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Linking distal enhancers to genes and modeling their impact on target gene expression are longstanding unresolved prob-

lems in regulatory genomics and critical for interpreting noncoding genetic variation. Here, we present a new deep learning

approach called GraphReg that exploits 3D interactions from chromosome conformation capture assays to predict gene

expression from 1D epigenomic data or genomic DNA sequence. By using graph attention networks to exploit the connec-

tivity of distal elements up to 2 Mb away in the genome, GraphReg more faithfully models gene regulation and more ac-

curately predicts gene expression levels than the state-of-the-art deep learning methods for this task. Feature attribution

used with GraphReg accurately identifies functional enhancers of genes, as validated by CRISPRi-FlowFISH and TAP-seq

assays, outperforming both convolutional neural networks (CNNs) and the recently proposed activity-by-contact model.

Sequence-based GraphReg also accurately predicts direct transcription factor (TF) targets as validated by CRISPRi TF knock-

out experiments via in silico ablation of TF binding motifs. GraphReg therefore represents an important advance in mod-

eling the regulatory impact of epigenomic and sequence elements.

[Supplemental material is available for this article.]

Transcriptional gene regulation involves the binding of transcrip-
tion factors (TFs) at both promoter and enhancer regions and the
physical interaction of these bound complexes via DNA looping.
Technological advances in chromosome conformation capture as-
says such as Hi-C (Lieberman-Aiden et al. 2009), HiChIP
(Mumbach et al. 2016), Micro-C (Krietenstein et al. 2020), and
HiCAR (Wei et al. 2022) provide high-resolution data on 3D chro-
matin interactions, including regulatory interactions between en-
hancers and promoters. Three-dimensional interaction data sets
combined with traditional 1D epigenomic profiles, including
chromatin accessibility (DNase-seq and ATAC-seq) (Buenrostro
et al. 2015) and histone modifications (via ChIP-seq and
CUT&RUN) (Skene andHenikoff 2017), togethermap the chroma-
tin state and connectivity of regulatory elements and should pro-
vide rich training data for predictive gene regulatory models,
including models that also incorporate the underlying genomic
DNA sequence. Ultimately, such models could be used to infer
the regulatory function of noncoding genetic variants in a cell
type of interest.

Here, we propose a gene regulatorymodeling approach called
GraphReg that integrates 1D epigenomic data (Epi-GraphReg) or
both epigenomic and DNA sequence data (Seq-GraphReg) with
3D chromatin interaction data from HiChIP, Hi-C, Micro-C, or
HiCAR via a graph neural network to predict gene expression.
The 1D input data can include any standard epigenomic assays
such as histone modification ChIP-seq, transcription factor
ChIP-seq, or chromatin accessibility fromDNase-seq or ATAC-seq.

GraphReg models use convolutional neural network (CNN)
layers to learn local representations from 1D inputs, followed by
graph attention network (GAT) layers to propagate these represen-
tations over the 3D interaction graph, to predict gene expression
(CAGE-seq) across genomic positions (bins). GraphReg is trained

to predict CAGE-seq (Shiraki et al. 2003), a tag-based protocol for
gene expression measurement and transcription start site (TSS)
mapping, because it quantifies promoter output and does not
depend on transcript length.

Our motivation for proposing GraphReg is twofold. First, we
aim to improve the accuracy of predictive gene regulatory models
by leveraging 3D genomic architecture to incorporate distal en-
hancer elements, and we show that GraphReg outperforms base-
line CNN models for prediction of CAGE output. Second, we
seek to interpret the model to assess the functional importance
of distal enhancers for regulation of specific target genes. To this
end, we use feature attribution methods on trained GraphReg
models and show that we obtain a better ranking of functional en-
hancers as validated by CRISPRi-FlowFISH (Fulco et al. 2019) and
TAP-seq (Schraivogel et al. 2020) than baseline CNN models and
the recently proposed activity-by-contact (ABC) model (Fulco
et al. 2019). Finally, we show that Seq-GraphReg models capture
meaningful TF binding signals through in silico motif ablation ex-
periments, which accurately predict direct TF targets as validated
by CRISPRi-based TF perturbation experiments.

Results

GraphReg: a deep graph neural network model for interaction-

aware gene expression prediction

In our experiments, we used a minimal set of 1D epigenomic data
relevant to gene regulation: DNase-seq as a measure of chromatin
accessibility, H3K4me3 ChIP-seq for promoter activity, and
H3K27ac ChIP-seq for enhancer activity. For 3D interaction data,
we have used a variety of chromatin conformation assays, such
as Hi-C, H3K27ac HiChIP, Micro-C, and HiCAR. Because Epi-
GraphReg is trained on 1D epigenomic and 3D interaction input
data in a given cell type, to predict gene expression output in the
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same cell type, it learns a regulatory model that can generalize to
other contexts. That is, given cell type–specific input data in a
new cell type, the trained Epi-GraphReg model can predict gene
expression in that cell type. In this sense, the Epi-GraphRegmodel
is cell type–agnostic. Seq-GraphReg uses DNA sequence as the
input and performs multitask learning, predicting DNase,
H3K4me3, and H3K27ac in the CNN block and predicting
CAGE-seq after the GAT block. Seq-GraphReg is therefore a cell
type–restricted model because it learns the TF binding motifs spe-
cific to the training cell type and consequently cannot generalize
to another cell type. However, Seq-GraphReg can capture cell
type–specific TF bindingmotifs in enhancer and promoter regions
and potentially predict the impact of DNA sequence alterations on
target gene expression.

We bin the epigenomic data (H3K4me3, K3K27ac, and
DNase) at 100-bp resolution. We process the 5-kb resolution Hi-
C/HiChIP/Micro-C/HiCAR contact matrices with the HiC-DC+
package (Carty et al. 2017; Sahin et al. 2021) to identify significant
interactions of genomic distance up to 2Mb, andwe use the 3D in-
teractions satisfying three different false discovery rates (FDR) of
0.1, 0.01, and 0.001 to define a graph on 5-kb genomic bins. We
process 3D interaction data up to 2 Mb for two main reasons.
First, the read coverage of 3D assays become sparser after 2 Mb,
making it difficult to robustly find significant interactions.
Second, the majority of known functional enhancers of genes re-
side within 2 Mb of the TSS. For consistency with the 3D interac-
tion data, we also bin CAGE-seq at 5-kb resolution. In each batch
of training, we extract 6-Mb genomic regions and use the corre-
sponding DNA sequences, epigenomic data, interaction graphs
from 3D data, and the corresponding CAGE-seq as training exam-
ples for the model. For the next batch, we shift the entire 6-Mb re-
gion by 2 Mb and repeat this to cover the training chromosomes.

For Epi-GraphReg (Fig. 1A; Supplemental Fig. S1), each epige-
nomic signal track is treated as a different channel and fed to 1D
CNN layers followed by max-pooling and ReLU activation func-
tions. This produces latent local representations at 5-kb resolution,
which serve as the node features for the interaction graphs derived
from 3D data. We then use several graph attention network (GAT)
layers to propagate these local representations over the interaction
graphs, so that promoter regions are influenced by the representa-
tions of their candidate distal enhancers. Finally, we predict the
CAGE values (promoter activities) by a fully connected (FC) layer.

For Seq-GraphReg (Fig. 1B; Supplemental Fig. S1), we feed
one-hot-coded genomic DNA sequences to a series of 1D CNN,
max-pooling, and ReLU layers, similar to Epi-GraphReg. The re-
sulting bottleneck representations are then supplied to two blocks
corresponding to different prediction tasks: a GAT block, similar to
the Epi-GraphReg model, uses several GAT layers followed by a FC
layer to predict the CAGE values; and a dilated CNN block, con-
taining several dilated CNN layers whose dilated rate is multiplied
by two each layer, to predict the 1D epigenomic data. Dilated
CNNs have been used previously to increase the receptive field
of CNN layers in deep learning models that predict epigenomic
or expression data from DNA sequence, such as Basenji (Kelley
et al. 2018), BPNet (Avsec et al. 2021b), ExPecto (Zhou et al.
2018), and Xpresso (Agarwal and Shendure 2020). Therefore,
Seq-GraphReg follows a multitask learning approach to find
more meaningful bottleneck representations to provide to the
GAT block.

GATs have an advantage over other graph neural networks
(GNN) in that they learn to weight edges in the graph from node
features. In this way, GATs weigh enhancer–enhancer (E–E) and

enhancer–promoter (E–P) interactions, based on the features
learned in the promoter and enhancer bins, to predict CAGE val-
ues more accurately. However, non-attention-based GNNs such
as graph convolutional networks (GCN) (Kipf and Welling 2017;
Bigness et al. 2022) fail to learn the importance of individual inter-
actions. It has been shown that GATs outperform GCNs in other
machine learning contexts as well (Veličkovic ́ et al. 2018). We
use different attention heads (Fig. 1A,B;Methods) in eachGAT lay-
er to enhance the flexibility of the model to learn distinct E–E and
E–P interaction weights and to improve the prediction accuracy by
integrating them together. Figure 1C shows an example of a 6-Mb
region (11 Mb–17 Mb) of Chromosome 19 in K562 cells with the
corresponding true CAGE output, 1D epigenomic inputs,
H3K27ac HiChIP interaction graph (FDR=0.1), and the predicted
CAGE signals using Epi-GraphReg and Seq-GraphReg and their
CNN counterparts, whichwe denote as Epi-CNN and Seq-CNN, re-
spectively. The dashed middle 2-Mb region in Figure 1C indicates
where we compute the loss in training and evaluate CAGE predic-
tions. The inputs and outputs of Epi-CNN and Seq-CNN models
are the same as those of Epi-GraphReg and Seq-GraphReg, res-
pectively, with the exception that they use dilated CNN layers in-
stead of GAT layers and do not use any 3D interaction data
(Supplemental Fig. S1). We can train Seq-GraphReg in an end-to-
end or separate manner. In separate training, instead of multitask
learning, we first predict epigenomic data fromDNA sequence and
then feed the bottleneck representation to the GAT layers to pre-
dict CAGE expression levels. BecauseCNNmodels to predict epige-
nomic signals can use smaller window sizes (100 kb instead of 6
Mb),more filters can be used given the sameGPUmemory resourc-
es, yielding a better bottleneck representation that consequently
leads to improvement in CAGE prediction. However, this predic-
tion improvement comes at the cost of losing access to fast
backpropagation-based saliency scores at base-pair resolution
(Methods).

