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Abstract
Viruses depend on host cellular metabolism to provide the energy and biosynthetic building blocks required for their

replication. In this study, we observed that influenza A virus (H1N1), a single-stranded, negative-sense RNA virus with an

eight-segmented genome, enhanced glycolysis both in mouse lung tissues and in human lung epithelial (A549) cells. In

detail, the expression of hexokinase 2 (HK2), the first enzyme in glycolysis, was upregulated in H1N1-infected A549 cells,

and the expression of pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase kinase 3 (PDK3) was upregulated in

H1N1-infected mouse lung tissues. Pharmacologically inhibiting the glycolytic pathway or targeting hypoxia-inducible

factor 1 (HIF-1), the central transcriptional factor critical for glycolysis, significantly reduced H1N1 replication, revealing a

requirement for glycolysis during H1N1 infection. In addition, pharmacologically enhancing the glycolytic pathway further

promoted H1N1 replication. Furthermore, the change of H1N1 replication upon glycolysis inhibition or enhancement was

independent of interferon signaling. Taken together, these findings suggest that influenza A virus induces the glycolytic

pathway and thus facilitates efficient viral replication. This study raises the possibility that metabolic inhibitors, such as

those that target glycolysis, could be used to treat influenza A virus infection in the future.
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Introduction

Viruses are obligate intracellular parasites that depend on

host cellular metabolism to accomplish their replication.

An array of diverse viruses induces dramatic alterations in

host cellular metabolic pathways including glycolysis, fatty

acid synthesis, and glutaminolysis for their benefits

(Sanchez and Lagunoff 2015). Although there are simi-

larities among virus-induced metabolic modifications to

some extent, each virus species may require unique meta-

bolic alterations to complete its life cycle (Sanchez and

Lagunoff 2015). For example, white spot syndrome virus,

dengue virus, norovirus, and Kaposi’s sarcoma herpesvirus

(KSHV) induce glycolysis (Chen et al. 2011; Yogev et al.

2014; Fontaine et al. 2015; Passalacqua et al. 2019),

whereas hepatitis C virus and vaccinia virus activate glu-

tamine catabolism (Fontaine et al. 2014; Thai et al. 2015;

Asim et al. 2017; Levy et al. 2017). Moreover, tomato

bushy stunt virus (TBSV) recruits pyruvate kinase into its

replicase complex to generate ATP to fuel its own repli-

cation (Chuang et al. 2017).
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Influenza virus, a member of the Orthomyxoviridae

family with a genome composed of eight single-stranded,

negative-sense RNA segments, causes substantial morbid-

ity and mortality annually, becoming a large threat to

public health (Iuliano et al. 2018). However, influenza

virus has evolved strategies to evade host immune response

and to escape from vaccine protection. It has been reported

that neuraminidase inhibitors, the current frontline anti-

influenza drugs, have been met with a rise in viral resis-

tance (Hurt 2014; Li et al. 2015). Therefore, it is impera-

tive to develop drugs that target host cellular machinery

(Zumla et al. 2016). Cellular metabolism related host

factors are promising targets against influenza (Muller

et al. 2012).

Glucose is mainly catabolized through two pathways,

glycolysis and the tricarboxylic acid (TCA) cycle. It has

been reported that many viruses can reprogram glucose

metabolism in the host cells (Thai et al. 2014; Yogev et al.

2014; Yu et al. 2014; Fontaine et al. 2015; Passalacqua

et al. 2019; Zhao et al. 2019). Activation of glycolysis by

influenza A virus has been reported by some studies

(Genzel et al. 2004; Ritter et al. 2010; Petiot et al. 2011;

Smallwood et al. 2017). However, the cell lines and

specimens used in these studies were still not adequate. In

this study, we show that glycolysis is upregulated in H1N1-

infected human lung epithelial (A549) cells and mouse

lung tissues and that inhibiting this metabolic pathway

results in reduced H1N1 replication. Furthermore, the

effect of glycolytic inhibitors or enhancer on H1N1

infection is independent of interferon signaling. According

to these findings, H1N1 infection activates the glycolytic

pathway of glucose metabolism to support efficient viral

replication.

