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Phase-amplitude coupling is a promising construct to study cognitive processes in
electroencephalography (EEG) and magnetencephalography (MEG). Due to the novelty
of the concept, various measures are used in the literature to calculate phase-amplitude
coupling. Here, performance of the three most widely used phase-amplitude coupling
measures – phase-locking value (PLV), mean vector length (MVL), and modulation
index (MI) – and of the generalized linear modeling cross-frequency coupling (GLM-
CFC) method is thoroughly compared with the help of simulated data. We combine
advantages of previous reviews and use a realistic data simulation, examine moderators
and provide inferential statistics for the comparison of all four indices of phase-amplitude
coupling. Our analyses show that all four indices successfully differentiate coupling
strength and coupling width when monophasic coupling is present. While the MVL
was most sensitive to modulations in coupling strengths and width, only the MI and
GLM-CFC can detect biphasic coupling. Coupling values of all four indices were
influenced by moderators including data length, signal-to-noise-ratio, and sampling rate
when approaching Nyquist frequencies. The MI was most robust against confounding
influences of these moderators. Based on our analyses, we recommend the MI for noisy
and short data epochs with unknown forms of coupling. For high quality and long data
epochs with monophasic coupling and a high signal-to-noise ratio, the use of the MVL
is recommended. Ideally, both indices are reported simultaneously for one data set.

Keywords: phase-amplitude cross-frequency coupling, phase-locking value, mean vector length, modulation
index, GLM-CFC, simulated EEG/MEG data

INTRODUCTION

Phase-amplitude coupling is a promising measure to study cognitive processes (Jensen and Lisman,
1998; Jensen, 2006; Lisman and Jensen, 2013; Vosskuhl et al., 2015). There is no convention yet
of how to calculate phase-amplitude coupling, but instead much heterogeneity of phase-amplitude
calculation methods used in the literature. Most of these are reasonable measures from a theoretical
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point of view. To provide empirical evidence for choosing one
of these measures over another, this work thoroughly compares
the performance of the three most widely used phase-amplitude
coupling measures with the help of simulated EEG data. The
measures are the phase-locking value (PLV) as used in Mormann
et al. (2005) (first introduced by Vanhatalo et al., 2004), mean
vector length (MVL) by Canolty et al. (2006), and modulation
index (MI) by Tort et al. (2008). Additionally the GLM-CFC
(Kramer and Eden, 2013) is examined.

From a historical viewpoint, the first amplitude modulations
that have been detected are amplitude fluctuations of specific
frequency bands, becoming apparent in the fast Fourier
transform (FFT) of constituents of these signals (Pfurtscheller,
1976; Novak et al., 1992; Burgess and Ali, 2002). Because
the FFT approach can solely reveal that the amplitude of a
higher frequency oscillates at a lower frequency (characteristic
of one signal), these amplitude modulations should not be
misinterpreted to account for true temporal coupling between the
instantaneous phase of the lower frequency and the amplitude
envelope of the higher frequency (association between two
signals and definition of phase-amplitude coupling). Neither the
lower frequency itself nor its instantaneous phase are extracted
in this approach.

Some of the most widely used phase-amplitude coupling
measures today are the PLV (Mormann et al., 2005), also called
synchronization index (SI) by Cohen (2008), the MVL (Canolty
et al., 2006), the MI (Tort et al., 2008), the envelope-to-signal
correlation (ESC) (Bruns and Eckhorn, 2004), the generalized
linear modeling (GLM) method (Penny et al., 2008; Kramer and
Eden, 2013), phase binning combined with analysis of variance
(ANOVA) (BA) (Lakatos et al., 2005), and the weighted phase
locking factor (wPLF) (Maris et al., 2011). Recent approaches
(Sotero, 2016; Martínez-Cancino et al., 2019) use mutual
information in order to compute phase-amplitude coupling.
The computation of mutual information is sensitive to the
amount of data and noise, but advantageous when handling
non-linear relationships (Cohen, 2014). All of these measures
use the instantaneous phase and amplitude of band-pass filtered
signals to calculate a measure that represents coupling strength.
However, conceptual ideas and mathematical principles differ
substantially between measures.

Several of these phase-amplitude coupling measures were
compared with the help of simulated and real data in
previous reviews. Tort et al. (2010) executed the most extensive
comparison so far, including most of the above listed measures
and evaluating their performance pertaining to tolerance to noise,
amplitude independence (independence from the amplitude
of the amplitude-providing frequency band), sensitivity to
multimodality, and sensitivity to modulation width. The MI,
introduced by the same group (Tort et al., 2008), is well-rated
in all aspects while, amongst others, the PLV has poor ratings
in all aspects. The MVL has good ratings in some aspects
(e.g., tolerance to noise), but weaknesses in others (e.g.,
amplitude dependence).

Penny et al. (2008) introduced the GLM method and
compared it to the PLV, MVL, and envelope-to-signal correlation
in respect to noise level, coupling phase, data length, sample

rate, signal non-stationarity, and multimodality. They found that
the methods discriminated between data simulated with and
without coupling to different extents, ranging from below chance
level to perfect discrimination. Performance of the measures
differed under poor conditions (high noise, low sampling rate,
etc.), however, all measures performed equally well under good
conditions (longer epochs, less noise, etc.).

Kramer and Eden (2013) introduced a new GLM method
(GLM-CFC). It proves to be valid and performs equally well as the
MI. The advantages of this method are that it can be interpreted
as percentage change in amplitude strength due to modulation.
Additionally confidence intervals are easily computed and the
measure can detect biphasic coupling. The disadvantage of this
measure is an especially high computation time due to generating
the design matrix for the GLM and fitting the GLM.

When Onslow et al. (2011), compared three phase-amplitude
coupling measures (MVL, envelope-to-signal correlation, cross-
frequency coherence), they found that “no one measure
unfailingly out-performed the others” (p. 56) (Onslow et al.,
2011). They concluded that each measure seems to be particularly
suited for specific data conditions. MVL for example is suitable
for noisy data, exploratory analyses (analyzing a broad frequency
spectrum) and when the power of the amplitude providing
frequency band is low.

Samiee and Baillet (2017) statistically compared the PLV,
MVL, and MI especially focusing on data length effects and
the accuracy of finding the contributing coupling frequencies
within exploratory analyses for broad frequency ranges. Here
all three measures performed equally well in accurately finding
coupling frequencies. However, their results indicate that MVL
estimates coupling strength most correctly and MI is most robust
to noise regarding detecting the correct coupling frequencies
in the aforementioned exploratory analysis. The authors show
that the performance of the direct MVL (Özkurt and Schnitzler,
2011) can be significantly increased when using sophisticated
methods for detecting the actual coupling frequencies for phase
and amplitude in the data and that this method allows to estimate
coupling strength for very short data segments (see Samiee and
Baillet, 2017 for details).

The above cited reviews do not point to a single optimal
measure for calculating phase-amplitude coupling. They rather
show that most – but not all – of the used measures perform
well and are equally affected by various confounders. Despite the
availability of manifold measures, 79% of studies use the PLV
adapted for phase-amplitude coupling, MVL, or MI (Hülsemann,
2016). The three measures are indeed the three most often used.
Why is this the case? The PLV is derived from a long-used,
phase-phase coupling measure that is easily adapted for the
purpose of phase-amplitude measurement. Its familiarity in
the scientific community might have promoted its application.
Possibly the predominant application of MVL is due to its
mathematical directness. The MI is conceptually intuitive.

