
The Journal of Clinical Investigation   V I E W P O I N T

1

RTS,S: the first malaria vaccine
Fidel Zavala

Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

The long road to vaccine 
development
After more than four decades of basic 
research and clinical trials, the World Health 
Organization (WHO) has recommended the 
malaria vaccine RTS,S for widespread use 
among children living in malaria endem-
ic areas. Pioneering studies using rodent 
malaria models directed by Ruth S. Nus-
senzweig at the New York University School 
of Medicine demonstrated in the late 1960s 
that immunization with attenuated sporo-
zoites — the infective stage of Plasmodium 
— induces immune responses that protect 
against parasite infection (1). These studies 
also identified the circumsporozoite pro-
tein (CSP), the sporozoite-specific mole-
cule recognized by the protective immune 
responses that is the antigen incorporated in 
the RTS,S vaccine (2). The CSP is expressed 
on the surface of sporozoites of different 
Plasmodium species and contains a central 
domain of tandem repeats that represent 
approximately 30% of the entire sequence. 
Extensive experimental evidence indicates 
that binding of antibodies to these repeats 
immobilizes the sporozoites, preventing 
infection of hepatocytes, an obligatory stage 
of this infection (Figure 1). The RTS,S vac-
cine is a hepatitis B virus–like particle that 
contains a genetically fused portion of the 
repeat domain and the C-terminal region of 
the P. falciparum CSP (3).

Clinical data for RTS,S
The first successful human trial demon-
strating protection against infection by P. 
falciparum sporozoites was conducted in 
1996 at the Walter Reed Army Institute of 
Research using RTS,S developed by Glaxo 
Smith Kline (4). Several phase II and III 
vaccine trials were conducted in endemic 
areas in the last 15 years, and the results 
consistently indicated that immunization 
of children 6 to 12 weeks and 5 to 7 months 

old induces a protective immunity that 
neutralizes sporozoite infection or atten-
uates the clinical severity of the infection. 
An extensive phase III trial that included 
different endemic areas of Africa indicat-
ed that the efficacy against clinical malar-
ia, a few weeks after the last immuniza-
tion, begins at 74% in children aged 5 to 17 
and decreases to 28% and 9% after 1 and 5 
years, respectively. In children aged 6 to 12 
weeks, the efficacy was estimated to begin 
at 63% and waned to 11% and 3% after 1 
and 5 years, respectively (5). The protec-
tive effect of this vaccine is short-lived, 
and it appears to depend on the intensi-
ty of transmission in different endemic 
areas. This decreased efficacy correlates 
with reduced levels of anti-CSP antibod-
ies, indicating that protection depends on 
sustained high levels of circulating anti-
bodies (6). There is only limited informa-
tion on vaccination of adults. In The Gam-
bia, RTS,S immunization of adults induced 
short-lived protection from infection on 
34% of vaccinees (7), while no significant 
protection was observed in Kenya (8).

The implementation of RTS,S vac-
cination programs is a positive first step 
and according to the WHO it could reduce 
severe disease in 30% of vaccinated chil-
dren (9). However, as this vaccine does not 
provide extensive sterile immunity, and 
RTS,S-induced immune responses do not 
interfere with the infectivity of gameto-
cytes (the transmission stages of Plasmo-
dium), most children and adults will carry 
parasites that will infect mosquitoes. Thus, 
transmission will remain unchanged, 
ensuring continuous endemicity.

Next-generation malaria 
vaccines on the horizon
There is a consensus that major improve-
ments are necessary to develop a vaccine 
that is likely to have a greater epidemio-

logical impact in endemic areas. Since the 
development of RTS,S in the late 1980s, 
continuing research has greatly increased 
our understanding of the protective immune 
mechanisms that neutralize parasite infec-
tivity. This research has also yielded a better 
characterization of factors influencing vac-
cine-induced immune responses. In fact, 
new vaccine candidates have been devel-
oped that consist of antigenic domains simi-
lar to RTS,S expressed in different platforms 
such as nanoparticles, mRNA, and others. 
Recently, human trials using a nanoparticle, 
R21, were conducted with children in Burki-
na Faso and the initial results indicate that 
1 year after 3 immunizations, this vaccine 
conferred a 77% protection from severe dis-
ease (10). New R21 trials in areas with differ-
ent transmission intensities should provide 
comprehensive information on the efficacy 
of this vaccine compared to RTS,S. Another 
vaccine candidate, attenuated P. falciparum 
sporozoites, was also evaluated in adults 
living in Mali, and the estimated protective 
efficacy was 29% by proportional analysis 
(11). A recent trial of this attenuated spo-
rozoite vaccine in Kenya failed to demon-
strate significant efficacy in 5- to 12-month-
old children (12).