Materials and Methods

Cells and Viruses

Human lung adenocarcinoma epithelial (A549) cells and

Madin Darby Canine Kidney (MDCK) cells were pur-

chased from the ATCC. A549 cells were cultured in Ham’s

F-12 K medium supplemented with 10% FBS and 1%

antibiotics (100 U/mL penicillin and 0.1 mg/mL strepto-

mycin). MDCK cells were cultured in DMEM medium

supplemented with 10% fetal bovine serum (FBS) and 1%

antibiotics. All cells were cultured in a humidified atmo-

sphere with 5% CO2 at 37 �C. The influenza A/PR/8/34

strain was purchased from the ATCC. A549 cells were

seeded and, after incubation overnight, were washed with

PBS twice and then infected with influenza virus at the

indicated multiplicity of infection (MOI). After 2 h of

adsorption, the inoculum was removed, and the cells were

maintained in maintenance medium (Ham’s F-12 K

containing 25 mmol/L HEPES, 1% antibiotics, and

0.25 lg/mL TPCK-treated trypsin) for the indicated time.

Animal Model

Female BALB/c mice, at 4–6 weeks old, were obtained

from the Chinese Academy of Sciences Experiment Center

in Shanghai. The mice were intranasally infected with

influenza A virus (A/PR/8/34) at 800 PFU/mouse or 50 lL
of saline. After 3 d, blood was collected and serum was

harvested by centrifugation. Then the mice were sacrificed,

and the mouse lung tissues were rapidly collected and

cryopreserved in liquid nitrogen.

Reagents

2-deoxyglucose (2DG, catalog number D8375) and oxa-

mate (catalog number O2751) were purchased from Merck

(St. Louis, MO, USA). Dichloroacetate (DCA; catalog

number S8615) was purchased from Selleck Chemicals

(Houston, TX, USA). PS48 (catalog number HY-15967)

was purchased from MedChemExpress (Monmouth Junc-

tion, NJ, USA). 2DG, oxamate, DCA and PS48 were

directly solubilized in cell culture medium at indicated

concentrations. Ham’s F-12 K medium and FBS were

purchased from Gibco/BRL Life Technologies (Grand

Island, NY, USA). Anti-HIF-1a (catalog number

SAB2702132) primary antibody was purchased from

Merck (St. Louis, MO, USA). Anti-PKM2 (catalog number

4053), anti-HK2 (catalog number 2867), anti-GAPDH

(catalog number 5174), and anti-b-actin (catalog number

4970 s) primary antibodies were purchased from Cell

Signaling Technology (Boston, MA, USA). Anti-H1N1

influenza A virus nucleocapsid (NP; catalog number

ab104870) primary antibody was purchased from Abcam

(Cambridge, MA, USA). Anti-PDK3 (catalog number

H00005165-M01) was purchased from Novus Biologicals

(Littleton, CO, USA). Anti-HIF-1b (catalog number

611078) was purchased from BD Transduction Laborato-

ries (Franklin Lakes, NJ, USA). The respective horseradish

peroxidase (HRP)-conjugated secondary antibodies were

obtained from Beyotime (Shanghai, China). The radio

immunoprecipitation assay (RIPA) protein lysis buffer,

phenylmethanesulfonyl fluoride (PMSF), bicinchoninic

acid (BCA) protein concentration assay kit, and SDS-

PAGE gel preparation kit were obtained from Beyotime

(Shanghai, China). PVDF membranes and highly sensitive

enhanced chemiluminescence (ECL) agents were pur-

chased from Bio-Rad (Richmond, CA, USA) and Thermo

Fisher Scientific (Waltham, MA, USA), respectively.

TRIzol was purchased from Invitrogen (Grand Island, NY,

USA). A PrimeScriptTM RT Master Mix kit and a SYBR
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Premix Ex TaqTM II kit were purchased from TaKaRa

(Dalian, Liaoning, China). A lactate assay kit was pur-

chased from Merck (St. Louis, MO, USA). An ATP assay

kit was purchased from Beyotime (Shanghai, China).