The majority of reviews used very straightforward data
simulation methods. Oftentimes, a sinusoidal oscillation is
constructed at a lower phase-providing frequency and at a higher
amplitude-providing frequency. Phase-amplitude coupling is
introduced by multiplying both signals (cf. Onslow et al., 2011).
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Amplitude is then extracted from the so constructed signal and
phase is extracted from the pure sinusoidal oscillation of the
lower frequency. White noise is added to both signals. There
are two disadvantages in this approach. Both sinusoidal signals
reflect a plain prototype of phase-amplitude coupling, but in
real neuronal data, pure sinusoidal oscillation cannot be filtered;
rather, frequency bands containing different amounts of various
frequencies are extracted. Second, white noise is added to the
simulated data, even though it is known that not white noise but
fractional Brownian noise is inherent to brain dynamics (Miller
et al., 2009; He et al., 2010).

Because none of the hitherto existing reviews simultaneously
meet the requirements of realistic simulation of EEG data,
providing inferential statistics for comparison of the measures,
investigating moderators of phase-amplitude coupling,
and including the three most widely used measures (PLV,
MVL, and MI), a new comparison of these methods is
presented here. Additionally the GLM-CFC is included in
the comparison. We aim to combine the best aspects of all
previous reviews. EEG data is simulated rather realistically
according to the procedure described by Kramer and Eden
(2013). The influence of several moderators (multimodality,
data length, sampling rate, noise level, modulation strength, and
modulation width) inspired by Tort et al. (2010) is investigated.
Sensitivity and specificity of the phase-amplitude coupling
measures are checked according to the methods described in
Onslow et al. (2011). For all these comparisons, inferential
statistics are provided.

MATERIALS AND METHODS

Simulation of EEG Data and
Implementation of Phase-Amplitude
Coupling
A characteristic of natural EEG data is the proportionality of
its frequency spectrum to a power law P(f) ∼ (1/f β). Namely,
the higher the frequency f, the weaker the amplitude P(f). The
exponent β defines the strength of the amplitude decrease. White
noise is defined by β = 0, pink noise by β = 1 and Brownian
(red) noise by β = 2. Different investigations have shown that the
frequency spectrum of human brain activity relates to fractional
Brownian (red) noise, with 2 < β < 3 (Miller et al., 2009; He
et al., 2010). Because of this, Brownian noise was generated using
MATLAB code provided by Zhivomirov (2013, 2018), in order to
simulate EEG data (Figure 1A).

Simulated data was then filtered at a low phase-providing
frequency, from here on referred to as phase time series,
with a narrow bandwidth of 2 Hz. The same data was
filtered at a high amplitude-providing frequency, from here on
referred to as amplitude time series, with a broad bandwidth.
The exact bandwidth of the amplitude time series should
depend on the frequency of the phase time series (Berman
et al., 2012; Dvorak and Fenton, 2014). Because of this
data was filtered such that the sidebands of the modulating
frequency were always included (i.e., center frequency of

amplitude-providing frequency band ± upper boundary of
phase-providing frequency band).

A zero-phase Hamming-windowed sinc finite impulse
response (FIR) filter implemented in EEGLAB (function
pop_eegfiltnew contributed by A. Widmann) was used. This
function automatically chooses the optimal filter order and
transition band width for a precisely selectable filter bandwidth.
Low frequency was set to 5–7 Hz (for theta-low gamma coupling)
and 8–10 Hz (for alpha-high gamma coupling). High frequency
was set to 33–47 Hz (for theta-low gamma coupling) and
50–70 Hz (for alpha-high gamma coupling). Filtering can
seriously distort raw data (Widmann et al., 2015), therefore only
continuous data was filtered and data segments at the beginning
and end, where edge artifacts can occur, were later on discarded.

To introduce coupling, the procedure of Kramer and Eden
(2013) was followed. A Hanning window plus one (i.e., each
data point of the Hanning window is added with one) was
multiplied with the amplitude time series. This multiplication
of the Hanning window with the amplitude time series was not
done continuously, but centered at either the relative maxima
(peaks) or the relative maxima and minima (peaks and troughs)
of the phase time series, in order to simulate monophasic and
biphasic coupling, respectively. Extremum times are chosen
because they are easy to detect. They relate to phase angles of
0 and 180◦/−180◦. Phase-amplitude coupling measures would
not change if the coupling were to be introduced at another
phase angle. The Hanning window itself is multiplied with the
factor I to graduate the intensity of phase-amplitude coupling.
To double the amplitude of the time series at the specified
time I = 1.0 is chosen. I = 0.0 reflects no phase-amplitude
coupling (i.e., not modulating the amplitude time series). The
length of the Hanning window was also modulated to simulate
different “widths” of phase-amplitude modulation. Parameters
chosen for these moderators are specified below. In a final
step, additional noise was added to the phase and amplitude
time series. Therefore, Brownian noise of the same length was
simulated, band-pass filtered at the same frequencies as the phase
and amplitude time series, and added to the original phase
and modulated amplitude time series, respectively. Frequency
matched noise is disruptive to the modulated phase-amplitude
coupling and therefore allows to check for the robustness of the
phase-amplitude coupling measures.

Subsequently, phase and amplitude were extracted from
the correspondent time series via Hilbert transform, using
the Signal Processing Toolbox of MATLAB (The MathWorks,
Inc.). Then continuous phase and amplitude time series were
segmented. This was done to introduce data discontinuities,
which are present in real data as well. Filtering, Hilbert transform,
and phase or amplitude extraction were always conducted on
continuous data, to prevent filtering or other artifacts in the later
analyzed data epochs.

Each simulated data set was then modified. Data sets with a
length of 42, 105, and 180 s were subsampled. This amount of
data is sufficient to simulate 30 trials with a length of 400, 2500,
and 5000 ms plus additional 30 s to introduce data discontinuities
when segmenting the data. These parameters were chosen to
mirror typical properties of event-related EEG data: (1) at least 30
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FIGURE 1 | Simulation of the EEG signal and calculation of phase-amplitude coupling: (A) (from left to right) Brownian noise is generated. This signal is band pass
filtered to extract the slow phase-providing frequency (here 8–10 Hz, red line) and the fast amplitude-providing frequency (here 50–70 Hz, dark blue line). To simulate
coupling (light blue line) the amplitude-providing band pass filtered signal is multiplied with a Hanning window plus one (not depicted here), which results in stronger
amplitude at the peaks of the phase-providing frequency (lower middle right panel). Before extracting phase and amplitude (most right panels) band pass filtered
noise (same frequencies) is added to the filtered data (not depicted here). The simulated coupling (light blue line) amplitude is most pronounced for phases at 0◦. This
is not the case for the original signal (dark blue line). (B) Idealized depiction PLV (outer left panels), MVL (inner left panels), MI (inner right panels), and GLM-CFC
(outer right panels) for a uniform distribution (upper panels) and phase-amplitude coupling (lower panels). PLV: each black line represents the phase lag between two
signals at one data point. The red vector is the mean of all black vectors. The upper panel shows inconsistent, widespread phase lags. The widespread phase lags
lead to a relatively short mean vector (red line). The outer left lower panel shows an example of a relative constant phase lag around 0◦. A relative constant phase lag
leads to a relatively long mean vector. MVL: each black dot represents one data point of the analytical signal. In case of coupling, a portion of the dots (or vectors)
are especially long (reflecting strong amplitudes) at a specific narrow range of phase angles (here 0◦ in the lower panel). The red vector is the mean of all black
vectors. It reflects coupling strength (short for no coupling – long for coupling). In case of phase-amplitude coupling it is indicating the preferred phase. MI: all
possible phases are binned into 18 bins of 20◦ from –180 to 180◦. Each bar reflects the mean amplitude of the amplitude-providing signal for the specified phase of
the phase-providing frequency. This phase-amplitude plot is quantified with Shannon entropy. Shannon entropy is maximal for uniform distributions (upper panel).
The Kullback–Leibler distance measures how much a given distribution (for example the one in the lower panel) deviates from the uniform distribution (depicted in the
upper panel). The more phase-amplitude coupling there is in the data, the more the given phase-amplitude plot deviates from the uniform distribution and the higher
the MI becomes. GLM-CFC: each circle in the scatter plot represents on data point. If there is no phase-amplitude coupling, amplitude values are rather similar
across all possible phase values. In this case, a horizontal line would best model the data and the phase value would have no predictive power. If there is
phase-amplitude coupling, amplitude values are specifically high at certain phase values. In this case, a curve that follows the amplitude pattern would best model
the data. In case of phase-amplitude coupling, the curve (red line) differs from the horizontal line (black line) that represents no coupling. In case of no phase-
amplitude coupling the curve barely differs from the null model horizontal line that represents no coupling.