To assess the performance of GraphReg on different graphs,
we ran it using four different 3D assays—Hi-C, HiChIP, Micro-C,
and HiCAR—with three different FDR cutoffs (from HiC-DC+)
0.1, 0.01, and 0.001. Supplemental Figure S2 shows the degree dis-
tributions of the genes using different graphs in four cell lines:
K562, GM12878, hESC, and mESC. Some example graphs corre-
sponding to a subset of Chromosome 1 for these cell types are
shown in Supplemental Figures S3 and S4, showing how various
3D assays and FDR cutoffs yield different graph topologies.

GraphReg accurately predicts gene expression by using 3D

interaction data

We trained GraphReg models for three ENCODE human cell lines
(GM12878, K562, hESC) and for mouse embryonic stem cells
(mESC), for which complete 1D epigenomic data and 3D interac-
tion data are available. To evaluate, we performed cross-validation
experiments in which we held out two chromosomes for testing,
used two chromosomes for validation, and trained on all remain-
ing autosomal chromosomes (Methods). Although our model pre-
dicts the CAGE signal at all genomic bins, we focused first on
predictions for GENCODE-annotated TSS bins of protein coding
genes, where the CAGE signal can be non-zero. Figure 2, A and
B, and Supplemental Figures S5–S11 show the CAGE prediction re-
sults for GM12878, K562, hESC, and mESC in which predictions
for test chromosomes across runs are concatenated together to ob-
tain global performance results (20 test chromosomes over 10
runs). We computed the negative log-likelihood values (NLL),

GraphReg
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Figure 1. A schematic overview of GraphReg models. (A) The Epi-GraphReg model uses 1D epigenomic data, such as H3K4me3 and H3K27ac ChIP-seq
and DNase-seq (or ATAC-seq) to learn local features of genomic bins via convolutional neural networks, and then propagates these features over adjacency
graphs extracted from Hi-C/HiChIP contact matrices using graph attention networks to predict gene expression (CAGE-seq) across genomic bins. (B) The
Seq-GraphReg model uses DNA sequence as input and, after some convolutional and dilated convolutional layers, predicts epigenomic data. This helps to
learn useful latent representations of genomic DNA sequences that are then passed to the graph attention networks to be integrated over the adjacency
graphs derived from Hi-C/HiChIP contact matrices and to predict gene expression values (CAGE-seq). (C) A 6-Mb genomic region (11 Mb–17 Mb) of Chr
19 showing input and output signals and predictions in K562 cells, including epigenomic data (H3K4me3, H3K27ac, DNase), CAGE, HiChIP interaction
graph, and predicted CAGE values for GraphReg and CNNmodels. Training and evaluations of the models are performed in the dashedmiddle 2Mb (here
13 Mb–15 Mb) region so that all genes can see the effects of their distal enhancers up to 2 Mb.
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Figure 2. GraphReg models outperform their CNN counterparts for gene expression prediction. (A,B) Negative log-likelihood (NLL, lower is better) be-
tween true and predicted CAGE signals of epigenome-based (A) and sequence-based (B) GraphReg and CNN models over 50 random selections of 2000
predicted genes from test chromosomes concatenated from10 cross-validation experimentswith different training, test, and validation chromosomes. Box
plots show the distributions of NLL in GM12878, K562, hESC, and mESC for three gene sets: all genes, expressed genes (CAGE signal≥5), and expressed
genes with at least one 3D interaction (interacting). The 3D data used in Epi-GraphReg (A) for each cell type is as follows: Hi-C (FDR=0.001) for GM12878,
H3K27ac HiChIP (FDR =0.01) for K562,Micro-C (FDR=0.1) for hESC, and H3K27ac HiChIP (FDR=0.1) for mESC. The 3D data used for Seq-GraphReg (B) is
H3K27ac HiChIP (FDR =0.1) for GM12878, K562, and mESC, and Micro-C (FDR=0.1) for hESC. Example scatterplots of all predicted test genes that are
expressed (CAGE≥5) are plotted for GM12878 in epigenome-basedmodels (A) and K562 in sequence-basedmodels (B), where the genes are color-coded
by the number of 3D interactions n. The sequenced-based models have been trained separately (and not using dilated CNN) for K562 and end-to-end for
GM12878, hESC, andmESC. (C ) Box plots showmean squared error (MSE) of the true and predicted log-fold gene expression changes betweenGM12878
and K562 in 50 random selections of 2000 predicted genes from test chromosomes concatenated from10 cross-validation experimentswith different train-
ing, test, and validation chromosomes. The sets All, Expressed, and Interacting denote the intersections of such sets in GM12878 and K562. Both Epi- and
Seq-GraphRegmodels have better prediction accuracy than their CNN counterparts. The scatterplots of the true log-fold gene expression changes and the
log-fold changes derived from the predicted CAGE values by Seq-GraphReg and Seq-CNN, between GM12878 and K562, are shown for expressed genes
(CAGE≥5 in both K562 and GM12878). TSS bins are color-coded by the minimum number of 3D interactions in GM12878 and K562 (m). Seq-GraphReg
has higher R and lower MSE than Seq-CNN. (D) Epi-GraphReg models show higher cell-to-cell generalization capability than Epi-CNN models. Box plots
show the distributions of NLL on the test cell type (K562 or GM12878) when trained on the other cell type over 50 random selections of 2000 predicted
genes from test chromosomes of the test cell concatenated from 10 cross-validation experiments with different training, test, and validation chromosomes
in the training cell. The models are evaluated on the same test chromosomes in the unseen test cell. HiChIP (FDR =0.1) is used for both cells. The general-
izationof Epi-GraphReg fromK562 toGM12878 is significantly better (P<10−4,Wilcoxon signed-rank test) than Epi-CNN in all gene sets. Thegeneralization
of Epi-GraphReg fromGM12878 to K562 is significantly better (P<10−4, Wilcoxon signed-rank test) than Epi-CNN in expressed and interacting genes. The
scatterplots of all predicted test genes that are expressed (CAGE≥5) are plotted when trained on K562 and tested on GM12878.
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based on our loss function for the Poisson distribution, of the pre-
dicted CAGE signals for three gene sets: all genes (All); expressed
genes, defined as CAGE signal≥5 (Expressed); and expressed
genes with at least one E–P interaction (Interacting). We also re-
ported Pearson’s correlation (R) of log-normalized predicted and
true CAGE values (Fig. 2A,B; Supplemental Figs. S5–S11). We
also compared Seq-GraphReg and Seq-CNN with Basenji on
K562 and GM12878 (Supplemental Fig. S12). In all cases,
GraphReg models outperform the corresponding CNN models,
achieving higher R and lower NLL (Fig. 2A,B; Supplemental Figs.
S5–S11). After restricting to expressed or interacting genes, the
problem gets harder, and the prediction improvement of
GraphReg over CNN models increases. Epigenome-based models
(Epi-GraphReg and Epi-CNN) have higher prediction accuracy
than the sequence-based models (Seq-GraphReg and Seq-CNN)
(Fig. 2A,B; Supplemental Figs. S5–S11) because the epigenomic
data are highly correlated with the CAGE output. To plot the
box plots in Figure 2 and assess statistical significance, we random-
ly sampled 2000 predicted genes (in each category, All, Expressed,
and Interacting) 50 times, computed the mean of 2000 NLLs for
both GraphReg and CNN, and performed a Wilcoxon signed-
rank test to see if the NLLs are significantly smaller for
GraphReg than CNN. For both epigenome-based (Fig. 2A) and se-
quence-based (Fig. 2B) models, GraphReg has significantly smaller
NLL than CNN (Wilcoxon signed-rank test), demonstrating more
accurate predictions for GraphReg.

We also examined scatterplots of log-normalized [log2(x+1)]
predicted versus true CAGE values of GraphReg and CNN models
across the expressed genes in mESC, hESC, K562, and GM12878
(Fig. 2A,B; Supplemental Figs. S5–S11). Here, TSS bins are color-
coded by their number of 3D interactions (n). An example of
Epi-GraphReg and Epi-CNN on GM12878 using Hi-C (FDR=
0.001) is shown in Figure 2A, and an example of Seq-GraphReg
and Seq-CNN on K562 using HiChIP (FDR=0.1) with separate
training and no dilated layers is shown in Figure 2B. For epige-
nome-based models in Figure 2A, Epi-GraphReg yields R=0.654
and NLL=292.34 on expressed genes, outperforming Epi-CNN
with R= 0.63 and NLL=333.10. For sequence-based models in
Figure 2B, Seq-GraphReg yields R=0.494 and NLL=464.77 on ex-
pressed genes, outperforming Seq-CNN with R=0.43 and NLL=
582.34. More scatterplots for different GraphReg models can be
found in Supplemental Figures S6–S11. Analogous to our previous
notion of gene regulatory complexity (González et al. 2015), we re-
fer to genes with n =0 as “simple genes” and those with n>0 (at
least one 3D interaction) as “complex genes.” We hypothesized
that by exploiting 3D interaction data, GraphReg would better
model the regulation of complex genes. This fact can be easily
seen in scatterplots shown in Figure 2B.

Notably, the extent of improvement of Seq-GraphReg over
Seq-CNN is usually higher than that of the Epi-GraphReg over
Epi-CNN (Fig. 2A,B; Supplemental Figs. S5–S11), suggesting the
importance of 3D interaction data for integrating distal regulatory
elements and improving prediction accuracy when predicting
from DNA sequence, especially for more complex genes with
many E–P interactions (Supplemental Figs. S10, S11). In particular,
Seq-CNN models predict lower values for some highly expressed
genes with many 3D interactions, whereas Seq-GraphReg can
more accurately predict these higher expression values (Fig. 2B;
Supplemental Figs. S10, S11). The effects of 3D assay (Hi-C,
HiChIP, Micro-C, HiCAR) and different FDR levels (0.1, 0.01,
0.001, corresponding to different noise levels in the graphs) for
Epi-GraphReg are shown in Supplemental Figures S5–S9.