Measurement of ATP Level

Intracellular ATP levels were measured by an ATP assay

kit according to the manufacturer’s instructions. Briefly,

the cells were lysed with ATP assay buffer. Next, ATP

assay buffer containing firefly luciferase and luciferin was

added to the samples and standards at room temperature for

5 s, and then the relative light units (RLUs) were measured

in a luminometer. The amount of ATP was normalized to

the protein concentration of the samples, as determined by

BCA protein assay kit. All samples and standards were

assayed in triplicate.

Measurement of Lactate

The lactate in mouse serum, in mouse lung tissue homo-

genate, and in A549 cell supernatant was measured by a

lactate assay kit according to the manufacturer’s instruc-

tions. The mouse lung tissue was homogenized in 4 vol-

umes of lactate assay buffer and centrifuged at

13,000 9g for 10 min to create a soluble fraction. The

soluble fraction of the lung tissue, the mouse serum, and

the cell supernatant were deproteinized with a 10 kDa

MWCO spin filter that removed lactate dehydrogenase.

The samples and lactate standards were added in duplicate

to 96 well plates, and then, 50 lL of master reaction mix

was added to each well and incubated for 30 min at room

temperature. The absorbance was measured at 570 nm. The

amount of lactate in the samples was then determined

based on the standard curve.

Western Blot Analysis

Total protein from the mouse lung samples and the cultured

cells was extracted with RIPA buffer. The protein con-

centrations were detected using a BCA protein assay kit.

Then total protein samples were separated on an 10% SDS-

PAGE and transferred onto a PVDF membrane. The

membranes were blocked with 5% non-fat milk in Tris-

buffered saline with Tween-20 (TBST) and incubated

overnight at 4 �C with primary antibodies against HIF-1a
(1:1000), HK2 (1:1000), PKM2 (1:1000), PDK3 (1:1000),

NP (1:1000), HIF-1b (1:2000), GAPDH (1:1000), and b-
actin (1:1000). After washing in TBST, the bands were

incubated with HRP-conjugated goat anti-rabbit secondary

antibody (1:1000) or goat anti-mouse secondary antibody

(1:1000) at room temperature for 1 h. After washing in

TBST again, the membrane bands were visualized with the

ECL reagent according to the manufacturer’s instructions.

RNAi

The shRNA sequences used for knocking down human

HIF-1a and HIF-1b were 50-GTGATGAAAGAATTACCG
AATCTCGAGATTCGGTAATTCTTTCATCAC-30 and

50-GAGACAGCTTCCAACAGGTCTCGAGACCTGTTG
GAAGCTGTCTC-30 respectively. These sequences and

non-targeting irrelevant sequence were subcloned into the

lentivirus vector pLKO.1 plasmid respectively. Then,

pLKO.1 plasmids were used together with packaging

plasmids (pSPAX2 and pMD2.G) to cotransfect HEK293T

cells. Lentiviral stocks harvested were used to infect the

A549 cells, followed by cell selection through puromycin

(1 lg/mL).

RNA Quantification

Total RNA was extracted with TRIzol reagent following

the manufacturer’s instructions. One to two lg total RNA

was reverse transcribed using the PrimeScriptTM RT

Master Mix. Quantitative real-time PCR was performed

using SYBR Premix Ex TaqTM II on the Vii7 system

(ABI). Relative mRNA level and intracellular viral RNA in

each individual sample were examined in triplicate, nor-

malized to b-actin, and calculated using the 2-DDCT

method (Schmittgen and Livak 2008). The specific primers

used for qRT-PCR are listed in Supplementary Table S1.

Cell Viability Assay

Cell viability was determined by using the Cell-Counting

Kit-8 (Dojindo, Kyushu, Japan) according to the manu-

facturer’s instructions. Briefly, 8 9 103 control shRNA,

shHIF-1a, and shHIF-1b A549 cells were seeded in opa-

que-walled 96-well plates. 24 h later, 10 lL of CCK-8

reagent was added directly into each well and incubated

with the cells for 1 h at 37 �C. The absorbance of each well

was measured at 450 nm with a microplate reader (Bio-

Rad Instruments, USA).