trials per unique condition for which phase-amplitude coupling
will be calculated (Luck, 2014), (2) trial length between 400 and
5000 ms, and (3) data discontinuities between trials. Sampling
rate was set to 1000 Hz (Cohen, 2014). In addition, simulated
data was resampled to 500 Hz in order to investigate the influence
of sampling rate. Noise was scaled by the factor 0.9, 1.0, and

1.1 in order to simulate different signal-to-noise ratios. Scaling
factor 0.9, 1.0, and 1.1 correspond to a noise signal strength of
90, 100, and 110% compared to the data signal strength. Four
modulation strengths were realized: I = 0.0 for no coupling and
I = 0.9, I = 1.0, and I = 1.1 for increasing coupling strength
(I = 1.0 doubling the original amplitude strength). These values lie
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within the range of former studies (e.g., Kramer and Eden, 2013).
The length of the Hanning Window ranged between 22.5 and
27.5% of one low frequency cycle to modulate different “widths”
of phase-amplitude modulation. This width is equivalent to about
a quarter of one cycle and therefore covers the peak (or trough)
phases of that low frequency cycle. At these phases, amplitude of
the higher frequency was increased. All parameters were realized
for mono- and bi-phasic coupling (factor multimodality).

Measuring Phase-Amplitude Coupling
To calculate phase-amplitude coupling, first, raw data is
band-pass filtered in the frequency bands of interest. Second,
the real-valued band-pass filtered signal is transformed into
a complex-valued analytic signal. Finally, phase or amplitude
is extracted from the complex-valued analytic signal. All
these steps can essentially be implemented in MATLAB with
four lines of code:

filtered_data = pop_eegfiltnew(raw_data,lower_frequency_
bound,upper_frequency_bound);
analytic_signal = hilbert(filtered_data);
phase = phase(analytic_signal);
amplitude = abs(analytic_signal).

Phase-Locking-Value as Used in Mormann et al.
(2005)
For the calculation of the PLV, phase is extracted from the low
frequency filtered analytic signal and amplitude is extracted from
the high frequency filtered analytic signal. The amplitude time
series is then again Hilbert transformed and phase is extracted
from the “second” analytic signal. By these steps, one obtains
phase angles for both time series for each data point. For each
data point the phase angle of the Hilbert transformed amplitude
time series is subtracted from the phase angle of the phase time
series, obtaining phase angle differences.

These phase angle differences can be plotted in a polar
plane as vectors of the length one with the angle representing
the respective phase angle difference (Figure 1B, outer left
panels). A constant phase lag between both time series indicates
phase-amplitude coupling. A constant phase lag leads to vectors
in the polar plane with a similar direction. Then all vectors are
averaged: if they have a constant phase lag, they point into the
same direction leading to a rather long mean vector. If there is
a variable phase lag, the vectors are scattered around the polar
plane, leading to a rather short mean vector. The length of the
mean vector indicates the amount of phase-amplitude coupling
(coupling strength). The direction of the vector represents the
mean phase lag present between the two time series and the
preferred coupling phase can be inferred from the phase lag. The
PLV is calculated by the following formula:

PLV =
∣∣∣∣∑n

t=1 ei(θlt−θut)

n

∣∣∣∣ (1)

where n is the total number of data points, t is a data point, θlt is
the phase angle of the lower frequency band at data point t and
θut is the phase angle of the Hilbert transformed upper frequency
band amplitude time series.

The logic for this measure is as follows: if phase-amplitude
coupling exists, the amplitude of the high frequency time series
will oscillate at the lower frequency. In this case, extracting
instantaneous phase information from this signal will return
some constant phase lag to the instantaneous phase information
of the low frequency band. Otherwise, inconsistent phase lags
to the instantaneous phase of the lower frequency signal will be
extracted, indicating no phase-amplitude coupling. A potential
disadvantage of this measure is that invalid phase information
will be extracted from the Hilbert transformed amplitude
time series if it does not oscillate at a specific frequency.
This disadvantage can be counteracted by filtering the Hilbert
transformed amplitude time series in the low frequency range
before extracting phase information (see Vanhatalo et al., 2004).

One should be aware that meaningful phase information can
only be extracted from narrow band oscillations (Aru et al.,
2015). The Hilbert transformed amplitude time series does not
necessarily need to be such a narrow band oscillation.

Mean Vector Length by Canolty et al. (2006)
For the phase-amplitude coupling measure MVL, introduced
by Canolty et al. (2006), phase is extracted from the low
frequency filtered analytic signal and amplitude is extracted from
the high frequency filtered analytic signal. MVL utilizes phase
angle and magnitude of each complex number (i.e., each data
point) of the corresponding analytic signal in a quite direct
way to estimate the degree of coupling. Each complex value of
the analytic time series is a vector in the polar plane. Phase-
amplitude coupling is present, when the magnitude M of a
fraction of all vectors is especially high at a specific phase or
at a narrow range of phases (Figure 1B, inner left panels).
Averaging all vectors creates a mean vector with a specific
phase and length (red vector in Figure 1B). The length of
this vector represents the amount of phase-amplitude coupling.
The direction represents the mean phase where amplitude is
strongest. When no coupling is present, all vectors cancel each
other out and the mean vector will be short. Then its direction
does not represent any meaningful phase. The MVL is calculated
by the following formula:

MVL =
∣∣∣∣∑n

t=1 ateiθt

n

∣∣∣∣ (2)

where n is the total number of data points, t is a data point,
at is the amplitude at data point t and θt is the phase angle
at data point t. This value cannot become negative because it
represents the length of the mean vector. The length of a vector
cannot be negative.

Three caveats come along with this measure: (1) the
value is dependent on the general absolute amplitude of
the amplitude providing frequency (independent of outliers),
(2) amplitude outliers can strongly influence the MVL, and
(3) phase angles are often not uniformly distributed (Cohen,
2014). All caveats are simultaneously counteracted by non-
parametric permutation testing (see section “Permutation
Testing”). One of the reviews cited in the introduction (Tort
et al., 2010) finds faults with the MVL being amplitude
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dependent. However, this is only true for the raw, but not for
the permuted MVL.