GraphReg’s improved performance over CNNs can also be
witnessed by calculating the log-fold change between CAGE pre-
dictions for two different cell types (Fig. 2C) and by comparing
to true log-fold changes using mean squared error (MSE).
Evaluation of predicted log-fold changes in GM12878 versus
K562 on held-out chromosomes in 10 cross-validation runs (Fig.
2C) confirmed the improvement of Epi-GraphReg and Seq-
GraphReg over Epi-CNN and Seq-CNN, respectively. We see in
Figure 2C that MSEs of GraphReg are significantly smaller than
CNN (Wilcoxon signed-rank test), and the performance improve-
ments are higher for Seq-GraphReg versus Seq-CNN. Figure 2C
shows the scatterplots of predicted versus true log-fold change in
TSS bins on held-out chromosomes for expressed genes (CAGE≥
5 in both GM12878 and K562), color-coded by the minimum
number of 3D interactions over the two cell types (m). For Seq-
GraphReg, HiChIP (FDR=0.1) is used in both GM12878 and
K562. For Epi-GraphReg, Hi-C (FDR=0.001) and HiChIP (FDR=
0.01) are used in GM12878 and K562, respectively. As shown in
scatterplots of Figure 2C, Seq-GraphReg achieves R=0.285 and
MSE=2.61 in expressed genes, compared to very poor R=0.03
and MSE=3.9 for Seq-CNN. Scatterplots of true versus predicted
log-fold change by Epi-GraphReg and Epi-CNN are shown in
Supplemental Figure S13, with R=0.561 and MSE=1.94 for Epi-
GraphReg and R=0.535 and MSE= 2.08 for Epi-CNN. Overall,
these results confirm that using 3D chromatin interactions in
GraphReg leads to improved gene expression prediction.

We investigated how well the cell type–agnostic Epi-
GraphReg and Epi-CNN models can generalize from one cell
type to another. Figure 2D shows the box plots of loss (NLL)
when we train on one cell type (K562 or GM12878) and test on
the other, using 10 cross-validation runs with distinct sets of vali-
dation chromosomes (held out from training and used to assess
performance in the test cell type). Epi-GraphReg significantly out-
performs Epi-CNN (P<10−4, Wilcoxon signed-rank test) for gener-
alization from K562 to GM12878 and vice versa in all categories
except one: all genes fromGM12878 toK562. Example scatterplots
for these cross-cell-type and cross-chromosome generalization
tasks show the improvement of Epi-GraphReg over Epi-CNN
(Fig. 2D): when training on K562withHiChIP (FDR=0.1) and test-
ing on GM12878 with HiChIP (FDR=0.1), Epi-GraphReg attains
R =0.607 and NLL=353.22, whereas Epi-CNN yields R= 0.578
andNLL=389.52 for expressed genes. The effect of 3D assay choice
and FDR values for cross-cell-type generalization is examined in
Supplemental Figures S14–S16, where we see that the best and
most robust generalization happens when we use H3K27ac
HiChIP in both train and test cell types or HiChIP in train and
Hi-C in test cell types, and theworst and least robust generalization
performance occurs when we use Hi-C in train and HiChIP in test
cell types. One reason for this phenomenon could be that HiChIP
interactions, which are enriched for enhancer–promoter interac-
tions, are more generalizable between cell types than Hi-C interac-
tions, which depend strongly on the depth of coverage and library
complexity and may be dominated by structural interactions in
lower coverage data sets. Similarly to K562→GM12878, when
training on GM12878 with HiChIP (FDR=0.001) and testing on
K562 with HiChIP (FDR=0.1), Epi-GraphReg attains R=0.563
and NLL= 389.71 compared to R=0.585 and NLL=425.91 for
Epi-CNN on expressed genes (Supplemental Fig. S16).

Normalization of epigenomic tracks is very critical in cross-
cell-type experiments because sequencing depths can create unde-
sired batch effects and prevent good generalization to the unseen
cell types. For the results shown in Figure 2D and Supplemental
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Figures S14–S16, we used DESeq-like normalization between K562
andGM12878 for each pair of epigenomic tracks.We also tried an-
other normalization called reads per genomic coverage (RPGC) or
1× normalization from deepTools (Ramírez et al. 2016), and we
evaluated the generalization performance across three cell lines:
K562, GM12878, and hESC. Supplemental Figures S17–S22 show
the generalization performance from cell type x to the cell type y
(x→ y), where x and y (x≠ y) could be any of K562, GM12878, or
hESC. We used Hi-C and HiChIP graphs in K562 and GM12878,
and Micro-C and HiCAR graphs in hESC, all with the FDR of 0.1.
Overall, the generalization of Epi-GraphReg is better than Epi-
CNN in terms of having lower NLL and higher R. However, the
generalization performance varies using different 3D assays in
train and test cell types. In each x→ y experiment, the scatterplots
for one of the best performing pairs of 3D assays are shown in
Supplemental Figures S17–S22.

We also wanted to determine the classes of genes for which
GraphReg’s predictions are better than those of CNN models and
thus understand the genes for which 3D information gives the
most benefit. To this end, we defined a simple metric called
DeltaNLL=NLLCNN−NLLGraphReg. If DeltaNLL>0 for a gene, it means
that GraphReg’s prediction is better thanCNN for that gene, and if
DeltaNLL<0 fora gene, itmeans thatCNN’s prediction isbetter than
GraphReg for that gene. We produced scatterplots of DeltaNLL ver-
sus the number of interactions for all expressed genes in all four
cell types—GM12878, K562, hESC, and mESC—and for both se-
quence-based (Seq-GraphReg and Seq-CNN) and epigenome-based
(Epi-GraphReg and Epi-CNN) models (Supplemental Figs. S6–S11,
S15–S22). The majority of genes have positive DeltaNLL, especially
the ones with non-zero interactions. Furthermore, the number of
genes with positive DeltaNLL is higher in sequenced-based models,
showing the greater advantage of using 3D information and
GraphReg when predicting fromDNA sequence. We have also list-
ed in Supplemental Figures S23–S30 the top genes for which either
GraphReg or CNN predicts better.

GraphReg accurately identifies functional enhancers of genes

Thanks to the feature attribution methods for machine learning
models—for example, saliency maps (gradient-by-input), Deep-
LIFT (Shrikumar et al. 2017), DeepSHAP (Lundberg and Lee
2017), and Integrated Gradients (Sundararajan et al. 2017)—it is
possible to derive the important input features for the prediction
of a specific output. BecauseGraphReg allows each gene to be influ-
enced by its potential enhancers through interactions in the 3D
graph, we hypothesized that feature attribution analysis would al-
low the identification of functional distal enhancers, that is, those
that contribute to the regulationof target genes.CRISPRi-FlowFISH
(Fulco et al. 2019) is a recent enhancer screening approach thatuses
KRAB-dCas9 interference with candidate enhancer regions in
pooled fashion and RNA FISH against a gene of interest as readout;
this enables estimation of the effect size of perturbing each candi-
date enhancer on target gene expression. The developers of
CRISPRi-FlowFISH introduced a score called activity-by-contact
(ABC) for findingand rankingenhancers of a gene,which is consid-
ered the current state-of-the-art for this problem. The ABC score is
the product of “activity,” defined as the geometric mean of DNase
and H3K27ac signal in each candidate enhancer region, and “con-
tact,” defined by the KR-normalizedHi-C signal between the target
promoter and the candidate enhancer, normalized so that the
ABC scores of all candidate enhancers up to 5 Mb from the gene
sum to one.

To determine functional enhancers for genes, we used two
feature attribution methods: the saliency map (gradient-by-input)
and DeepSHAP (Lundberg and Lee 2017). For the epigenome-
based models (Epi-GraphReg and Epi-CNN), as the inputs are
binned at 100-bp resolution, both saliency and DeepSHAP scores
are computed at 100-bp resolution as well. We used all-zero data
as the reference signal for DeepSHAP so that it can evaluate the im-
portance of peak regions in the input tracks. For the sequence-
based models (Seq-GraphReg and Seq-CNN), the feature attribu-
tion methods can provide scores at nucleotide resolution.
However, for enhancer scoring and validationwith FlowFISH anal-
ysis, as suggested in Basenji (Kelley et al. 2018), we derived the sali-
ency maps as the dot product of the 100-bp bin representations
(bottleneck) and the gradient of the model prediction for the
gene with respect to those bin representations. Figure 3A shows
the distribution of area under the precision-recall curve (auPR) val-
ues for 19 genes from the K562 FlowFISH data set with more than
10 candidate enhancers for all models. The overall precision-recall
curve across 2574 enhancer-gene (E-G) pairs for all 19 genes is
shown in Figure 3B. HiChIP (FDR=0.1) was used for GraphReg
in these experiments. These results confirm that feature attribu-
tion applied to GraphReg models more accurately identifies the
functional enhancers of the genes from a pool of candidate en-
hancers than the ABC score or feature attribution on the corre-
sponding CNN models (Fig. 3A,B). The highest auPR among
GraphReg models was 0.4236 (Epi-GraphReg with saliency), out-
performing the best CNN model (auPR 0.366 for Epi-CNN with
saliency) and ABC (auPR 0.364).

To assess the ability of models to find distal enhancers, we ex-
amined the example of MYC and considered only candidate en-
hancers more than 10 kb from TSS. There are 200 such candidate
distal enhancer-gene (DE-G) pairs for MYC, including eight true
functional enhancers. Precision-recall analysis for MYC (Supple-
mental Fig. S31A) found the highest auPR of GraphReg models to
be 0.576 (Epi-GraphReg with DeepSHAP), strongly outperforming
the best CNN model (auPR 0.0792, Epi-CNN with DeepSHAP) as
well as ABC (auPR 0.3567). Visualization of the feature attribution
scores gives insight into how 3D information allows GraphReg to
access distal regulatory information that dilated CNNs cannot ex-
ploit, despite their large receptive field. Figure3E showsa2.5Mbge-
nomic region containing the MYC locus, with the corresponding
epigenomic data, HiChIP graph edges, and true and predicted
CAGEsignals byGraphReg andCNNmodels inK562cells, together
with DeepSHAP and saliency scores of the four models for MYC,
andABCscores andFlowFISH results forMYC. Largenegative scores
in the FlowFISH track indicate true functional enhancers forMYC.
Feature attribution tracks in Figure 3E show that GraphRegmodels
are able to capture themost distal enhancers ofMYC (green boxes),
about 2 Mb away from its TSS, but the CNNmodels fail to capture
these enhancers and produce false negatives (red boxes).