Plaque Assay

Plaque assays were performed in six-well plates as previ-

ously described (Matrosovich et al. 2006). Briefly, MDCK

cells were infected with serial tenfold dilutions of the virus

supernatants in 1 9 MEM for 1 h at 37 �C. Then, the cells
were washed with PBS and covered with 1% agarose in

1 9 MEM with 1 lg/mL TPCK-treated trypsin. After

2–3 days of incubation, the plates were stained with crystal

violet, and the visible plaques were counted.
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Statistical Analysis

All the data were statistically analyzed using GraphPad

Prism (version 6.0; San Diego, CA, USA). Measurement

data are expressed as mean (SD). An unpaired two-tailed

Student’s t-test was used for comparisons between two

indicated groups. A value of P\ 0.05 was considered

significant.

Results

H1N1 Infection Induces Glycolysis In vivo and In
vitro

To identify the changes in glucose metabolism after H1N1

infection, we conducted a screen of key glycolytic enzymes

in mock infected and H1N1 (A/PR/8/34) infected human

lung epithelial (A549) cells, and we found that hexokinase

2 (HK2) was significantly upregulated after H1N1 infection

at 16 h and 24 h post-infection (p.i.) (Fig. 1A). Hexokinase

is the first rate-limiting enzyme in the glycolytic pathway,

and the HK2 isoform, in particular, has been shown to be a

key mediator of aerobic glycolysis (Wolf et al. 2011;

Gershon et al. 2013). However, the expression of pyruvate

kinase M2 (PKM2) and pyruvate dehydrogenase kinase 3

(PDK3) remained unchanged in the A549 cells after H1N1

infection (Fig. 1A). It is known that less ATP is produced

when the same amount of glucose is oxidized by glycolysis

than by TCA cycle, so we observed intracellular ATP

levels in mock and H1N1-infected A549 cells at 24 h p.i..

As shown in Fig. 1B, intracellular ATP in H1N1-infected

cells was significantly lower than that of mock infected

cells, suggesting that glucose carbon was shunted away

from the TCA cycle to glycolysis. To validate the influence

of H1N1 infection on glucose metabolism, mice were

intranasally administered H1N1 (800 PFU/mouse) or mock

infected as a control. At 3 d p.i., the expression of PKM2

and PDK3 in H1N1-infected mouse lung tissues was sig-

nificantly higher than that in mock infected group

(Fig. 1C). Consistently, serum lactate and lactate in lung

tissue homogenate in H1N1-infected group was signifi-

cantly higher than that in mock infected group (Fig. 1D,

1E). Taken together, these results suggest that glycolysis is

enhanced after H1N1 infection both in vivo and in vitro.

Glycolytic Inhibitors Impair H1N1 Replication
and Alleviate Virus-induced Cytopathy

As demonstrated above, glycolysis is activated in host cells

after H1N1 infection. Some previous studies have reported

that reprogrammed host cellular metabolism is beneficial

for viral replication (Thai et al. 2014, 2015; Yu et al. 2014;

Fontaine et al. 2015; Varanasi and Rouse 2018; Passalacqua

et al. 2019). Then we examined whether enhanced glycol-

ysis was required for H1N1 replication by using glycolytic

inhibitors. 2DG, an analog of glucose and a competitive

inhibitor of hexokinase, is a commonly used glycolysis

Fig. 1 H1N1 infection induces glycolysis in vivo and in vitro. A A549

cells were mock infected or infected with H1N1 at an MOI of 1, and

cells were harvested at 8, 16, and 24 h p.i.. The expression of HK2,

PKM2, and PDK3 was analyzed by Western blotting. B A549 cells

were mock infected or infected with H1N1 at an MOI of 1. Cells were

harvested at 24 h p.i., and intracellular ATP levels were measured. C–
E Mice were intranasally administered H1N1 (A/PR/8/34) 800

