDC2 Reader Promoter Up YTHDC2 contributes to colon tumor metastasis by promoting

the translation of HIF-1α.

(52)

eIF3 Reader Promoter Up NA (91)
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FIGURE 2 | Expression of m6A-related proteins in digestive system tumors.

enhances the metastatic ability of CRC, respectively, and this
regulation is exerted through the METTL3/miR-1246/SPRED2
axis. Another study reached a similar conclusion. Li et al.
(88) found that the expression of METTLE3 is significantly
increased in primary CRC tissues compared with adjacent
normal tissues and that METTL3 is significantly elevated in
corresponding lymph node and liver metastatic foci. Patients
with high METTL3 expression experience worse chemotherapy
effects and shorter overall survival (OS) and disease-free survival
(DFS) durations. As an oncogene, METTL3 plays a role by
maintaining SOX2 expression in CRC cells through an m6A-
IGF2BP2-dependent mechanism. However, there are contrasting
conclusions regarding the role of METTL3 as a tumor suppressor
in CRC (89). This study found that METTL3 expression is
significantly negatively correlated with the tumor size and
metastasis but positively correlated with patient prognosis; that
is, a higher METTL3 expression in tumor is related to a better

prognosis. This study further demonstrated that METTL3 plays
a tumor-suppressive role in the proliferation, migration and
invasion of CRC cells through the p38/ERK pathway. The reasons
for the opposite conclusions reached for the same tumor and
the same m6A protein may be due to sample problems, different
transcripts of METTL3, or different risk factors that cause disease
warrant further study. Nishizawa et al. found that YTHDF1
is an independent prognostic factor for CRC (90). YTHDF1
expression is significantly higher in CRC tissues than in normal
tissues, and the YTHDF1 level is positively correlated with the
depth of tumor invasion, lymph node metastasis, and clinical
stage. The knockdown of YTHDF1 inhibits the proliferation
of CRC cells and increases the sensitivity to oxaliplatin and
other chemotherapeutic agents. However, this study had many
limitations, such as too few clinical samples, incomprehensive
experiments, no in vivo experiments, and no drug-resistant cell
lines. Although YTHDF1 is an m6A reader, its downstream
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target was not identified in the study; that is, this target was not
studied from the perspective of m6A. YTHDC2 also plays an
important role in the metastasis of colon cancer (52). One study
found a positive correlation between YTHDC2 and the clinical
stage of colon cancer, including metastasis. The knockdown
of YTHDC2 in colon cancer cells reduces the expression of
metastasis-related proteins such as HIF-1α and inhibits tumor
metastasis. The levels of eIF3 are also significantly higher in
colon cancer tissues than in paratumor tissues, and the expression
level of eIF3 is positively correlated with the tumor size, lymph
nodemetastasis, distantmetastasis, and vascular invasion, among
others. The downregulation of eIF3 in colon cancer cells can
inhibit cell proliferation and promote apoptosis (91). It should
be noted that this study only collected data from patients
at a single hospital for 2 years, and its limitations include
a lack of representativeness, no in vivo experiments, a small
number of experimental cells, and no mechanistic investigation.
Therefore, this study has no practical reference value. The WNT
signaling pathway plays a pivotal role in CRC, and m6A also
reportedly plays a role through this pathway (67, 68, 92, 93).
Song et al. (92) found that m6A is related to the occurrence
of CRC, which is caused by METTL3 and related to the WNT
signaling pathway. Increases in the expression of β-catenin
increases METTL3 expression by inhibiting miR-455-3p and
further increases the m6A modification of HSF1 to promote
protein translation. The upregulation of β-catenin increases the
HSF1 protein levels by promoting protein translation with no
change in the mRNA levels or the protein half-life. In this
study, the WNT signaling pathway, miRNAs and m6A were
combined, and their relationship was described. Bai et al. (68)
found that YTHDF1 can affect the stem cell-like activity of CRC
cells and the proliferation ability of cells by affecting the cell
cycle. A reduction in the expression of YTHDF1 will arrest cells
at the G1 phase. Interestingly, the study found that YTHDF1
works by influencing the Wnt/β-catenin pathway rather than by
being affected. However, this study also has some shortcomings,
such as a small clinical sample size and many results from a
database analysis. In addition to YTHDF1, YTHDF2 also affects
the growth of CRC through the Wnt/β-catenin pathway (93).
In CRC cells, increased protein levels of YTHDF2 are caused
by decreased miR-6125. GSK3β mRNA can exhibit the M6A
modification by increasing the YTHDF2 protein levels, which
reduces the GSK3βmRNA stability and facilitates its degradation,
and the levels of GSK3β protein and phosphorylated β-catenin
are decreased. Abnormal accumulation of β-catenin activates
cyclin D1 and thereby promotes CRC cell proliferation and
tumor progression. This regulatory axis can be summarized as
the miR-6125/YTHDF2/GSK3β/β-catenin/cyclin D1 regulatory
pathway. In addition to clarifying the role of YTHDF2 in CRC,
this study also noted the m6A modification site of GSK3β. m6A
combined with the WNT signaling pathway not only plays a
role in the occurrence and development of CRC but also leads
to increases in the stemness of CRC cells and chemoresistance
(67). Liu et al. found that Sec62 expression is increased in CRC.
Elevated Sec62 binds to β-catenin to inhibit its degradation and
enhanceWNT signaling, which leads to increases in the stemness
and chemoresistance of CRC cells. The elevation of Sec62 is