Considerable advances have been 
achieved regarding the structure and fine 
specificity of anti-CSP protective antibod-
ies. Recent biophysical studies have char-
acterized the binding properties of protec-
tive antibodies, and crystallography studies 
have defined the precise conformation of 
the CSP epitopes recognized by these anti-
bodies (13). Importantly, studies with 
protective human monoclonal antibodies 
obtained from individuals immunized with 
sporozoites have identified unique anti-
genic moieties within the repeat domain 
of the CSP, which are recognized by pro-
tective antibodies but are not included in 
the RTS,S vaccine (14–16). Thus, there are 
good reasons to expect that a new genera-
tion of structure-based vaccines containing 
additional antigenic moieties expressed in 
platforms with enhanced immunogenici-
ty will improve the quality of the antibody 
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due to a decreased immune response against 
blood stages observed in these individuals 
(18). This strongly suggests that combining 
anti-sporozoite and anti-blood stage vac-
cines may not be just desirable but perhaps 
critically needed. Consequently, anti-sporo-
zoite vaccines like RTS,S are an important 
first step in the development of multi-stage 
vaccines that will one day become a power-
ful tool to help with malaria eradication.
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responses that are likely to occur during the 
infection. In contrast, the protective anti-
body responses against malaria sporozoites 
induced by RTS,S depend on the neutralizing 
effect of antibodies present at the moment 
of sporozoite infection. This neutralization 
needs to occur swiftly, as sporozoites may 
reach hepatocytes as soon as 10 to 15 min-
utes after injection (17). After hepatocyte 
invasion, antibodies are no longer effective, 
and eventually the CSP antigen will no lon-
ger be expressed. Thus, any recall response 
that may occur after the infection will have 
no effect on the ongoing infection.

Most malariologists believe that a vac-
cine capable of inducing protective immuni-
ty against all the stages of parasite infection 
is most likely to have the highest impact 
on infection, morbidity, and transmission 
of malaria. In this regard, it is worth men-
tioning that studies in Africa indicate that 
children in areas of moderate transmission 
who were vaccinated and protected after 
immunization with RTS,S undergo a signifi-
cant increase in rebound episodes of clinical 
malaria 3 to 6 years later, and this is likely 

response and its efficacy against sporozoite 
infection. Another aspect that has yet to be 
systematically explored is the development 
of vaccines designed to induce CD8+ T cell 
immunity in humans. While the protective 
effect of CD8+ T cells that recognize para-
site epitopes presented by infected hepato-
cytes is firmly established in animal models, 
translating this knowledge to develop new 
human vaccines is still a major challenge, 
due to severe methodological limitations.

Ongoing challenges
The protracted development and moderate 
efficacy of the RTS,S vaccine, in sharp con-
trast with the swift development of highly 
protective COVID-19 vaccines, underline 
the major differences that exist between 
immunity against viruses and malaria spo-
rozoites. Vaccine-induced antiviral immune 
responses act by neutralizing the virus at 
the start of the infection and continue to 
exert this effect on viral particles released 
from infected cells, so the immune pres-
sure is constant during the infection. It may 
be strengthened by secondary antibody 

Figure 1. Impact of RTS,S vaccine on malaria 
infection and transmission. Vaccination with 
RTS,S induces antibodies against circumspo-
rozoite protein (CSP), which is expressed by 
sporozoites, the infective form of Plasmodium 
that mosquitos transmit. During infection in 
unvaccinated individuals, sporozoites travel to 
the liver, where they move through hepatocytes 
and differentiate to hepatic merozoites. CSP 
is expressed in the early liver stages, but not 
by liver stage merozoites. Antibodies to CSP 
following RTS,S vaccination immobilize the 
sporozoites, thereby preventing infection of 
hepatocytes. RTS,S-induced protection from 
infection and severe disease wanes over time 
and correlates with the level of anti-CSP anti-
bodies. RTS,S-induced immune responses do 
not interfere with the infectivity of Plasmodium 
gametocytes to mosquitoes. Even following 
vaccination, most children will carry parasites 
that will infect mosquitoes; thus, transmission 
in the population will remain unchanged. Image 
adapted from Raphemot et al. (19).
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