PFU/mouse or mock infected as controls (n = 3 mice/group). At 3

d p.i., the expression of HK2, PKM2, and PDK3 in mouse lung tissues

was measured by western blotting (C) (the lower bands in PDK3 are

nonspecific). Serum lactate (D) and lactate in lung tissue homogenate

(E) were measured by a lactate assay kit. M, mock infection. ns, not

significant. *P\ 0.05, **P\ 0.01, ***P\ 0.001.
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inhibitor (Barban and Schulze 1961; Pelicano et al. 2006)

(Fig. 2A). A549 cells were infected with H1N1 at an MOI

of 1, with or without different concentrations of 2DG

treatment at the same time. At 24 h p.i., cells were har-

vested and intracellular influenza NP protein was deter-

mined by Western blotting. As shown in Fig. 2B, 2DG

impaired H1N1 replication in a dose-dependent manner. To

confirm the impact of glycolytic inhibitors on H1N1

replication, oxamate, a special lactate dehydrogenase

inhibitor (Elwood 1968; Crane et al. 2014; Zhao et al.

2016) (Fig. 2A), and DCA, which shifts glucose metabo-

lism from glycolysis to TCA cycle by inhibiting pyruvate

dehydrogenase kinase (Baker et al. 2000; Michelakis et al.

2008) (Fig. 2A), were also used in this H1N1-infected

Fig. 2 Glycolytic inhibitors impair H1N1 replication and alleviate

virus-induced cell injury. A Schematic overview of the glucose

metabolism and the functional targets of glycolytic inhibitors (2DG,

oxamate, and DCA) and enhancer (PS48) used in this study. B–
L A549 cells were infected with H1N1 at an MOI of 1, with or

without glycolytic inhibitors treatment at the same time. B–D Cells

were harvested at 24 h p.i., and intracellular NP levels were measured

by Western blotting. E–G Cells were harvested at 24 h p.i., and

intracellular viral RNA (M) levels were measured by qRT-PCR. b-
actin expression was used as an internal control. H–J Cell supernatant
were harvested at 24 h p.i., and viral titer levels were measured by

plaque forming unit assay. K, L The morphological changes of A549

cells at 24 h p.i. under a phase contrast microscope were shown.

*P\ 0.05, **P\ 0.01, ***P\ 0.001.
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A549 cell model respectively. The results showed that

H1N1-infected A549 cells treated with increasing con-

centrations of oxamate or DCA exhibited a dose-dependent

reduction in viral replication (Fig. 2C, 2D). Consistently,

intracellular viral RNA was significantly decreased upon

2DG, oxamate, and DCA treatment at 24 h p.i. (Fig. 2E–

2G). Virus titer in cell supernatant was also significantly

reduced upon 2DG, oxamate, and DCA treatment at 24 h

p.i. (Fig. 2H–2J). Moreover, H1N1-induced cell injury was

alleviated by 2DG and oxamate because of decreased viral

replication (Fig. 2K, 2L).

Glycolysis Inhibition by Knocking Down HIF-1
Pathway Impairs H1N1 Replication

It has been reported that HIF-1 upregulates glycolysis by

activating the transcription of glycolytic enzymes and

related regulatory enzymes such as HK2, PKM2, and PDK

(Fulda and Debatin 2007; Semenza 2012; Xu et al. 2018).

In our previous report, HIF-1 pathway was indeed upreg-

ulated after H1N1 infection (Ren et al. 2019). To further

validate our finding that glycolysis is required for H1N1

replication, we downregulated host cell glycolysis by

knocking down HIF-1 pathway and then examined its

effect on H1N1 replication. Firstly, HIF-1a stable knock-

ing-down (shHIF-1a) and control (shcontrol) A549 cell

lines were established by lentivirus-mediated RNAi tech-

nology. HIF-1a downregulation had no significant impact

on cell viability as measured by a CCK-8 assay (Fig. 3A),

and HIF-1a mRNA and protein were significantly lower in

shHIF-1a A549 cells compared to that in control cells

(Fig. 3B, 3D). Besides, lactate concentration in H1N1-in-

fected shHIF-1a A549 cell supernatant was significantly

lower than that in H1N1-infected shcontrol A549 cell

supernatant, indicating that glycolysis was indeed inhibited

by knocking down HIF-1a (Fig. 3C). shcontrol and shHIF-

1a A549 cells were mock-infected or infected with H1N1

at an MOI of 1, and the cells and supernatant were har-

vested at 24 h p.i.. The results showed that intracellular

NP, intracellular viral RNA (M gene), and virus titers in

supernatant were significantly lower in H1N1-infected

shHIF-1a A549 cells than those in H1N1-infected shcon-

trol cells (Fig. 3D–3F). Notably, knocking down of HIF-1a
in A549 cells did not inhibit the replication of enterovirus