caused by increased METTL3 expression. The m6Amodification
increases the stability of Sec62 mRNA.

m6A AND NON-NEOPLASTIC DISEASES
OF THE GASTROINTESTINAL TRACT

In addition to playing a pivotal role in digestive system tumors,
m6A also plays an important role in some non-tumor diseases.
Wu et al. found that circRNAs are involved in important
processes, such as the regulation of autophagy and protein
digestion, in mouse models of severe acute pancreatitis. The
observed changes in circRNA function are caused by increased
ALKBH5 expression and decreased m6A levels (94). HBV
infection is not only the main cause of chronic hepatitis but also
closely related to cirrhosis and liver cancer (95). A recent study
showed that them6Amodification of YTHDF2 and YTHDF3 can
regulate the HBV lifecycle by decreasing HBV RNA stability and
HBV protein expression or promoting the reverse transcription
of pregenomic RNA (96). It has also been reported that the m6A
modification can regulate the lifecycle of HCV, that METTL3
and METTL14 can negatively regulate HCV infection, and that
FTO can positively regulate HCV infection. In addition, m6A
does not regulate HCV translation or RNA replication but can
regulate the production of infectious virus particles, which this
process is negatively regulated by YTHDF proteins (97). This
finding was also confirmed by Kim et al. (98). Although YTHDF
proteins do not affect HCV translation and replication, YTHDC2
may be involved in the secondary structure of the HCV IRES
region through its helicase domain to promote HCV IRES-
mediated translation.