We further evaluated GraphReg using recent chromosome-
wide enhancer screening data from targeted perturb-seq (TAP-
seq) for Chromosomes 8 and 11 in K562 cells (Schraivogel et al.
2020). We restricted to the 35 genes with at least one functional
enhancer, considering all screened enhancers whose distance
from the target gene TSS is <2Mb. Figure 3C shows the distribution
of auPR for these 35 genes. Similar to CRISPRi-FlowFISH results
(Fig. 3A), GraphReg models have better median auPR than ABC
scores or the CNN models using either DeepSHAP or saliency as
the feature attribution method. Pooling all the E-G pairs of these
35 genes (4423 E-G pairs in total), precision-recall analysis (Fig.
3D) shows that the highest auPR for the GraphReg models is
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Figure 3. GraphReg models more accurately identify functional enhancers of genes. (A) Distribution of the area under the precision-recall curve (auPR)
for 19 genes in K562 cells based on CRISPRi-FlowFISH data. GraphReg models have higher median of auPR than both CNN and activity-by-contact (ABC)
models. (B) Precision-recall curves of the GraphReg, CNN, and ABC models for identifying enhancers of 19 genes screened by CRISPRi-FlowFISH. (C)
Distribution of auPR for 35 genes in K562 cells based on TAP-seq data. GraphReg models have higher median of auPR than both CNN and ABC models.
(D) Precision-recall curves for the GraphReg, CNN, and ABC models for identifying functional enhancers of 35 genes as determined by TAP-seq. (E) MYC
locus (2.5 Mb) on Chr 8 with epigenomic data, true CAGE, predicted CAGE using GraphReg and CNNmodels, HiChIP interaction graph, and the saliency
maps of the GraphReg and CNNmodels, all in K562 cells. Experimental CRISPRi-FlowFISH results and ABC values are also shown forMYC. Feature attribu-
tion shows that GraphReg models exploit HiChIP interaction graphs to find the distal enhancers, whereas CNN models find only promoter-proximal en-
hancers. Green and red boxes show true positives and false negatives, respectively. CNN models miss the distal enhancers and consequently lead to false
negatives in very distal regions.
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0.435 (Epi-GraphReg with saliency), outperforming the best CNN
model (auPR 0.3936) and ABC (auPR 0.395).

As another example of distal enhancer discovery in the TAP-
seq data set, we considered screened enhancers more than 20 kb
from TSS of IFITM1 (79 distal DE-G pairs, five true functional en-
hancers). Precision-recall analysis for IFITM1 shows that the high-
est auPR among theGraphRegmodels is 0.894 (Epi-GraphRegwith
saliency), compared to 0.635 for the best CNN model (Epi-CNN
with DeepSHAP) and 0.751 for ABC (Supplemental Fig. S31B).
We also plotted a 250-kb genomic region containing the IFITM1
locus, with the corresponding K562 epigenomic data, HiChIP
graph edges, true and predicted CAGE signals by GraphReg and
CNN models, feature attribution scores for IFITM1, ABC scores
for IFITM1, and TAP-seq results for IFITM1 (Supplemental Fig.
S31C). Large negative scores in the TAP-seq track indicate true
functional enhancers of IFITM1. Here, all GraphReg, CNN, and
ABC models are able to capture the distal enhancers of IFITM1
(green boxes), but the CNN models also capture many nonfunc-
tional enhancers as false positives (red boxes).

Seq-GraphReg predicts the direct targets of transcription factor

perturbations via motif ablation

To assess whether Seq-GraphReg captures meaningful transcrip-
tion factor (TF)motif information, we asked whetherwe could pre-
dict differential gene expression in TF perturbation experiments by
applying our model to genomic sequences where the TF’s binding
motif had been ablated. We downloaded RNA-seq data for 51
CRISPRi TF knockout (KO) experiments in K562 cells from
ENCODE and retained 29 experiments for which at least 200 genes
were significantly down-regulated. Using two trained models each
for Seq-GraphReg and Seq-CNN, we predicted gene expression us-
ing wild-type genomic sequences and sequences in which hits of a
given TF motif had been zeroed out, then performed differential
expression analysis on these values to predict the 100 most
down-regulated target genes for the corresponding TF KO experi-
ment (Methods). To have confident true labels, we restricted this
analysis to genes that have true significant differential expression
(up- or down-regulated) in the real respective TF KO experiments
and that also have a wild-type CAGE value of at least 20.

Figure 4A shows the distributions of true mean logFC of the
100 predicted target genes over all TFs for the Seq-GraphReg
and Seq-CNN models. As a baseline, we report the distribu-
tion of true mean logFC over all significantly differential genes
(Padj<0.05). This baseline actually shows the average performance
of a random algorithm that chooses 100 genes randomly out of all
significantly differential genes. We also show the corresponding
distributions after restricting to predicted genes with n≥5, where
n denotes the number of 3D interactions. In both settings, Seq-
GraphReg’s predicted target genes are significantly more down-
regulated than those of Seq-CNN’s or than baseline performance
(Wilcoxon signed-rank test on distributions of mean logFC val-
ues). Figure 4B shows the heatmaps of the true mean logFC of
the top 100 predicted genes by Seq-GraphReg and Seq-CNN for
each TF, for n≥0 and n≥5. For the majority of TFs, the mean
logFC of Seq-GraphReg’s predicted targets is more negative than
that of Seq-CNN’s predicted targets, validating the improved per-
formance of Seq-GraphReg for identifying true down-regulated
genes. Figure 4C shows the distributions of the precision (fraction
of true significantly down-regulated genes among the 100 pre-
dicted genes) for all TFs for Seq-GraphReg and Seq-CNN, for n≥0
and n≥5. As baseline, we report the fraction of significantly

down-regulated genes (Padj<0.05 and logFC<0) over all signifi-
cantly differential genes (Padj<0.05), for each TF. This baseline
shows the average performance of a random algorithm. Again,
the precision values are always highest for Seq-GraphReg and sig-
nificantly greater than for Seq-CNN and baseline (Wilcoxon
signed-rank test). Figure 4D shows this data in heatmap form, con-
firming that for the majority of TFs, the precision for Seq-
GraphReg is higher than for Seq-CNN.

Figure 4E depicts a visual example of predicting the effect of
JUNDKOon the geneTCF3 in K562.TCF3 is among the top 20 pre-
dicted genes of Seq-GraphReg for the JUND TF (Supplemental Fig.
S32A), and CRISPRi KO of JUND leads to significant down-regula-
tion of TCF3. Figure 4E shows JUND motif hits (blue bars) around
TCF3, indicating the motifs ablated for in silico prediction, along
with JUND ChIP-seq data in K562 cells, demonstrating that the
motif hits indeed decrease in JUND ChIP-seq peaks. To see if
Seq-GraphReg can identify the JUND motifs in distal enhancers,
we did the following. First, we chose two distal enhancers (indicat-
ed in Fig. 4E by A and B) of the gene TCF3 with direct (one-hop)
enhancer–promoter interactions in the HiChIP graph. Enhancers
with direct interactions will have a bigger effect size on gene ex-
pression upon mutation. We also visualize graph heatmaps (adja-
cency matrices) instead of loops to facilitate viewing the
interactions. Second, we used in silico mutagenesis (ISM) for fea-
ture attribution. We performed ISM on Seq-GraphReg trained
with fast Fourier transform (FFT) loss to get more meaningful
and interpretable motifs. We have borrowed the idea of adding
FFT loss from a recent study (Tseng et al. 2020). We used FFT in
the separate training scheme of Seq-GraphReg instead of end-to-
end training owing to GPU memory limitation. Figure 4E shows
in silico mutagenesis results for the two distal enhancer regions
A (1.08 Mb downstream) and B (1.29 Mb upstream) of the gene
TCF3, whose interactions with the TCF3 promoter are marked by
blue circles in the HiChIP graph. The promoter of TCF3 is specified
by a green line, and the enhancers A and B are specified by red
lines. ISM is performed in 100-bp regions of enhancers A and B,
each centered at a JUNDmotif. The ISM heatmaps show the differ-
ence in predictions (mutated – reference) after applying amutation
at each nucleotide. The heatmaps around the JUNDmotif in both
enhancers A and B are blueish,meaning that ISM identifies the im-
portance of the JUNDmotif in these regions for target gene expres-
sion prediction. In other words, mutations in the JUND motif in
distal enhancers A and B lead to a reduction in predicted expres-
sion, showing the positive effect of these distal JUND motifs on
the expression of TCF3. The base-level representations of ISM
scores are the negative summation of all four scores (only three
are non-zero) at each nucleotide, which identify the JUNDmotifs.