71, indicating that the block in H1N1 replication was not

due to the effects of HIF-1a knockdown on cell viability

(Supplementary Fig. S1). To further validate our findings,

we knocked down HIF-1b, the partner subunit of HIF-1a to

form functional HIF-1 transcription factor (Wang and

Semenza 1993, 1995), and then examined its impact on

H1N1 infection. Consistently, HIF-1b knockdown had no

effect on cell viability but significantly reduced H1N1

replication in A549 cells (Fig. 3G, 3H). Collectively, these

data show that glycolysis is required for H1N1 replication.

Pharmacologically Enhancing the Glycolytic
Pathway Further Promotes H1N1 Replication

To further validate the effect of host cell glycolysis on

H1N1 replication, the effect of a glycolysis enhancer on

H1N1 replication was determined. PS48, a PDK1 activator,

shifts glucose metabolism from TCA cycle to glycolysis,

inducing a Warburg-like metabolic state (Hindie et al.

2009; Han et al. 2017) (Fig. 2A). A549 cells were infected

with H1N1 at an MOI of 1, with or without PS48 treatment

at the same time. At 24 h p.i., cells and cell supernatant

were harvested and intracellular NP protein, viral RNA,

and virus titers in supernatant were examined by Western

blotting, qRT-PCR, and plaque assay respectively. As

shown in Fig. 4A–4C, PS48 promoted H1N1 replication by

enhancing glycolysis. Moreover, H1N1 induced cell injury

was aggravated by PS48 treatment due to boosted viral

replication (Fig. 4D).

The Effect of Glycolysis Inhibitors or Enhancer
on Interferon Induction in H1N1-infected Cells

Influenza infection activates innate immune response,

inducing interferon production (Iwasaki and Pillai 2014;

Herold et al. 2015), and influenza virus is sensitive to

interferon treatment (Iwasaki and Pillai 2014). Recently, it

was reported that lactate, the product of glycolysis, inhibits

RIG-I like receptors-mediated interferon production

(Zhang et al. 2019). As we demonstrated above that H1N1

infection prompted glycolysis, which may result in the

inhibition of interferon (IFN) production because of the

lactate-mediated inhibition of MAVS (Zhang et al. 2019).

Therefore, we examined interferon production and inter-

feron-stimulated genes (ISGs) in H1N1-infected A549 cells

when glycolysis was blocked or enhanced by glycolytic

inhibitors or enhancer. Strikingly, treatment with 2DG or

oxamate did not rescue interferon production as expected,

and the treatment resulted in significantly lower IFN-a,
IFITM1, ISG56, and MxA transcription levels (Fig. 5A–

5D). PS48 treatment resulted in significantly higher IFN-a,
IFITM1, ISG56, and MxA transcription levels (Fig. 5E–

5H). These results suggest that the change of H1N1 repli-

cation upon glycolysis inhibition or enhancement is inde-

pendent of interferon signaling.
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Fig. 3 H1N1 replication is impaired by knocking down HIF-1

pathway. A Cell viability of shcontrol and shHIF-1a A549 cells was

measured by a CCK-8 assay. B, C shcontrol and shHIF-1a A549 cells

were infected with H1N1 at an MOI of 1, and cells and supernatants

were harvested at 24 h p.i.. HIF-1a mRNA level was measured by

qRT-PCR (B). Lactate in cell supernatant was measured by a lactate

assay kit (C). D–F shcontrol and shHIF-1a A549 cells were mock

infected or infected with H1N1 at an MOI of 1, and cells and

supernatant were harvested at 24 h p.i.. The expression of HIF-1a and

NP was analyzed by western blotting (D). Intracellular viral RNA

(M gene) in infected groups was measured by qRT-PCR (E), b-actin
expression was used as an internal control. Virus titer in cell