In addition to its roles in severe acute pancreatitis and
viral hepatitis, the role of m6A in intestinal non-tumor
diseases has also been studied. Wang et al. (99) found that
ALKBH5 upregulates TAGLN expression by demethylating
TAGLNmRNA and then inhibits the proliferation andmigration
of enteric neural crest cells, which results in promotion of the
occurrence of Hirschsprung’s disease. Lu et al. constructed a new
model ofMETTL14 deletion-induced spontaneous colitis inmice
and confirmed that METTL14 deficiency impairs the ability of
naïve T cells to induce induced Treg cells and thus promote the
development of colitis (100). By studying the regulation of m6A
on T cells, Li et al. found that METTL3 in mouse T cells could
regulate T cell homeostasis by targeting the IL-7/STAT5/SOCS
pathway and that the deletion of METTL3 destroys T cell
homeostasis and differentiation. Naïve METTL3-deficient T
cells are unable to undergo homeostatic expansion and remain
significantly naïve for up to 12 weeks to prevent colitis in a
lymphopenic mouse model of adoptive transfer (101). ALKBH5
plays an important role in gastric intestinal metaplasia caused
by bile acid reflux (102). On the one hand, ALKBH5 abolishes
YTHDF2-dependent mRNA degradation by the demethylation
of ZNF333 mRNA and increases the expression of ZNF333,
and on the other hand, ALKBH5 activates CDX2 by targeting
the ZNF333/CYLD axis and activating NF-κB signaling. This
study suggests that ALKBH5 is a promising therapeutic target
for gastrointestinal metaplasia caused by bile reflux. Although
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the role of m6A in non-tumor diseases of the gastrointestinal
tract has been studied, the research progress is limited mainly
due to the following two reasons: too few types of diseases
have been studied and the mechanism is unclear. The reasons
for this phenomenon may be the following: First, the study
of gastrointestinal non-tumor diseases mainly relies on the
establishment of animal models, and the collection of sufficient
clinical samples for analysis and cell experiments is difficult.
Second, many diseases can be diagnosed by blood and imaging
tests alone without any need for genetic testing. Third, most non-
tumor diseases can be controlled or cured with medication or
surgery alone.

m6A AND SMALL-MOLECULE INHIBITORS

The ultimate purpose of studying the role of m6A in tumors is to
provide a new treatment direction. Many studies have reported
small-molecule inhibitors of m6A, which mainly target METTL3
(103) and, in particular, FTO. A recent study reported that the
small-molecule inhibitor STM2457 reduces the growth of acute
myeloid leukemia (AML) and increases its differentiation and
apoptosis (103). The pharmacological inhibition of METTL3
in vivo leads to impaired implantation and prolonged survival in
a variety of mouse models of AML, particularly by targeting key
stem cell subpopulations of AML. Overall, the small-molecule
inhibition of METTL3 is not conducive to the maintenance
of AML and exerts no significant or lasting effect on normal
hematopoietic function. Qiao et al. (104) found that CHTB
acts as an inhibitor of FTO and can specifically bind to it to
increase the cellular m6A levels. However, the cells used in this
study were not tumor cells, and whether the characteristics of
the cells changed after the inhibition of FTO with CHTB is
unclear. The natural compounds radicol and nafamostat mesilate
inhibit FTO activity (105, 106), but these studies were not clinical
studies and only demonstrated activity against FTO without
any in vivo or in vitro analysis. It has also been reported that
entacapone can directly bind to FTO to inhibit its activity
(107). In mice with diet-induced obesity, the administration
of entacapone reduces the body weight and fasting glucose
concentrations, and entacapone affects gluconeogenesis in the
liver and thermogenesis in adipose tissues of mice through the
FTO/FOXO1 regulatory axis. Although this study was a clinical
study, it was still a non-tumor study, and the results cannot
be directly applied for the treatment of tumors, particularly
gastrointestinal tumors. In addition to non-clinical studies,
clinical studies of FTO inhibitors have been conducted. One
study showed that meclofenamic acid can promote cisplatin-
induced acute kidney injury by inhibiting FTO (108). In vivo and
in vitro experiments have fully demonstrated that meclofenamic
acid can affect the level of m6A by inhibiting FTO and
increase the p53 mRNA and protein expression levels, which
aggravates the acute kidney injury induced by cisplatin. Although
meclofenamic acid does not affect the m6A level of mRNA, it
can help clinicians avoid aggravation of but not treat the disease.
Some studies have also investigated FTO inhibitors for tumors.
Huang et al. (109) developed two promising FTO inhibitors,

namely, FB23 and FB23-2, which can directly bind to FTO,
selectively inhibit its m6A demethylase activity (particularly
FB23-2), and thus play a role in AML. This study found that
FB23-2 exhibits high selectivity for FTO and can significantly
inhibit FTO expression to promote myeloid differentiation and
apoptosis. In vivo experiments have also indicated that FB23-2
inhibits the progression of leukemia and improves the survival of
leukemic mice. Most importantly, FB23-2 exhibits no toxicity or
side effects in mice.