Overall, these results show that Seq-GraphReg models can
better capture the regulatory relationships of TFs and genes than
Seq-CNN models. This validates the primary motivation for our
model—namely, that TFs can regulate their target genes by bind-
ing distal enhancers that loop to target promoters, and that these
regulatory effects cannot be effectively learnedwithout 3D interac-
tion data. GraphReg is therefore the model of choice to capture
complex gene regulatory relationships. To further show the poten-
tial of Seq-GraphReg for decoding gene regulation, we looked at
the feature attributions of the 100 best predicted complex genes
(having high numbers of E–P interactions) in GM12878, K562,
and hESC and identified distal TFmotifs that play a role in regulat-
ing those genes. Supplemental Figures S33–S38 show the most en-
riched distal (at least 20 kb away from the TSS) TF motifs and their
contributions in regulating their target genes in each cell type
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Figure 4. Seq-GraphReg accurately predicts the regulatory effects of transcription factor knockouts by in silico motif ablation. (A) Distributions of true
mean logFC (over 100 predicted target genes) over all TFs for Seq-GraphReg, Seq-CNN, and baseline for n≥0 and n≥5, where n denotes the number of
enhancer–promoter (E–P) interactions. The median of true mean logFCs for predicted genes by Seq-GraphReg is negative, and the distribution is signifi-
cantlymore down-regulated than that of Seq-CNN and baseline (Wilcoxon signed-rank test). (B) Heatmaps of the truemean logFCof the top 100 predicted
genes by Seq-GraphReg and Seq-CNN for each TF, for n≥0 and n≥5. For the majority of TFs, themean logFC of Seq-GraphReg’s predicted targets is more
negative than that of Seq-CNN’s targets. (C) Distributions of precision values (fraction of true significantly down-regulated genes among 100 predicted
genes) of all TFs for Seq-GraphReg, Seq-CNN, and baseline, for n≥0 and n≥5. The precision is always highest in Seq-GraphReg and significantly greater
than for Seq-CNN and baseline (Wilcoxon signed-rank test). (D) Heatmaps of precision values (fraction of true significantly down-regulated genes among
the top 100 predicted genes) for Seq-GraphReg and Seq-CNN for each TF and for n≥0 and n≥5. For the majority of TFs, the precision of Seq-GraphReg is
higher than Seq-CNN. (E) A visual example of the effect of JUND KO on the gene TCF3. JUNDmotif hits around TCF3 are plotted in blue bars. The promoter
of TCF3 is indicated by green lines, and two distal enhancers A (1.08 Mb downstream) and B (1.29 Mb upstream) of the gene TCF3 by red lines. The in-
teractions of enhancers A and B with the promoter of TCF3 in HiChIP graph are marked by blue circles. In silico mutagenesis (ISM) is performed in 100-bp
regions of enhancers A and B, each centered at a JUND motif, and the ISM heatmaps are shown. The heatmaps show the difference in predictions
(mutated− reference) after applying amutation at each nucleotide. The heatmaps around the JUNDmotif in both enhancers A and B are blueish, indicating
the importance of JUNDmotif in these regions for TCF3 expression prediction. The base-level representations of ISM scores are the negative summation of
all four scores (only three are non-zero) at each nucleotide.
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(Methods). Such motif analysis results are interesting in that they
provide insights about the interplay between the distal TF motifs
and their target genes. Although these results are at this stage
just predictions by the Seq-GraphReg model, it would be interest-
ing to pursue experimental validation by deletion of the identified
distal TFmotifs and assessing the resulting effect on target gene ex-
pression.We hope to perform such validation experiments in oth-
er biologically relevant systems in the near future.

Discussion

Until now, machine learning models for the genome-wide predic-
tion of gene expression in a given cell state, or gene expression
changes in a cell state transition, have largely relied on 1D epige-
nomic data and/or genomic DNA sequence without using 3D ge-
nomic architecture. Prior models include regularized linear
regression approaches (González et al. 2015; Osmanbeyoglu
et al. 2019) as well as more recent work using convolutional neural
networks (Singh et al. 2016; Kelley et al. 2018; Zhou et al. 2018;
Agarwal and Shendure 2020; Avsec et al. 2021a). However, previ-
ous linear models used a fixed assignment of regulatory elements
to genes without incorporating 3D interaction data, whereas cur-
rent deep learning models consider relatively local features (such
as promoters and at most nearby enhancers) and therefore cannot
capture the impact of distal regulatory elements, which can be 1
Mb or farther away from gene promoters. Two previous studies
tried to use 3D data to predict gene expression (Zeng et al. 2019;
Bigness et al. 2022) but did not address important aspects of mod-
eling gene regulation. The most directly relevant one, GC-MERGE
(Bigness et al. 2022), uses histone modifications and Hi-C data to
predict gene expression (RNA-seq) using graph convolutional net-
works (GCN); however, this model does not provide any new in-
sights about regulation of genes, such as finding functional
enhancers or revealing the regulatory role of TF binding motifs.
Our proposed method, GraphReg, is the most comprehensive
and versatile model that is capable of revealing mechanistic infor-
mation on gene regulation. We have provided the properties of
previous deep learning models for gene expression prediction in
Supplemental Table S1. The comparisons of GraphReg with these
methods in terms of Pearson’s correlation (R) of predicted versus
true gene expression values are provided in Supplemental Tables
S2, S3, and Supplemental Figure S12.

We have shown that GraphReg more effectively models the
impact of distal enhancers on gene expression than 1D dilated
CNNs. Although dilated CNNs have a large receptive field, our fea-
ture attribution analyses show that only relatively promoter-prox-
imal information influences gene expression prediction in these
models. In contrast, GraphReg exploits 3D chromatin interactions
to access distal information up to 2Mb from the gene promoter. In
other words, GraphReg adds inductive bias from biology to the
deep predictive model, which converts a black-box model attend-
ing to everywhere to a more focused model attending to relevant
regions.

An alternative attention-based methodology for learning
long-range interactions in sequential input is the transformer, a
model that provides state-of-the-art performance in machine
translation and other natural language processing tasks (Vaswani
et al. 2017). A recent work, Enformer (Avsec et al. 2021a), intro-
duced a transformer model for the prediction of CAGE as well as
epigenomic tracks from genomic sequence. Currently, however,
this transformer-based architecture can integrate information up
to 100 kb away in the genome, an order of magnitude less than

GraphReg, while requiring considerable computational resources
to train. GraphReg’s use of 3D interaction data through graph at-
tention networks therefore provides an efficient and biologically
well-motivated means to encode distal regulation.

We showed that Seq-GraphRegmeaningfully encodes TFmo-
tif binding information by performing motif ablation experi-
ments, in which predicted differential gene expression based on
ablated versus wild-type genomic sequences recovered true regula-
tory effects as measured by CRISPRi TF knockout experiments. A
longer-term goal of this work is to model the impact of distal reg-
ulatory variants on gene expression, extending efforts to predict
the regulatory impact of promoter-proximal genetic variants
(Zhou et al. 2018). We anticipate that it will be critical to
train such models using true genetic sequence variation and ex-
pression in disease-relevant cellular contexts as these data become
available.

Although we currently use GraphReg to predict bulk CAGE-
seq counts with Poisson loss, other transcriptomic assays could
be explored in future work. For example, suitably processed na-
scent transcription assays such as GRO-seq would yield a quantifi-
cation of promoter activity as well as enhancer RNA expression
and could potentially be used to train GraphReg models. We also
envision extensions to single-cell multi-omic data sets—training
at the pseudo-bulk level where signals are aggregated over cell clus-
ters or metacells, or even at the single-cell level. Here, (aggregated)
scRNA-seq gives a tag-based output signal similar to CAGE-seq.
Therefore, we anticipate that GraphRegmodels will have broad ap-
plicability for interpreting the function of epigenomic and geno-
mic variation on gene expression.

Methods

Epigenomic data processing

We use bigWig coverage tracks for epigenomic data. We acquired
these tracks in three ways: (1) by downloading the processed
bigWig files from the ENCODE portal; (2) by using the bam_cov.py
script from Basenji (Kelley et al. 2018), which reads in the BAM
alignment file and generates the bigWig files; and (3) by using
the bamCoverage command from deepTools (Ramírez et al. 2016),
which reads in a BAMalignment file and returns the bigWig file us-
ing different normalization schemes.We used 1× normalization or
reads per genome coverage (RPGC), which normalizes the cover-
age tracks by sequencing depth. For cross-cell-type analyses in
which we train on one cell type and test on another one, the nor-
malization of epigenomic coverage tracks is critical to avoid any
undesired batch effects. We used two different normalizations
for this purpose: (1) RPGC, and (2) DESeq-like normalization.
We bin the epigenomic tracks at 100 bp, get the coverage in each
bin, and apply log-normalization using the function log2(x+ 1).
This log-normalization is performed for the epigenome-based
models in which the epigenomic data are inputs to the models.

CNN layers for learning local representations of 1D data

The inputs to the first layer of the Epi-GraphReg (Epi-CNN) and
Seq-GraphReg (Seq-CNN) models are 1D epigenomic data and ge-
nomic DNA sequence, respectively. Regardless of the 1D input
type, we use several CNN layers followed by ReLU activation,
BatchNorm, dropout, and max-pooling to learn local representa-
tions for 5-kb bins of the genome (Supplemental Fig. S1). We con-
sider genomic regions of 6 Mb in length as our input; hence, we
have vectors of size N=1200, representing 5-kb bins over the 6-
Mb region, for CAGE values. We bin the epigenomic data at 100-
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bp resolution; therefore, the length of each epigenomic input vec-
tor would be 60,000. In the GraphReg models, we define the set of
local representations by H= {h1, h2, …, hN}, where hi∈RF and F=
128 is the channel number of the last CNN layer just before the
GAT block. Then H is given to the GAT block, which is a type of
graph neural network (GNN) (Kipf and Welling 2017; Veličkovic ́
et al. 2018; Xu et al. 2019), where hi is the node feature of node
i. To make the comparisons fair, in Epi-CNN and Seq-CNNmodels
we use eight layers of dilated CNNs with residual connections
(Kelley et al. 2018; Avsec et al. 2021b) to increase the receptive
fields up to 2.5 Mb upstream and downstream from gene TSSs,
where the dilation rate is multiplied by 2 at each layer. In the se-
quence-based models (Seq-GraphReg and Seq-CNN) we also pre-
dict epigenomic data to guide the models to learn informative
local motif representations; after the first five CNN layers, where
the resolution is 100 bp, we use six layers of dilated CNNs with re-
sidual connections to predict three epigenomic assays, H3K4me3,
H3K27ac, and DNase, at 100-bp resolution (Supplemental Fig. S1).
The learned local features just before six dilated CNN layers are
called bottleneck representations that are passed through some
CNN layers with max-pooling to bring the resolution to 5 kb
and then are given to GAT block in Seq-GraphReg (and eight layers
of dilated CNN in Seq-CNN) to predict the CAGE (Supplemental
Fig. S1).