In the interest of completeness, it should be mentioned
that Özkurt and Schnitzler (2011) proposed a direct MVL
which is amplitude-normalized and ranges between 0 and 1.
When applying permutation testing to both MVL and direct
MVL return essentially the same values. That is, when applied
along with permutation testing, both measures are exchangeable.
Without permutation testing, the usage of the direct MVL is
recommended because it takes care of the possible amplitude
differences in raw data.

Modulation Index by Tort et al. (2008)
Tort et al. (2008) suggest a very different way of computing
phase-amplitude coupling, which anyways is based on the
same parameters of the analytic signal, amplitude magnitude
and phase angle. For calculating the MI according to Tort
et al. (2008), all possible phases from −180 to 180◦ are
first binned into a freely chosen amount of bins. Tort et al.
(2008) established to use 18 bins of 20◦ each, which many
authors follow. The amount of bins can influence the results,
as will be explained below. The average amplitude of the
amplitude-providing frequency in each phase bin of the phase-
providing frequency is computed and normalized by the
following formula:

p(j) =
ā∑N

k=1 āk
(3)

where ā is the average amplitude of one bin, k is the running
index for the bins, and N is the total amount of bins; p is a
vector of N values. With the help of these calculations, one
obtains the data for the phase-amplitude plot, which depicts
the actual phase-amplitude coupling graphically (Figure 1B,
inner right panels).

Subsequently Shannon entropy is computed; a measure that
represents the inherent amount of information of a variable.
If Shannon entropy is not maximal, there is redundancy and
predictability in the variable. Shannon entropy is maximal, if
the amplitude in each phase bin is equal (uniform distribution,
Figure 1B, inner right upper panel). Shannon entropy is
computed by the following formula:

H(p) = −
∑N

j=1
p(j)logp(j) (4)

where p is the vector of normalized averaged amplitudes per
phase bin and N is the total amount of bins. It does not matter
which logarithm base is used if permutation testing is applied
later on (Cohen, 2014). Like in Tort et al. (2008) the natural
logarithm is used here. Shannon entropy is dependent on the
amount of bins used and this is why the MI is likewise dependent
on the number of bins. The higher the amount of bins, the larger
Shannon entropy can become. Complying with the original study
and most other studies, 18 bins have been employed here.

Phase-amplitude coupling is defined by a distribution
that significantly deviates from the uniform distribution.

Kullback–Leibler distance, a measure for the disparity of two
distributions is calculated by the following formula:

KL(U, X) = logN−H(p) (5)

where U is the uniform distribution, X is the distribution
of the data, N is the total amount of bins, and H(p) is the
Shannon entropy according to Eq. 4. The uniform distribution
is represented by log(N). The final raw MI is calculated by the
following formula:

MI =
KL(U, X)

logN
(6)

where KL(U, X) is the Kullback–Leibler distance according to
Eq. 5 and N is the total amount of bins.

GLM-CFC by Kramer and Eden (2013)
For this measure, the idea of predicting a set of observed variables
(response variables; here the amplitude values of the relatively
higher frequency band) by another set of variables (predictor
variables; here the phase values of the relatively lower frequency
band) using a mathematic function (link function; here a log
link function) is applied. Extending the linear regression model,
GLMs allow non-normal distributions for response variables
(e.g., gamma distribution) and non-linear link functions (e.g., log
link). They are thereby optimal for phase-amplitude coupling:
phase and amplitude do exhibit a non-linear relationship and
instantaneous amplitude values (extracted from the amplitude
envelope) are always real and positive, which is best reflected in
the gamma distribution (but not the normal distribution).

For calculating the GLM-CFC, phase is extracted from the low
frequency filtered analytic signal and amplitude is extracted from
the high frequency filtered analytic signal. Phase and amplitude
values can then be depicted in a scatter plot (compare Figure 1B,
outer right panels). If there is phase-amplitude coupling in the
data, then amplitude values are specifically high at certain phase
values. If there is no phase-amplitude coupling, amplitude values
are rather similar across all possible phase values. In this case, a
horizontal line would best model the data and the phase value
would have no predictive power. If there is phase-amplitude
coupling in the data, a curve (3rd order polynomial) that follows
the amplitude pattern would best model the data.

In case of phase-amplitude coupling, the curve – which is
called spline model – (red lines in Figure 1B, outer right panels)
differs from the horizontal line that represents no coupling –
and is called null model – (black lines in Figure 1B, outer right
panels). In case of no phase-amplitude coupling the spline model
barely differs from the null model. That is, the more the spline
model differs from the null model, the more phase-amplitude
coupling is present in the data. In fact, the GLM-CFC finds
the maximum absolute difference between both models, and
calculates this difference as percentage change.

The modeled curve closely resembles a 3rd order polynomial.
However, not a polynomial, but a set of splines placed between
control points, which are evenly spaced between –pi and pi, are
used. The set of splines are easier to compute and, moreover,
its characteristics can be better controlled than those of a
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polynomial. On the other hand, a degree of freedom is introduced
(the amount of control points), that can influence the results.
Kramer and Eden (2013) therefore included an evaluation of the
Akaike information criterion (AIC) to define the optimal number
of control points.

For an exact mathematical description of the GLM-CFC see
the original article by Kramer and Eden (2013), who also provide
the MATLAB code that was used in this analysis.

Permutation Testing
All methods are subjected to permutation testing in order to
quantify the meaningfulness of the derived value (Cohen, 2014).
For permutation testing, the observed coupling value is compared
to a distribution of shuffled coupling values. Shuffled coupling
values are constructed by calculating the coupling value between
the original phase time series and a permuted amplitude time
series (or vice versa). The permuted amplitude time series is
constructed by cutting the amplitude time series at a random
data point and reversing the order of both parts. Generating
surrogate data this way is most conservative, because it leaves
all characteristics of the EEG data intact, except the studied
one, namely the temporal relationship between phase angle and
amplitude magnitude. Shuffling is usually repeated 200 to 1000
times (here we used 1000). The observed coupling value is
standardized to the distribution of the shuffled coupling values
according to the following formula:

CVz =
CVobserved − µCVshuffled

σCVshuffled

(7)

where CV denotes coupling value, µ denotes the mean and σ

denotes the standard deviation (SD). Only when the observed CV
is larger than 95% of shuffled values (which are expected to be
uncorrelated), it is defined as significant.

Statistical Analyses
All statistical analyses were conducted with IBM Statistics
for Windows Version 23 (SPSS, Inc., IBM company), except
otherwise specified. Significance level were set to p < 0.05.
Violations of sphericity were, whenever appropriate corrected by
Greenhouse–Geisser ε (Geisser and Greenhouse, 1958). Further
analyses of significant results were conducted post hoc with
Dunn’s multiple comparison procedure (Dunn, 1961) or post hoc
t-tests. Effect size measure ω2 is reported for significant results
(Hays, 1973). It is an estimator for the population effect �2,
which specifies the systematic portion of variance in relation to
the overall variance (Rasch et al., 2006).