CONCLUSIONS AND OUTLOOK

The m6A modification, which is the most abundant epigenetic
modification of mRNA in higher eukaryotes, is a process
through which the genetic information of an organism can
be changed without altering the genetic sequence. Similar to
DNA methylation, mRNA m6A modification is a reversible and
dynamic process that is performed by the interaction of writers,
erasers and readers. Through methylation and demethylation,
m6A can not only participate in the metabolic process of mRNA
but also further affect the occurrence and development of tumors.
Digestive tract tumors are the most common tumors in humans,
and many studies have found that m6A plays an important role.
In this review, we summarize the roles and mechanisms of the
m6A modification in liver cancer (70–73), CCA (75, 76), GC
(63–66, 77–82), pancreatic cancer (83–86) and CRC (87–91)
(Table 1 and Figure 2). These studies serve as good bases for the
diagnosis and treatment of the corresponding tumors. However,
the overall role of m6A in tumors remains not well-understood.
In liver cancer, changes in the m6A levels are caused by increased
METTL3 and/or METTL14 expression. In addition to writer
proteins, reader proteins are altered in liver cancer, but their role
is unclear (72, 73). For example, although many studies have
confirmed that METTL3 expression is increased in GC, it plays
different roles (63, 78). Thus, further details need to be revealed.
Studies of the same tumor conducted by different researchers
revealed that the m6A-related proteins METTL3 and FTO were
important, although different results were obtained (77, 78). One
study found that METTL3 but not FTO is significantly increased
in cancer tissues, whereas the other study found that both
were significantly increased. In CRC, different researchers even
obtained completely opposite results for METTL3 expression
(87–89). Moreover, the role of m6A in CCA remains unknown.
Moreover, all the studies on m6A have many deficiencies, such
as a lack of clinical samples, no in vivo or in vitro experiments,
the inclusion of only superficial observations, no mechanistic
investigation, and an inability to provide practical help for
clinical application. Chemotherapy resistance has always been
an important reason for poor therapeutic effects in cancer
treatment, and the discovery of m6A provides a new direction
to reduce chemotherapy resistance. Despite many studies in
this direction, there remain limitations, and thus, the results
do not provide any practical evidence for clinic application. In
addition to tumors, m6A has also been studied in gastrointestinal
non-tumor diseases, but the related research progress has been
limited by the limitations of research methods and practical
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applications. The emergence of small-molecule inhibitors of m6A
has provided new hope for the treatment of diseases, and many
studies have explored the discovery and effects of such inhibitors.
At present, the identified inhibitors mainly target two enzymes,
METTL3 and in particular, FTO.Moreover, many inhibitors have
only been shown to inhibit FTO, but their specific biological
effects have not been explained. To date, the research on small-
molecule inhibitors of m6A in tumors remains limited to AML,
and studies on digestive tract tumors have not been reported.
There are many difficulties regarding the application of small-
molecule inhibitors of m6A to gastrointestinal malignancies.
First, drugs that specifically bind to m6A-related proteins need
to be identified or synthesized. Second, these drugs must act
on m6A-related proteins by inhibiting their activity and not
through other effects. Third, these small-molecule inhibitors
must be more effective when used alone or in combination with
clinically available antitumor agents. There is still a long way to
go before small-molecule inhibitors can be used for the treatment
of gastrointestinal malignancies. All of these problems need to be
further addressed. The role of m6A in tumors is unquestionable,
but there remain many issues to be resolved regarding not only

gastrointestinal tumors but also other tumors. Further research
will provide new directions for the diagnosis and treatment
of tumors.
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