supernatant in infected groups was measured by plaque forming unit

assay (F). G Cell viability of shcontrol and shHIF-1b A549 cells was

measured by a CCK-8 assay. H shcontrol and shHIF-1b A549 cells

were mock infected or infected with H1N1 at an MOI of 1, and cells

were harvested at 24 h p.i.. The expression of HIF-1b and NP was

analyzed by western blotting. ns, not significant. **P\ 0.01,

***P\ 0.001.

Fig. 4 Pharmacologically enhancing the glycolytic pathway further

promotes H1N1 replication. A A549 cells were infected with H1N1 at

an MOI of 1, with or without PS48 (5 or 10 mmol/L) treatment at the

same time. Cells were harvested at 24 h p.i., and intracellular NP

level was measured by Western blotting. B, C A549 cells were

infected with H1N1 at an MOI of 1, with or without PS48 (10 mmol/

L) treatment at the same time. Cells were harvested at 24 h p.i., and

intracellular viral RNA (M) was measured by qRT-PCR (B), b-actin
expression was used as an internal control. Cell supernatants were

harvested at 24 h p.i., and viral titer levels were measured by plaque

forming unit assay (C). D A549 cells were infected with H1N1 at an

MOI of 1, with or without PS48 (10 mmol/L) treatment at the same

time. The morphological changes of A549 cells at 24 h p.i. under a

phase contrast microscope were shown. **P\ 0.01, ***P\ 0.001.
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Discussion

When influenza virus infects humans, it replicates rapidly

in alveolar epithelial cells, and its rapid replication neces-

sarily requires the organelles, energy, and biosynthetic

substrates of host cells. So influenza virus has evolved

sophisticated strategies to hijack host cells for their own

benefits. For example, the viral ribonucleoprotein complex

(vRNP) of influenza virus can preferentially utilize the

newly generated RanGTP-CRM1 complex to complete the

nuclear export process by taking dense chromatin as the

carrier to obtain the spatial advantage with Ran guanine

exchange factor Rcc1 (Chase et al. 2011). Besides this,

host cellular metabolism may also be modulated by influ-

enza virus for its replication. In this study, we examined

glycolytic enzymes in human lung epithelial (A549) cells

and mouse lung tissues after H1N1 infection. The results

showed that HK2 was upregulated in A549 cells and that

PKM2 and PDK3 were activated in mouse lung tissues

after H1N1 infection. Lactate, the terminal product of

glycolysis, was significantly elevated in H1N1-infected

mouse serum and lung tissue homogenate. These results

clearly indicate that glycolysis is activated in H1N1

infection. Some previous studies have also reported gly-

colysis is activated by influenza A virus infection (Genzel

et al. 2004; Ritter et al. 2010; Petiot et al. 2011; Small-

wood et al. 2017). These studies investigated influenza

induced metabolism change in MDCK cells, HEK293 cells,

and NHBE (normal primary human bronchial epithelial)

cells by mass spectrometry, which were different from our

study. H1N1 activates different glycolytic enzymes

between human derived A549 cells and mouse lung tissues,

and these differences may be due to different host genetic

backgrounds. Besides, various cell types in the lung tissues,

such as epithelial cells, endothelial cells, fibroblast, and

immune cells, may contribute to this difference. The

expression of PKM2 in mouse lung tissues is upregulated

after influenza infection, which is consistent with a previ-

ous report (Miyake et al. 2017). In this report, PKM2 can

interact with viral RNA-dependent RNA polymerase to

promote virus replication (Miyake et al. 2017), which

indicates another role of glycolytic enzyme in viral life

cycle.

As demonstrated above, glycolysis is activated by

influenza. However, glycolysis activation is not a common

phenomenon in all viruses. For example, vaccinia virus

does not induce or require glycolysis for replication

(Fontaine et al. 2014). In addition to glucose metabolism,

viruses can also modulate glutamine metabolism (Fontaine

et al. 2014; Thai et al. 2015; Asim et al. 2017; Levy et al.