Graph attention networks for integration of local features

via 3D interaction data

We use the graphs extracted from 3D data (Hi-C, HiChIP, Micro-C,
HiCAR) to capture gene regulatory interactions and predict gene
expression (CAGE-seq). We processed 3D data sets at 5 kb resolu-
tion using HiC-DC+ (Carty et al. 2017; Sahin et al. 2021) and
kept only the significant interactions with three significance levels
of FDR less than 0.1, 0.01, and 0.001. The nodes in the extracted
graphs therefore represent 5-kb genomic bins, and the edges indi-
cate the most significant interactions between bins. Each 6-Mb ge-
nomic input region thus corresponds to a graph with N=1200
nodes whose features H= {h1, h2, …, hN} have been learned in the
previous CNN block.

The graph attention network (GAT) block receives a graph G=
(V, E) and a set of node features Ht = {ht

1, h
t
2, . . ., h

t
N } from the pre-

vious layer t and outputs an updated set of node features
Ht+1 = {ht+1

1 , ht+1
2 , . . ., ht+1

N }. Each GAT layer uses twoweight matri-

ces:Wt
p [ RF′×F for promoters (or self-nodes) andWt

e [ RF′×F for en-
hancers (or neighbor nodes), where F

′
is the number of output

features in each GAT layer. The importance of distinct enhancers
on a promotermight be different. In the case ofGCNs, all enhancers
are treated as of equal importancebecause all the E–Pweights are the
same. However, by using GAT, we give the model the ability to ad-
just the weights of different enhancers based on their importance
for the task of predicting expression of a specific gene. Therefore,
the GAT formulation makes more biological sense for our problem.
Here, unlike previous graphneural networks (Veličkovic ́ et al. 2018),
we donot include self-loops in the graphG.Wehave decoupled self-
loops and neighbor-loops because of the differing role of promoters
and enhancers in the model. By only including the neighbor-loops
in the graph G, the model focuses on distal enhancers that cannot
be captured in local models such as CNNs.

Wedefine the self-attentionmechanism fromnode j to node i
at layer t as

bt
ij = s((atp)

TWt
ph

t
i + (ate)

TWt
eh

t
j ), (1)

where atp [ RF′ and ate [ RF′ are two weight vectors, σ(.) is the sig-
moid function, bt

ij [ R is the attention weight from node j to

node i at layer t, and T denotes the transpose of a vector. By using
a sigmoid function instead of a conventional softmax function, we
give extra freedom to the model to discard irrelevant and nonen-
hancer interactions. We also account for the cardinality of the
nodes by defining at

i = s(at
�����
|N i|

√
+ bt ), where at [ RF′

and
bt [ RF′ are two weight vectors. Finally, we define the updates of
the node features at the next layer as

ht+1
i = f at

i ◦ Wt
ph

t
i +

∑
j[N i

bt
ijW

t
eh

t
j

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠, (2)

where f is a nonlinearity function and ° is the element-wise prod-
uct, N i is the set of neighbors of node i (not including itself), and
|N i| is the number of neighbors of node i. We use an exponential
linear unit (ELU) for f. As in Veličković et al. (2018), we use K heads
and concatenate the features as

ht+1
i = ||Kk=1f at,k

i ◦ Wt,k
p ht

i +
∑

j[N i
bt,k
ij W

t,k
e ht

j

( )( )
(3)

where ‖Kk=1 means concatenation of K independent heads.
Therefore, ht+1

i will have KF
′
features for i∈ {1, …, N} and t∈ {1,

…, L}, where L is the number of GAT layers.
In Equation (3), the updated feature ht+1

i at bin i is also a func-
tion of the number of its neighbors, namely, |N i|. The impact of
node cardinality on its feature is nontrivial by adding at,k

i in
Equation (3). We mentioned that Epi-GraphReg models are cell
type–agnostic, meaning that they can be generalized from one
cell type to another one. When we want to train the Epi-
GraphReg models on some cell types and test them on other un-
seen cell types, this might lead to performance degradation if the
distributions of node cardinality of graphs in the train and test
cells are different. This could happen for many reasons, including
the library sizes or FDR levels of Hi-C, HiChIP, Micro-C, or HiCAR
data from which we extract the graphs. For example, in our exper-
iments, we noticed this discrepancy between the graphs of
GM12878 and K562 cells. To solve this and improve the generali-
zation performance, we normalize the attention weights of each
node i such that the summation of all the attention weights be-
comes one and we remove the cardinality parameter at,k

i . As
such, the normalized updates of GAT layers can be written as

ht+1
i = f ht

iiW
t
ph

t
i +

∑
j[N i

ht
ijW

t
eh

t
j

⎛
⎝

⎞
⎠, (4)

where ht
ii =

1
1+∑

j[N i
bt
ij
is the attention coefficient of node i (or

promoter coefficient) and ht
ij =

bt
ij

1+∑
j[N i

bt
ij
is the attention coef-

ficient from node j to node i (or enhancer coefficient). We see that
ηij∈ [0, 1] for all i, j∈ {1, …, N} and all the attention coefficients of
each node i sum up to one:

∑
j[N i<{i} h

t
ij = 1. Similar to Equation

(3), when having K heads, the normalized updates would be

ht+1
i = ||Kk=1f ht,k

ii W
t,k
p ht

i +
∑

j[N i
ht,k
ij W

t,k
e ht

j

( )
, (5)

Because the second formulation in Equation (5) ismore robust, it is
used as the default choice for the GraphReg models.

Poisson regression and loss function

After the GAT layers in GraphReg models, the last layer before the
predictions is awidth-1 CNN layer (equivalent to a fully connected
layer) with exponential nonlinearity to predict the CAGE value at
each bin. As the CAGE values are counts, we used Poisson
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regression, meaning that the expected value of each (CAGE) out-
put given the inputs is the mean of a Poisson distribution.

For the Epi-GraphReg model, we let X denote the 1D epige-
nomic inputs for a 6-Mb region, G the corresponding graph, Y=
[y1, …, yN] the observed CAGE signal across 5-kb bins, and
f ui (X, G) the predicted CAGE signal for the bin i, where θ represents
parameters of themodel. Nowwe assume that yi|X, G � Poisson(li),
where li = f ui (X, G) and E(Y|X, G) = f u(X, G). Hence, the loss func-
tion is the negative log-likelihood of the Poisson distribution,

LE = 3
N

∑2N/3

i=N/3

(logG(yi + 1)+ f ui (X, G)− yi log f ui (X, G)), (6)

where Γ(.) is the gamma function. We train our model for the mid-
dle one-third region (2Mb ormiddleN/3 bins) instead of thewhole
6-Mb region (allN bins) in each batch. Becausewe include 3D inter-
actions of genomic distance up to 2Mb, promoters in themiddle 2-
Mb region can see the effects of distal enhancers in the full 6-Mb in-
put region. In the test phase we also restrict to predictions on the
middle 2-Mb regions.We shift input regions by 2Mbacross genome
so there is no overlap between predictions in two different batches.
Depending on thenumber of GAT layers used,we can see the effects
of enhancers via multi-hop interactions up to 4 Mb away from the
promoters. If we have LGAT layers, message passing is done L times
over the graph, and the promoters will see the effects of enhancers
up to L hops.

For the Seq-GraphReg model, we also predict the 1D epige-
nomic datawith a resolution of 100 bp after the dilated CNN layers
from DNA sequence. Here, we let X denote the DNA sequence of
the 6-Mb input region, G the corresponding graph,
Ye = [ye1, . . ., y

e
N ′ ] the observed 100-bp epigenomic inputs (over N

′

=60, 000 bins), and gei (X) the predicted epigenomic signal e for
the bin i. The loss for each epigenomic signal e is given by

Le
S =

1
N ′

∑N ′

i=1

(logG(yei + 1)+ gei (X)− yei log g
e
i (X)), (7)

and the CAGE loss Lcage
S , similar to Equation (6), can be written as

Lcage
S = 3

N

∑2N/3

i=N/3

(logG(yi + 1)+ f ui (H
w, G)− yi log f ui (H

w, G)), (8)

where Hw is the bottleneck representation just before dilated CNN
layers (shown by a star [w] in Supplemental Fig. S1) at 100-bp res-
olution. The final loss function to be minimized is the convex
combination of the CAGE loss and the epigenomic losses,

LS = lLcage
S + (1− l)

∑3
e=1

Le
S, (9)

where λ is a hyperparameter to control the weights of the CAGE
loss versus the epigenomic losses. We use a sigmoid-like schedule

for λ given by l = max 0.01,
1

1+ exp(−(epoch− 10))

( )
, which

starts with a small value λ= 0.01 and approaches a value close to
one at higher epochs. This schedule lets the model first learn
meaningful motif representations from DNA sequences to predict
the epigenomic data and then puts higher weights on predicting
the CAGE signals from those motif representations at 100-bp reso-
lution.NLL in all figures refers to LE and Lcage

S for epigenome-based
and sequence-based models, respectively.

End-to-end versus separate training of Seq-GraphReg

Seq-GraphReg as shown in Supplemental Figure S1 is an end-to-
end model with two main tasks: (1) epigenomic tracks are predict-
ed from DNA sequences; and (2) CAGE is predicted from the bot-
tleneck representation Hw learned in the first task. For end-to-
end training, we need to load the entire 6-Mb DNA sequence to
the GPU memory, and this can limit our capability to use more
CNN filters in the first layers to learn a richer bottleneck represen-
tation. Therefore, the overall CAGE prediction might be sacrificed
because of GPU memory limitations. To resolve this problem, we
propose another scheme for training Seq-GraphReg, which we
call separate training. The separate training works as follows.
First, we perform task (1) to predict the epigenomic data from
DNA sequences of length 100 kb. Then, we freeze the learned pa-
rameters of the CNN layers and get the bottleneck representations
Hw, which are at 100-bp resolution. Finally, we useHw as the input
to the second block (Supplemental Fig. S1) to predict the CAGE
values. The second block has several CNN and max-pool layers
to bring the resolution to 5 kb, and then it is given to three GAT
layers to predict the CAGE values.