Specificity of Phase-Amplitude Coupling Measures
In a first step 5,000 data sets without coupling were simulated
by setting the modulation strength to I = 0. Simulations were
carried out for the frequency pairs 5–7 Hz/33–47 Hz (for
phase and amplitude time series respectively) and 8–10 Hz/50–
70 Hz (for phase and amplitude time series respectively). Each
data set was modified in data length (400, 2500, 5000 ms),
sampling rate (500, 1000 Hz), and noise level (90, 100,
110%), resulting in a total of 90,000 data sets for which
coupling was calculated. Phase-amplitude coupling values were

generally compared in a 4 × 3 × 2 × 3 analysis of
variance (ANOVA) with the repeated measurement factors
method (PLV, MVL, MI, GLM-CFC), data length (400, 2500,
5000 ms), sampling rate (500, 1000 Hz), and noise level
(90, 100, 110%).

As described above, non-parametric permutation testing
was performed. Raw phase-amplitude coupling measures
were z-standardized to the shuffled phase-amplitude coupling
distribution. Normal z-values directly imply p-values; a value
of 1.64 corresponds to a p-value of 5%. The phase-amplitude
coupling value distribution which is expected under the null-
hypothesis does not have to match the standardized normal
distribution. Therefore, significance was not inferred from
the standardized normal distribution, but instead by that
phase-amplitude coupling value, at which 5% of simulated data
(with no coupling) was classified as false positive. Shuffling for
permutation testing was done within trials. Coupling measures
were then calculated on concatenated trials.

Specificity of measures was analyzed by counting false
positives (significant coupling according to critical z-value found
in the prior analysis, even though it was not engineered into
the simulated data) depending on (1) method, (2) data length,
(3) sampling rate, and (4) noise level. To be able to conduct an
ANOVA, the 5,000 simulations were divided into 100 subsamples
of 50 simulations each. For each subsample false positives were
counted. Each subsample was treated as a case in the subsequent
4 × 2 × 3 × 3 ANOVA with the repeated measurement factors
method (PLV, MVL, MI, GLM-CFC), data length (400, 2500,
5000 ms), sampling rate (500, 1000 Hz), and noise level (90, 100,
110%) and the dependent variable false positives.

Sensitivity of Phase-Amplitude Coupling Measures as
a Function of Moderating Variables
Performance of phase-amplitude coupling measures were
quantified by simulating 100 independent data sets and
modifying the parameters (1) modulation strength, and (2)
modulation width, (3) multimodality, (4) data length, (5)
sampling rate, and (6) noise level within each dataset. Six two-way
ANOVAs were calculated. Each ANOVA included the repeated
measurement factor method and was individually combined with
the repeated measurement factors modulation strength (90, 100,
110%), modulation width (22.5, 25.0, 27.5% of one low frequency
cycle), multimodality (monophasic, biphasic), data length (400,
2500, 5000 ms), sampling rate (500, 1000 Hz), and noise level (90,
100, 110% compared to signal strength).

RESULTS

Specificity of Phase-Amplitude Coupling
Measures
Theta-Low Gamma Coupling (5–7 to 33–47 Hz)
Phase-amplitude coupling values did not differ depending
on data length, sampling rate, or noise level. Because of
the high number of simulations (n = 5,000), some other
main effects and interactions became significant. However, all
effect sizes were below ω2 < 0.01, therefore these differences
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are negligible. Phase-amplitude coupling values did differ
depending on method [F(3,14997) = 4471.38, p < 0.01,
ω2 = 0.40]. Post hoc t-tests showed that the GLM-CFC
(mean ± SE: 0.29 ± 0.00) was significantly larger than all
other methods [PLV:.02 ± 0.00, t(4999) = 74.75, p < 0.01,
ω2 = 0.36; MVL: 0.02 ± 0.00, t(4999) = 78.09, p < 0.01,
ω2 = 0.38; MI: 0.00 ± 0.00, t(4999) = 187.48, p < 0.01,
ω2 = 0.78], which did not differ significantly from each
other (all ω2 < 0.01).

Five percent of the simulated data were falsely classified as
containing coupling when setting the critical z-value for the PLV
at 1.91, for the MVL at 1.91, for the MI at 1.94, and for the
GLM-CFC at 2.08. Thus, these values were defined as critical
z-values. This implies that the PLV and the MVL are most
specific, followed by the MI. The GLM-CFC is least specific
compared to the three other methods.

The amount of false positives according to the previous
established critical z-value did differ depending on data length
[F(2,198) = 35.57, p < 0.01, ω2 = 0.19, Dunncrit = 0.14].
There were significantly more false positives during short
epochs (400 ms; 2.77 ± 0.04) compared to medium (2500 ms:
2.36 ± 0.04) and long epochs (5000 ms: 2.32 ± 0.05). Medium
and long epochs did not differ in their false positive rates. The
main effect was qualified by a method by data length interaction
[F(6,594) = 51.66, p < 0.01, ω2 = 0.20, Dunncrit = 0.20]. This
revealed that the above-described pattern was driven by the PLV
and MVL. There were no differences in false positive rate within
the MI and the GLM-CFC.

Alpha-High Gamma Coupling (8–10 to 50–70 Hz)
Phase-amplitude coupling values did not differ depending on
data length, sampling rate, or noise level. Because of the high
number of simulations (n = 5,000), some other main effects
and interactions became significant. However, all effect sizes
were below ω2 < 0.01, therefore these differences are negligible.
Phase-amplitude coupling values did differ depending on method
[F(3,14997) = 3959.41, p < 0.01, ω2 = 0.37]. Post hoc t-tests
showed that the GLM-CFC (0.24 ± 0.00) was significantly larger
than all other methods [PLV: 0.01 ± 0.00, t(4999) = 70.29,
p < 0.01, ω2 = 0.33; MVL: 0.01 ± 0.00, t(4999) = 75.56,
p < 0.01, ω2 = 0.36; MI: 0.00 ± 0.00, t(4999) = 161.05,

p < 0.01, ω2 = 0.72], which did not differ significantly from each
other (all ω2 < 0.01).

Figure 2 shows the phase-amplitude coupling value
distribution for the PLV, the MVL, the MI, and the GLM-CFC
for alpha-high gamma coupling. Five percent of the simulated
data were falsely classified as containing coupling when setting
the critical z-value for the PLV at 1.86, for the MVL at 1.87, for
the MI at 1.97, and for the GLM-CFC at 2.05. Thus, these values
were defined as critical z-values. This implies that the PLV and
the MVL are most specific, followed by the MI. The GLM-CFC is
least specific compared to the three other methods.

The amount of false positives according to the previous
established critical z-value did differ depending on data length
[F(2,198) = 4.72, p < 0.01, ω2 = 0.02, Dunncrit = 0.17]. There were
significantly more false positives during short epochs (400 ms:
2.62 ± 0.05) compared to medium (2500 ms: 2.42 ± 0.05)
and long epochs (5000 ms: 2.43 ± 0.05). Medium and long
epochs did not differ in their false positive rates. The main
effect was qualified by a method by data length interaction
[F(6,594) = 13.28, p < 0.01, ω2 = 0.06, Dunncrit = 0.18]. This
revealed that the above-described pattern was driven by the PLV
and MVL. There were no differences in false positive rate within
the MI and the GLM-CFC.