We have shown that separate training on K562 outperforms
end-to-end training in terms of CAGE prediction performance.
The reason for the improvement is that in separate training, we
use 100-kb DNA sequences (instead of 6Mb), so we do not exhaust
GPU memory and thus can use more CNN filters to learn richer
bottleneck representations that consequently lead to superior
gene expression prediction. However, this prediction improve-
ment comes at the cost of losing base-pair level saliency scores
via backpropagation. The reason for this is that to get the gradient
of the output CAGE with respect to the input DNA sequence via
backpropagation, we need an end-to-end model from input to
the output. Nevertheless, we can use perturbation-based feature at-
tribution methods such as in silico mutagenesis (ISM) for the sep-
arately trained Seq-GraphReg models (as was performed and is
shown in Fig. 4E). However, backpropagation-based feature attri-
bution methods, such as gradient-by-input and DeepSHAP, are
much faster than ISM. Overall, there is a trade-off between better
prediction performance (achieved by separate training) and hav-
ing fast backpropagation-based feature attribution capability
(achieved by end-to-end training).

Dilated CNN layers and FFT loss in Seq-GraphReg

In separate training of Seq-GraphReg, we also studied the effects of
using dilated CNN layers and also adding FFT loss to get better mo-
tif interpretations. In task (1) of separate training, wherewe predict
epigenomic data from DNA sequence, we removed the residual di-
lated CNN layers and instead used three CNN layers after the bot-
tleneck H

w

for each task of predicting H3K4me3, H3K27ac, and
DNase. We observed that not using dilated layers in fact helped
prediction performance in K562 (Supplemental Fig. S11). This is
partly because when we do not use dilated layers, the CNN filters
can focus more on local peak regions and learn better motif
representations.

Because our goal is not only prediction but also interpretation
of base-pair feature attribution methods, we used the idea of add-
ing FFT loss to the prediction loss (NLL) at training, as suggested
in Tseng et al. (2020). Here, we explainhowweused FFT loss in sep-
arate training of Seq-GraphReg models. In task (1), let g(H

w

, X) be
the gradient of bottleneck H

w

with respect to the input DNA se-
quence X and summed over 4 bases as our attribution vector.
Thus, the length of the vector g(H

w

, X) is the same as that of X.
Let a denote the magnitudes of the positive-frequency Fourier
components of (a slightly smoothed version of) g(H

w

, X), and âi
denote the ith component of

a
a‖ ‖1

(smaller i corresponds to lower

GraphReg
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frequencies). Similar to Tseng et al. (2020), we penalize the high-
frequency components as

Lp(g(H
w

, X)) = 1−
∑
i

wiâi, (10)

wherewi=1 for i≤T, andwi = 1
1+ (i− T)s

for i>T. The total loss to

be trained is Ltotal = 1
3

∑3
e=1

Le
S + gLp(g(H

w

, X)), where Le
S is the predic-

tion loss (NLL) of the epigenomic data e, Lp(g(H
w

, X)) is attribution
prior, and γ is a positive scalar to control the contribution of attri-
bution loss. We have used s=0.2 and γ=1 as suggested by Tseng et
al. (2020). We have applied ISM to the Seq-GraphReg models
trained separately without dilation andwith FFT loss and observed
that relevant TFmotifs can be identified in distal enhancer regions
(Fig. 4E).

Model architecture and training

For Epi-GraphReg and Seq-GraphReg, we used respectively two
and three GAT layers with four heads in each layer
(Supplemental Fig. S1). For Epi-CNN and Seq-CNN we used eight
dilated CNN layers to increase their receptive field up to 2.5 Mb.
For human cell types GM12878, K562, and hESC, we held out
Chromosomes i and i+10 for validation and Chromosomes i+1
and i+11 for test, for i=1, …, 10, and trained on all remaining
chromosomes except X and Y. For mouse cell type mESC, we
held out Chromosomes i and (i+10 mod 20) + sign(i≥10) for val-
idation and Chromosomes i+1 and (i+ 11mod 20) + sign(i≥9) for
test, for i=1,…, 10, and trained on all remaining chromosomes ex-
cept X and Y.

TF knockout analysis and motif ablation experiments

For RNA-seq data sets from CRISPRi TF KO experiments, we per-
formed differential gene expression analyses using DESeq2
(Anders and Huber 2010) between control and TF KO K562 cells
for each TF. We only considered TFs whose KO led to significant
down-regulation (adjusted P<0.05) of at least 200 genes to have ro-
bust statistics. To assess the ability of Seq-GraphReg and Seq-CNN
to predict the down-regulation of genes as direct effects of TF KO,
we performed an in silico KO of each TF by zeroing out all the mo-
tifs for the TF in 6-Mb DNA sequences encompassing candidate
target genes. Then we used the models to predict the change in
gene expression caused as direct effects of each TF KO. Similar to
the true KO experiments, we used two trained models each for
Seq-GraphReg and Seq-CNN as two replicates to predict control
and in silico KO expression levels. We then performed differential
expression analysis using DESeq2 to get the predicted logFC (log-
fold change) and adjusted P-values. We ranked the significantly
regulated genes (adjusted P<0.05) with true CAGE values at least
20 based on predicted logFC and used the 100 genes with the larg-
est negative predicted logFC as the predicted target genes for each
model.

Seq-GraphReg predicts how distal TF motifs regulate their target

genes

We first looked at our gene expression predictions using Seq-
GraphReg in GM12878, K562, and hESC, and we selected the
top 100 accurately predicted genes using the following criteria:
NLL<300, DeltaNLL> 300, CAGE≥100, and n≥nEP, where n is
the number of enhancer–promoter interactions. Because
GM12878 and K562 have denser graphs, we used nEP=10 in
GM12878 and K562. Because hESC has sparser graphs, we used

nEP=5 in hESC. Thenweperformed feature attribution for all those
genes using gradient-by-input, which gives us base-pair saliency
scores for all the nucleotides in the enhancer regions of those
genes. High saliency sequence regions correspond to our candidate
motifs for each gene.

To find the candidate motifs we screened the enhancer re-
gions of each gene using a window of length 20 bp (because the
usual length of TF motifs is in the range 7–20 bp) and summed
the saliency scores in each window. We shifted this window by
steps of 10 bp to not miss motifs that might appear on the borders
of thewindow. This process produces 500windows (scores) in each
enhancer bin of length 5 kb. If a gene has n enhancer–promoter in-
teractions, therewill be 500nwindows for that gene. For each gene,
we kept the windows that have the highest 5% absolute scores as
the motif candidates for that gene, giving 25n windows with the
highest absolute scores. To have a control set, we also retained
for each gene 25n windows with the lowest non-zero absolute
scores. To study the effects of distal motifs on gene regulation,
we kept 25n sequences of length 20 bp in both high and low sali-
ency regions that have 1D distance of at least 20 kb from the TSS of
their target genes.

We used FIMO software (Grant et al. 2011) to scan these 20-
bp sequences and findmotifmatches to theCIS-BPmotif database.
We kept all matches with P-values of at least 10−4 (default FIMO
parameters) for both high and low saliency regions. We also re-
stricted to motifs whose TF is expressed in the cell type of interest,
meaning that CAGE≥50 for each retained TF. Supplemental
Figure S33A shows the number of motifs in high and low saliency
regions in GM12878. The listed motifs in Supplemental Figure
S33A are the ones that are significantly enriched in high saliency
regions compared to low saliency ones, meaning that the adjusted
P-values are less than 0.01. Here, we have used Fisher’s exact test to
derive the P-values and Benjamini–Hochberg (BH) to adjust for
multiple hypothesis testing. The adjusted P-values for thesemotifs
are shown in Supplemental Figure S34A. We also counted the oc-
currences of each motif for each gene individually in both high
and low saliency regions, as shown in Supplemental Figure S33B.
Then for each gene-motif pair, we performed Fisher’s exact test
to see if each motif is enriched in high saliency regions for the
gene. The resulting P-values are shown in Supplemental Figure
S34B, where we see the association of TF motifs with their target
genes. Results in Supplemental Figure S34B suggest that combina-
tions of distal TF motifs play a role in regulating the expression of
target genes. Another important observation from Supplemental
Figure S34B is that some of the TF motifs are universal and play a
role in almost all the genes, but some of the motifs are more
gene-specific and act only on the selected genes.

Supplemental Figures S35–S38 show similar motif analysis re-
sults for K562 and hESC. Three-dimensional data used by Seq-
GraphReg for GM12878 and K562 is HiChIP (FDR=0.1) and for
hESC is Micro-C (FDR=0.1). Supplemental Figures S36 and S38
show the enrichment of distal TF motifs for the best predicted
genes in K562 and hESC, respectively.