Sensitivity of Phase-Amplitude Coupling
Measures as a Function of Moderating
Variables
Effect of Method on Phase-Amplitude Coupling
Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
PLV (1.22 ± 0.05) and MVL (1.53 ± 0.06) differed from the
MI (7.83 ± 0.49) in their absolute magnitude independently
of any other factor [main effect method: F(3,297) = 220.33,
p < 0.01, ω2 = 0.62, Dunncrit = 0.78]. PLV and MVL did not
differ from each other. The GLM-CFC (3.91± 0.18) differed from
all other methods.

Alpha-high gamma coupling (8–10 to 50–70 Hz)
PLV (1.77 ± 0.06) and MVL (2.22 ± 0.08) differed from the
MI (13.35 ± 0.78) in their absolute magnitude independently
of any other factor [main effect method: F(3,297) = 250.07,

FIGURE 2 | Probability distribution of coupling values under the null hypothesis: phase-amplitude coupling value distribution under the null hypothesis (i.e., no
coupling present in the data) of phase-locking value (outer left panel), MVL (inner left panel), MI (inner right panel), and GLM-CFC (outer right panel). These
distributions allow defining the significance threshold. The red line marks the critical phase-amplitude coupling z-value (relative cut off of 5%). Choosing an absolute
cut off instead would lead to smallest amount of false positives for MVL, followed by the PLV. The GLM-CFC would detect the most false positives followed by the MI.
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p < 0.01, ω2 = 0.65, Dunncrit = 1.28]. PLV and MVL did not
differ from each other. The GLM-CFC (5.52± 0.23) differed from
all other methods.

Effect of Modulation Strength on Phase-Amplitude
Coupling Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Coupling values of all methods increased with increasing
modulation strength [F(2,198) = 204.74, p < 0.01, ω2 = 0.58]. The
interaction method by modulation strength became significant
[F(6,594) = 154.84, p < 0.01, ω2 = 0.43]. Post hoc t-tests showed
that all factor levels within a method differed significantly from
each other (all p’s < 0.01). The effect of modulation strength
was most pronounced for the GLM-CFC (0.31 < ω2 < 0.61),
followed by the MVL (0.21 < ω2 < 0.55) and the MI
(0.33 < ω2 < 0.54). The PLV was least sensitive to modulation
strength (0.15 < ω2 < 0.50).

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Coupling values of all methods increased with increasing
modulation strength [F(2,198) = 215.60, p < 0.01, ω2 = 0.59]. The
interaction method by modulation strength became significant

[F(6,594) = 167.31, p < 0.01, ω2 = 0.45; Figure 3A]. Post hoc
t-tests showed that all factor levels within a method differed
significantly from each other (all p’s < 0.01). The effect of
modulation strength was most pronounced for the GLM-CFC
(0.36 < ω2 < 0.66) and the MVL (0.32 < ω2 < 0.66), followed
by the MI (0.33 < ω2 < 0.57). The PLV was least sensitive to
modulation strength (0.20 < ω2 < 0.60).

The stronger the coupling, the larger PLV, MVL, MI, and
GLM-CFC are. As Tort et al. (2010) has shown, this behavior
is not inherent to all phase-amplitude coupling measures.
Since researchers do not only want to prove the existence of
phase-amplitude coupling, but also differentiate its strength, a
measure that can do this is indispensable. Of all four methods, the
GLM-CFC differentiates best between the different factor levels of
modulation strength, closely followed by the MVL and MI.

Effect of Modulation Width on Phase-Amplitude
Coupling Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Coupling values of all methods increased with increasing
modulation width [F(2,198) = 118.61, p < 0.01, ω2 = 0.44].
The interaction method by modulation width became significant

FIGURE 3 | Sensitivity for modulation strength and width: mean ( ± SEM) phase-amplitude coupling values for each method for the (A) modulation strength effect
and (B) modulation width effect. Coupling values of all methods increased with increasing modulation strength. However, in addition to the GLM-CFC, MVL
differentiates best between the different factor levels of modulation strength. Also, coupling values of all methods increased with increasing modulation width. Here,
PLV and MVL differentiate best between the different factor levels of modulation width. The red line marks the critical z-value (significance level). All values above this
line represent significant phase-amplitude coupling. For each effect, all factor levels within a method are significantly different from each other according to post hoc
t-tests. Only monophasic coupling values are depicted for the PLV and the MVL.
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[F(6,594) = 79.45, p < 0.01, ω2 = 0.28]. Post hoc t-tests showed
that all factor levels within a method differed significantly from
each other (all p’s < 0.01). The effect of modulation width was
most pronounced for the MVL (0.19 < ω2 < 0.51), followed by
the PLV (0.22 < ω2 < 0.48). MI (0.15 < ω2 < 0.44) and GLM-
CFC (0.11 < ω2 < 0.45) were least sensitive to modulation width.

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Coupling values of all methods increased with increasing
modulation width [F(2,198) = 145.07, p < 0.01, ω2 = 0.49].
The interaction method by modulation width became significant
[F(6,594) = 103.84, p < 0.01, ω2 = 0.34; Figure 3B]. Post
hoc t-tests showed that all factor levels within a method
differed significantly from each other (all p’s < 0.01). The
effect of modulation width was most pronounced for the MVL
(0.11 < ω2 < 0.57), followed by the PLV (0.10 < ω2 < 0.54) and
the GLM-CFC (0.11 < ω2 < 0.53). The MI was least sensitive to
modulation width (0.12 < ω2 < 0.47).

The broader the coupling width, the larger PLV, MVL, MI,
and GLM-CFC are. Of all four methods, MVL differentiates best
between the different factor levels of modulation width.

Effect of Multimodality on Phase-Amplitude Coupling
Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Monophasic coupling (4.89 ± 0.24) led to overall stronger
coupling measures than biphasic coupling [2.36 ± 0.15;
F(1,99) = 586.81, p < 0.01, ω2 = 0.75]. This interaction
was further qualified by method [F(3,297) = 73.81, p < 0.01,
ω2 = 0.21]. Biphasic coupling could not be detected by the PLV
[2.42 ± 0.10 vs. 0.02 ± 0.01; t(99) = 25.20, p < 0.01, ω2 = 0.76]
and MVL [3.04 ± 0.12 vs. 0.02 ± 0.01; t(99) = 25.54, p < 0.01,
ω2 = 0.77]. The MI was larger in monophasic than in biphasic
coupling [9.24 ± 0.53 vs. 6.41 ± 0.45; t(99) = 18.54, p < 0.01,
ω2 = 0.63]. The GLM-CFC was as well larger in monophasic than
in biphasic coupling [4.86 ± 0.22 vs. 2.96 ± 0.14; t(99) = 21.90,
p < 0.01, ω2 = 0.71].

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Monophasic coupling (7.54 ± 0.34) led to overall stronger
coupling measures than biphasic coupling [3.89 ± 0.23;
F(1,99) = 782.07, p < 0.01, ω2 = 0.80]. This interaction
was further qualified by method [F(3,297) = 74.41, p < 0.01,
ω2 = 0.22]. Biphasic coupling could not be detected by the PLV
[3.52 ± 0.12 vs. 0.02 ± 0.01; t(99) = 29.27, p < 0.01, ω2 = 0.81]
and MVL [4.41 ± 0.15 vs. 0.02 ± 0.01; t(99) = 29.57, p < 0.01,
ω2 = 0.81]. The MI was larger in monophasic than in biphasic
coupling [15.40 ± 0.83 vs. 11.29 ± 0.74; t(99) = 19.22, p < 0.01,
ω2 = 0.65]. The GLM-CFC was as well larger in monophasic than
in biphasic coupling [6.83 ± 0.28 vs. 4.22 ± 0.19; t(99) = 24.78,
p < 0.01, ω2 = 0.75; Figure 4A].