Data sets

We downloaded the epigenomic and CAGE data of GM12878,
K562, hESC, and mESC cells from ENCODE (https://www
.encodeproject.org/) portal with the following accession numbers:
K562 CAGE: ENCFF623BZZ and ENCFF902UHF; K562 DNase-seq:
ENCFF826DJP; K562 H3K4me3: ENCFF689TMV, ENCFF915MJO
(RPGC), and ENCFF367FNL (RPGC); K562 H3K27ac: ENCFF010
PHG, ENCFF384ZZM (RPGC), and ENCFF070PWH (RPGC); K562
JUNDTFChIP-seq: ENCFF709JGL; GM12878CAGE: ENCFF915EIJ
and ENCFF990KLZ; GM12878 DNase-seq: ENCFF775ZJX and
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ENCFF783ZLL; GM12878 H3K4me3: ENCFF818GNV, ENCFF342
CXS (RPGC), and ENCFF818UQV (RPGC); GM12878 H3K27ac:
ENCFF180LKW, ENCFF197QHX (RPGC), and ENCFF882PRP
(RPGC); hESC (H1) CAGE: ENCFF525HJR and ENCFF521WGM;
hESC (H1) DNase-seq: ENCFF131HMO and ENCFF546PJU
(RPGC); hESC (H1) H3K4me3: ENCFF760NUN, ENCFF151CFM
(RPGC), and ENCFF765FFD (RPGC); hESC (H1) H3K27ac: ENCFF
919FBG, ENCFF860ABR (RPGC), and ENCFF693IFG (RPGC);
mESC (ES-E14) DNase-seq: ENCFF754ILF and ENCFF785XJZ;
mESC (ES-E14) H3K4me3: ENCFF240MDV; mESC (ES-E14)
H3K27ac: ENCFF163HEV. We downloaded mESC CAGE data
from the NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) with the accession numbers
GSM3852792, GSM3852793, and GSM3852794. We got the
H3K27ac HiChIP data of K562, GM12878, and mESC from GEO
with the accession numbers GSE101498, GSE101498, and
GSE113339, respectively. We obtained Hi-C data for K562 and
GM12878 from GEO with accession number GSE63525. We ob-
tainedMicro-Cdata for hESC (H1) fromthe4DNucleomeData Por-
tal (4DN; https://data.4dnucleome.org) with accession number of
4DNFI2TK7L2F. We obtained HiCAR data for hESC (H1) from
GEO with accession number GSE162819. We got the CRISPRi-
FlowFISHenhancervalidationdata set forK562 fromSupplemental
Table 6a of Fulco et al. (2019).We got theCRISPRi TAP-seq enhanc-
er validation data set for K562 (Chromosomes 8 and 11) from Sup-
plemental Tables 2 and 3 of Schraivogel et al. (2020). We acquired
ABC enhancer predictions of the K562 (at Chromosomes 8 and 11)
from https://osf.io/f2uvz/. We downloaded CRISPRi RNA-seq (TF
knockout) experiments of 51 TFs (plus two controls) in K562
from ENCODE with the accession numbers ENCSR439NIR, ENCS
R447WYJ, ENCSR490XKT, ENCSR895NMN, ENCSR747UPR, EN
CSR045BVL, ENCSR658NCC, ENCSR685TOO, ENCSR157JAK,
ENCSR290RLW, ENCSR849RWU, ENCSR177JPA, ENCSR434ZAM,
ENCSR467RQJ, ENCSR179XMY, ENCSR231XYT, ENCSR569W
HC, ENCSR612JVF, ENCSR844UQZ, ENCSR466OEJ, ENCSR156
EPV, ENCSR991TCB, ENCSR559VHS, ENCSR109KMO, ENCSR539
CHL, ENCSR153WDD, ENCSR046XJC, ENCSR692NVT, ENCSR93
2JIP, ENCSR315EHR, ENCSR612NHI, ENCSR143YTV, ENCSR997-
FLI, ENCSR588MYR, ENCSR366ONT, ENCSR708MPN, ENCSR74
7ZDR, ENCSR521VAG, ENCSR045LNG, ENCSR199FFQ, ENCSR20
8KNW,ENCSR004ZBD, ENCSR975MRK, ENCSR966USM,ENCSR4
96MYK, ENCSR866PAO, ENCSR205DTM, ENCSR212QDE, ENCS
R349LHQ, ENCSR043UEE, ENCSR785ATE, ENCSR095PIC, ENCS
R016WFQ.

Software availability

The code to preprocess data, train models, and perform the analy-
ses in the paper, as well as all the trained models, are available at
GitHub (https://github.com/karbalayghareh/GraphReg) and as
Supplemental Code.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

This work was supported by the National Institutes of Health/
National Human Genome Research Institute (NIH/NHGRI) U01
awards HG009395 and HG012103 and National Institutes of
Health/National Institute of Diabetes and Digestive and Kidney
Diseases (NIH/NIDDK) U01 award DK128852.

Author contributions: A.K. developed the machine learning
models, performed all computational experiments, and co-wrote

the manuscript. M.S. performed analysis on HiChIP data sets.
C.S.L. supervised the research and co-wrote the manuscript.

References

Agarwal V, Shendure J. 2020. PredictingmRNA abundance directly from ge-
nomic sequence using deep convolutional neural networks.Cell Rep 31:
107663. doi:10.1016/j.celrep.2020.107663

Anders S, Huber W. 2010. Differential expression analysis for
sequence count data. Genome Biol 11: R106. doi:10.1186/gb-2010-11-
10-r106

Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR,
Assael Y, Jumper J, Kohli P, Kelley DR. 2021a. Effective gene expression
prediction from sequence by integrating long-range interactions. Nat
Methods 18: 1196–1203. doi:10.1038/s41592-021-01252-x

Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, Fropf R,
McAnany C, Gagneur J, Kundaje A, et al. 2021b. Base-resolutionmodels
of transcription-factor binding reveal soft motif syntax. Nat Genet 53:
354–366. doi:10.1038/s41588-021-00782-6

Bigness J, Loinaz X, Patel S, Larschan E, Singh R. 2022. Integrating
long-range regulatory interactions to predict gene expression using
graph convolutional networks. J Comput Biol doi:10.1089/cmb.2021
.0316

Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015. ATAC-seq: a method
for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol
109: 21–29. doi:10.1002/0471142727.mb2129s109

Carty M, Zamparo L, Sahin M, González A, Pelossof R, Elemento O, Leslie
CS. 2017. An integratedmodel for detecting significant chromatin inter-
actions from high-resolution Hi-C data. Nat Commun 8: 15454. doi:10
.1038/ncomms15454

Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V,
Grossman SR, Anyoha R, Doughty BR, Patwardhan TA, et al. 2019.
Activity-by-contactmodel of enhancer–promoter regulation from thou-
sands of CRISPR perturbations. Nat Genet 51: 1664–1669. doi:10.1038/
s41588-019-0538-0

González AJ, Setty M, Leslie CS. 2015. Early enhancer establishment and
regulatory locus complexity shape transcriptional programs in hemato-
poietic differentiation. Nat Genet 47: 1249–1259. doi:10.1038/ng.3402

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a
givenmotif. Bioinformatics 27: 1017–1018. doi:10.1093/bioinformatics/
btr064

Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, Snoek J. 2018.
Sequential regulatory activity prediction across chromosomes with con-
volutional neural networks. Genome Res 28: 739–750. doi:10.1101/gr
.227819.117

Kipf TN,WellingM. 2017. Semi-supervised classificationwith graph convo-
lutional networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France.

Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh THS,
Parsi KM, Yang L, Maehr R, Mirny LA, et al. 2020. Ultrastructural details
of mammalian chromosome architecture. Mol Cell 78: 554–565.e7.
doi:10.1016/j.molcel.2020.03.003

Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009.
Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science 326: 289–293. doi:10.1126/sci
ence.1181369

Lundberg SM, Lee SI. 2017. A unified approach to interpreting model pre-
dictions. In Advances in Neural Information Processing Systems 30 (NIPS
2017), Long Beach, CA, pp. 4765–4774.

MumbachMR, Rubin AJ, Flynn RA, Dai C, Khavari PA, GreenleafWJ, Chang
HY. 2016. HiChIP: efficient and sensitive analysis of protein-directed ge-
nome architecture. Nat Methods 13: 919–922. doi:10.1038/nmeth.3999

Osmanbeyoglu HU, Shimizu F, Rynne-Vidal A, Alonso-Curbelo D, Chen
HA, Wen HY, Yeung TL, Jelinic P, Razavi P, Lowe SW, et al. 2019.
Chromatin-informed inference of transcriptional programs in gyneco-
logic and basal breast cancers. Nat Commun 10: 4369. doi:10.1038/
s41467-019-12291-6

Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S,
Dündar F, Manke T. 2016. deepTools2: a next generation web server for
deep-sequencing data analysis. Nucleic Acids Res 44: W160–W165.
doi:10.1093/nar/gkw257

Sahin M, Wong W, Zhan Y, Van Deynze K, Koche R, Leslie CS. 2021. HiC-
DC+ enables systematic 3D interaction calls and differential analysis
for Hi-C and HiChIP. Nat Commun 12: 3366. doi:10.1038/s41467-021-
23749-x

Schraivogel D, Gschwind AR, Milbank JH, Leonce DR, Jakob P, Mathur L,
Korbel JO, Merten CA, Velten L, Steinmetz LM. 2020. Targeted

GraphReg

Genome Research 943
www.genome.org

https://data.4dnucleome.org
https://data.4dnucleome.org
https://data.4dnucleome.org
https://data.4dnucleome.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275870.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275870.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275870.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275870.121/-/DC1
https://osf.io/f2uvz/
https://osf.io/f2uvz/
https://osf.io/f2uvz/
https://osf.io/f2uvz/
https://github.com/karbalayghareh/GraphReg
https://github.com/karbalayghareh/GraphReg
https://github.com/karbalayghareh/GraphReg
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275870.121/-/DC1


perturb-seq enables genome-scale genetic screens in single cells. Nat
Methods 17: 629–635. doi:10.1038/s41592-020-0837-5

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R,
Watahiki A, Nakamura M, Arakawa T, et al. 2003. Cap analysis gene ex-
pression for high-throughput analysis of transcriptional starting point
and identification of promoter usage. Proc Natl Acad Sci 100: 15776–
15781. doi:10.1073/pnas.2136655100

Shrikumar A, Greenside P, Kundaje A. 2017. Learning important features
through propagating activation differences. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia. PMLR
70: 3145–3153. https://proceedings.mlr.press/v70/shrikumar17a.html

Singh R, Lanchantin J, Robins G, Qi Y. 2016. DeepChrome: deep-learning
for predicting gene expression from histone modifications.
Bioinformatics 32: i639–i648. doi:10.1093/bioinformatics/btw427

Skene PJ, Henikoff S. 2017. An efficient targeted nuclease strategy for high-
resolution mapping of DNA binding sites. eLife 6: e21856. doi:10.7554/
eLife.21856

Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep net-
works. In Proceedings of the 34th International Conference on Machine
Learning, Sydney, Australia. PMLR 70: 3319–3328. https://proceedings
.mlr.press/v70/sundararajan17a.html

Tseng A, Shrikumar A, Kundaje A. 2020. Fourier-transform-based attribu-
tion priors improve the interpretability and stability of deep learning
models for genomics. In Advances in Neural Information Processing
Systems 33 (NeurIPS 2020), pp. 1913–1923.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L,
Polosukhin I. 2017. Attention is all you need. In Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, pp.
5998–6008.
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