That is, multimodality influences the four methods very
differently. PLV and MVL cannot find biphasic coupling as it
was implemented here (amplitude of the higher frequency was
increased at peak and trough of the lower frequency). Because
of the mathematic construct of the MVL (Eq. 2, Figure 1B) this
is not surprising. Peak and trough appear on opposite sides in
the polar plane: their mean will cancel each other out. If other

forms of biphasic coupling would be present, the MVL could be
able to find it, but would probably underestimate its strength
and would furthermore return distorted phase information.
Therefore, it is important to have a look at the polar plot
before interpreting one’s results. Similarly, the PLV cannot detect
biphasic coupling, as it was implemented here. For biphasic
coupling the amplitude envelope oscillates twice as fast as the
lower frequency band. Because of this, the phase lag between
lower and upper frequency band spans the entire polar plane. The
MI and GLM-CFC are able to find biphasic coupling, but biphasic
coupling leads to a reduction in the phase-amplitude coupling
value; this undesirable reduction is stronger for the GLM-CFC
than for the MI. Literature indicates that biphasic coupling plays
a minor role in empirical data. To our knowledge only a very
small fraction of studies report biphasic coupling (e.g., van der
Meij et al., 2012; Leszczynski et al., 2015; Lega et al., 2016). Most
studies report monophasic coupling (e.g., Tort et al., 2008).

Effect of Data Length on Phase-Amplitude Coupling
Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Coupling values of all methods increased with increasing data
length [main effect data length: F(2,198) = 390.95, p < 0.01,
ω2 = 0.72]. For the shortest epoch of 400 ms, none of the
methods could detect significant coupling, even though it was
engineered into the data. The interaction method by data length
[F(6,594) = 251.91, p < 0.01, ω2 = 0.56] became significant.
Post hoc t-tests showed that all factor levels within a method
differed significantly from each other (all p’s < 0.01). The data
length effect was most pronounced for MVL (0.60 < ω2 < 0.85),
and PLV (0.57 < ω2 < 0.83), followed by the GLM-CFC
(0.56 < ω2 < 0.77). The MI was least affected by data length
(0.46 < ω2 < 0.62).

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Coupling values of all methods increased with increasing data
length [main effect data length: F(2,198) = 422.16, p < 0.01,
ω2 = 0.74]. For the shortest epoch of 400 ms, none of the
methods could detect significant coupling, even though it was
engineered into the data. The interaction method by data
length [F(6,594) = 270.73, p < 0.01, ω2 = 0.57; Figure 4B]
became significant. Post hoc t-tests showed that all factor levels
within a method differed significantly from each other (all
p’s < 0.01). The data length effect was most pronounced for MVL
(0.75 < ω2 < 0.87), and PLV (0.73 < ω2 < 0.86), followed by the
GLM-CFC (0.66 < ω2 < 0.79). The MI was least affected by data
length (0.54 < ω2 < 0.62).

Overall, the longer the data, the larger PLV, MVL, MI, and
GLM-CFC are. This association was found in the data presented
here, but must not generally apply. Here coupling was simulated
continuously into the data. If coupling is transient and does
not proportionally vary with data length, this relationship does
not need to apply. Penny et al. (2008) showed, that coupling
strength decreases for phase-amplitude coupling, which was
simulated transiently. Potentially, the general rule is that the
longer the data epochs where coupling occurs, the stronger the
phase-amplitude coupling values. This should be tested in a
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FIGURE 4 | Moderators of the phase-amplitude coupling measures: mean ( ± SEM) phase-amplitude coupling values for each method for the (A) multimodality
effect, (B) data length effect, (C) sampling rate effect, and (D) noise effect. In contrast to the MI and GLM-CFC, biphasic coupling could not be detected by the PLV
and MVL. This factor might turn out to be not as important, as most studies report monophasic coupling. Coupling values of all methods increased with increasing
data length and slightly increase with sampling rate. Sampling rate only becomes relevant when analyzing frequencies close to the Nyquist frequency. Of all four
methods, MI is least affected from the confounding factor data length. Coupling values of all methods decreased with increasing noise, while the PLV is least affected
from this confounding factor. The red line marks the critical z-value (significance level). All values above this line represent significant phase-amplitude coupling. For
each effect, all factor levels within a method are significantly different from each other according to post hoc t-tests. For (B–D) only monophasic coupling values are
depicted for the PLV and the MVL.
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follow-up analysis. This analysis further showed that a minimal
data length is required for finding coupling, which should exceed
at least 400 ms per trial when including 30 trials (also see Cheng
et al., 2018). None of the methods were able to detect coupling
in the shortest simulated epoch of 400 ms. It might be useful to
develop a correction factor (e.g., similar to the pairwise phase
consistency that is insensitive to data length variation; Vinck
et al., 2010) for data length, to make phase-amplitude coupling
values more comparable across studies. Of all four methods, MI
is least affected from the confounding factor data length.

Effect of Sampling Rate on Phase-Amplitude
Coupling Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Sampling rate had no effect on any of the phase-amplitude
coupling values [F(1,99) = 0.10, p = 0.75] and did not interact
with method [F(3,297) = 2.05, p = 0.15].

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Overall coupling values slightly increased with increasing
sampling rate [F(1,99) = 38.65, p < 0.01, ω2 = 0.16]. The sampling
rate effect differed according to the method [F(3,297) = 27.80,
p < 0.01, ω2 = 0.09; Figure 4C]. It was most pronounced in
GLM-CFC [t(99) = 6.26, p < 0.01, ω2 = 0.16], followed by the MI
[t(99) = 5.71, p < 0.01, ω2 = 0.14]. PLV [t(99) = 5.31, p < 0.01,
ω2 = 0.12] and mean vector [t(99) = 5.28, p < 0.01, ω2 = 0.12]
length were least affected by sampling rate.

The factor sampling rate stands out because of its lacking effect
for theta-low gamma coupling and comparatively small effect size
for alpha-high gamma coupling. A third set of data was simulated
testing PLV, MVL, and MI at 16–18 Hz for the modulating
frequency and 202–238 Hz for the modulated frequency (for
detailed results see Hülsemann, 2016). This analysis showed that
sampling rate is indeed important, but only if the investigated
upper frequency band approaches the Nyquist frequency (here
250 Hz). Of all four methods, MVL and PLV are least affected
from the confounding factor sampling rate.

Effect of Noise on Phase-Amplitude Coupling
Measures
Theta-low gamma coupling (5–7 to 33–47 Hz)
Coupling values of all methods decreased with increasing noise
[F(2,198) = 372.07, p < 0.01, ω2 = 0.71]. The interaction
method by noise became significant [F(6,594) = 247.63, p < 0.01,
ω2 = 0.55]. Post hoc t-tests showed that all factor levels within
a method differed significantly from each other (all p’s < 0.01).
The effect of noise was most pronounced for the GLM-CFC
(0.65 < ω2 < 0.75). MVL (0.42 < ω2 < 0.70) and MI
(0.53 < ω2 < 0.62) were intermediately affected. The PLV
(0.30 < ω2 < 0.65) was least affected by noise.

Alpha-high gamma coupling (8–10 to 50–70 Hz)
Coupling values of all methods decreased with increasing noise
[F(2,198) = 417.74, p < 0.01, ω2 = 0.74]. The interaction
method by noise became significant [F(6,594) = 290.04, p < 0.01,
ω2 = 0.59; Figure 4D]. Post hoc t-tests showed that all factor
levels within a method differed significantly from each other (all
p’s < 0.01). The effect of noise was most pronounced for the

GLM-CFC (0.67 < ω2 < 0.79). MVL (0.50 < ω2 < 0.80) and
MI (0.55 < ω2 < 0.66) were intermediately affected. The PLV
(0.44 < ω2 < 0.76) was least affected by noise.

Overall, the noisier the data, the lower PLV, MVL, MI, and
GLM-CFC are. This aspect is not desired but plausible. Noise
obscures the relation between the phase of the lower frequency
and amplitude of the higher frequency. The data as a whole
contains phase-amplitude coupling to a lesser extent, as the
relative amount of noise compared to the relative amount of
signal increases. Of all four methods, the GLM-CFC is most and
the PLV is least affected from the confounding factor noise. The
MVL is stronger affected than the MI.

Interaction Effects
Conducting six-way ANOVAs for each method separately
(see Hülsemann, 2016 for detailed results), revealed ordinal
interaction for all factors (multimodality, data length, sampling
rate, noise, modulation strength, and modulation width).
Especially multimodality and data length interacted with the
remaining factors, as well as interacted with each other and
the remaining factors. Sampling rate only showed significant
interactions when analyzing frequencies close to the Nyquist
frequency. All interactions had a monotone pattern, following
the pattern of each main effect. For example, MVL increased the
longer the data, but it increased less when also noise increases
(Figure 5). This pattern was true for each added factor. Phase-
locking value and MVL did not find biphasic coupling at all.
Because of this, for these two methods, the described main effect
and interaction patterns are only valid for monophasic, but not
for biphasic coupling. For the MI and the GLM-CFC the pattern
was true for mono- and for biphasic coupling.

We showed empirically that the methods were indifferent to
the chosen frequency band combinations. To our knowledge,
there is no mathematical reason for a frequency dependency
of the methods [compare Figure 1 showing calculation of all
methods graphically and see sections “Phase-Locking-Value as
Used in Mormann et al. (2005),” Mean Vector Length by Canolty
et al. (2006),” Modulation Index by Tort et al. (2008),” and
“GLM-CFC by Kramer and Eden (2013)”]. In order to facilitate
the testing of methods, we provide our MATLAB script in
Appendix A, in which the chosen frequency band combination
and parameters can easily be adjusted.

The GLM-CFC behaves best regarding modulation strength
and worst regarding noise compared with the three other
methods. Regarding the other factors, its performance is in
the intermediate range. The most important disadvantage
of the GLM-CFC is its extremely high computation time,
which exceeds those of the other methods by two (without
calculating confidence intervals) or up to four orders of
magnitude (with calculating confidence intervals). On a
Windows 10 computer (64-bit operating system, CPU: Intel R©

Core TMi7-8700K, CPU 2 3.70 GHz 3.70 GHz, RAM: 16.0
GB) the calculation took on average 0.61 ms for the PLV,
0.67 ms for the MVL, 2.70 ms for the MI, 269.51 ms for
the GLM-CFC (excluding the built-in confidence interval
calculation), and 9159.08 ms for the GLM-CFC (including
the built-in confidence interval calculation). Increasing
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FIGURE 5 | Interaction effects between the moderators of the
phase-amplitude coupling measures: mean ( ± SEM) phase-amplitude
coupling values for the MVL for the data length by noise interaction (only
monophasic coupling values). Interactions had a monotone pattern, following
the pattern of each main effect. Depicted here, MVL increased the longer the
data, but it increased less when also noise increased. This pattern was true
for each added factor. The red line marks the critical z-value (significance
level). All values above this line represent significant phase-amplitude
coupling. For each method, all factor levels are significantly different from each
other according to Dunn’s post hoc test. Only values within the 400 ms
condition do not differ between the noise levels.

data points increases computation time for all methods in
a similar manner (e.g., doubling the data points doubles
the computation time). Assuming, that this time-factor will
lead to the exclusion of this method for most researchers,
it is not further considered in the conclusion of this
manuscript. For a more detailed review of this method, see
Kramer and Eden (2013).

Comparing the remaining three methods it becomes evident
that the MI is least affected by the confounding factors
multimodality and data length. However, it is also – like
the PLV – less sensitive to variation in modulations strength
compared with the MVL. The MI is especially less sensitive to
modulation width compared to the MVL and PLV. MVL and
MI are similarly – and stronger than the PLV – affected by the
confounding factor noise.

CONCLUSION

For long data epochs, recorded at high sampling rates,
with a high signal-to-noise ratio, the use of the MVL is
recommended, because it is more sensitive to modulation
strength and width than both other methods. For noisier
data, shorter data epochs, recorded at a lower sampling
rate, the use of the MI is recommended, as it is least
influenced by the confounding factors compared with both

other methods. If it is not clear whether cross-frequency
coupling will be mono- or bi-phasic, the MI should be
used, even though literature suggests that biphasic coupling
can be neglected.

The PLV does not stand out in comparison to the
two other measures. So far, no review evaluated this
measure explicitly as positive. Its usage is potentially
problematic because phase information is extracted from
the amplitude envelope of a signal. Phase information
can only be correctly extracted from truly oscillating
signals; this must not be necessarily the case for an
amplitude envelope. However this disadvantage can
be counteracted by filtering the amplitude envelope
first before extracting phase information from it as is
described (Vanhatalo et al., 2004).

Because MVL and MI have complementing strengths
and weaknesses, it would be advisably to calculate
both. The time-consuming aspect of measuring the two
methods is permutation testing. Calculation of both
measures on the other hand will not substantially increase
the analysis time.

The MI is quantitatively larger than the PLV and MVL.
However, even despite substantial quantitative differences
in values, the qualitative decision for significance of
phase-amplitude coupling is the same for all four methods
in our simulation. Nevertheless, comparison of coupling
strengths between the methods is problematic and this
lack of comparability provides another reason for reporting
both, MVL and MI.

In contrast to MVL, the false positive rate of the MI is not
affected by any confounding factor. However, this advantage
against MVL is counteracted by one disadvantage against the
MVL: calculation of the MI includes Shannon’s Entropy. The
entropy value depends on the amount of bins as well as amount
of data squeezed into the same amount of bins. This is an
undesirable degree of freedom, which is not present when
calculating the MVL.

Due to the dependency on confounding variables (e.g., data
length), comparing absolute coupling strengths across studies
might be difficult even if using the same method. Comparisons
within one study, on the other hand, can be done with confidence.
Nevertheless, one should make sure that signal-to-noise ratio
is comparable within all experimental conditions and over the
course of the experiment.

Generally, it is advisable to work with standardized phase-
amplitude coupling measures via permutation testing. It
facilitates the interpretation of the measures, first and foremost,
by giving the researcher knowledge about the probability that
the observed MI would have been also found under the
assumption of the null-hypothesis. This aspect is often ignored
in the literature.

Kramer and Eden (2013) stated that “an optimal analysis
method to assess this cross-frequency coupling (CFC) does not
yet exist” (p. 64). Even if it would be ideal, to have a measure
that is less susceptible to confounding variables summarizing this
analysis, it should be rather concluded that at least two reasonable
analysis methods exist.
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