2017) or lipid metabolism (Koyuncu et al. 2013; Hsieh

et al. 2015) of the host cell to promote self-replication. In

other words, each virus may require unique metabolic

changes in the host to achieve its own rapid replication

(Sanchez and Lagunoff 2015). In this study, we focused on

host cellular glucose metabolism, whether glutamine or

Fig. 5 The effect of glycolysis inhibitors or enhancer on interferon

induction. A–D A549 cells were mock infected or infected with H1N1

at an MOI of 1, with or without 50 mmol/L 2DG or 100 mmol/L

oxamate treatment at the same time. Cells were harvested at 24 h p.i.,

and IFN-a (A), IFITM1 (B), ISG56 (C), and MxA (D) mRNA levels

were measured by qRT-PCR. b-actin expression was used as an

internal control. E–H A549 cells were mock infected or infected with

H1N1 at an MOI of 1, with or without 10 mmol/L PS48 treatment at

the same time. Cells were harvested at 24 h p.i., and IFN-a (E),
IFITM1 (F), ISG56 (G), and MxA (H) mRNA levels were measured

by qRT-PCR. b-actin expression was used as an internal control.

**P\ 0.01, ***P\ 0.001.
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lipid metabolism were also reprogrammed by influenza

will be studied in the future.

Previous studies have reported that some other viruses

enhance glycolysis of host cells to promote virus replica-

tion. However, the mechanisms of glycolysis activation are

diverse. The gene product of adenovirus E4ORF1 binds to

MYC, a transcription factor that upregulates energy

metabolism through direct activation of metabolic genes,

and thus enhances MYC binding to glycolytic target genes,

resulting in elevated expression of specific glycolytic

enzymes (Thai et al. 2014). Human cytomegalovirus

robustly induces carbohydrate-response element binding

protein (ChREBP) to reprogram glucose metabolism to

enhanced glycolysis (Yu et al. 2014). Alphavirus YXXM

motif in the viral nsP3 protein binds to PI3K regulatory

subunit p85 and then activates cellular glycolysis (Mazzon

et al. 2018). However, the mechanism of influenza induced

glycolysis activation is still unclear. In our previous report,

influenza A virus stabilizes HIF-1a via inhibition of pro-

teasome (Ren et al. 2019). Glycolysis and viral replication

were decreased after knocking down HIF-1, indicating that

H1N1 induced glycolysis was dependent, at least in part,

on HIF-1 pathway.

Using glycolytic enzyme inhibitors and enhancer in

H1N1-infected A549 cell model, we found that enhanced

glycolysis is indeed required for influenza replication.

However, the detailed mechanism of glycolysis’s role in

viral replication is still unknown. It has been reported that

lactate, the end product of glycolysis, is a natural sup-

pressor of retinoic-acid-inducible gene I like receptors

(RLRs)-mediated interferon production (Zhang et al.

2019). However, our results showed that glycolysis inhi-

bitors impair H1N1 replication with a reduced activation of

interferon pathway and that glycolysis enhancer promotes

viral replication with a boosted activation of interferon

pathway, indicating that the effect of glycolysis on H1N1

replication may be independent of interferon signaling. It

has been reported that the inhibition of murine norovirus

replication by 2DG is independent of type I interferon

(Passalacqua et al. 2019), which is similar to the situation

in influenza infection. We speculate that activated glycol-

ysis may provide more biosynthetic building blocks for

viral RNA and protein synthesis so as to facilitate viral

replication, independent of interferon pathway. In future

studies, we will treat IFN receptor knockout cell lines or

animal models with or without glycolysis inhibitors and

then examine viral replication, whether the effect of gly-

colysis on viral replication is dependent on interferon will

be clearly demonstrated.

In summary, the infection of alveolar epithelial cells by

influenza A (H1N1) virus can activate HIF-1 signaling

pathway, promote glycolysis of host cells, and provide

support for the rapid replication of the virus (Fig. 6).

Inhibition of glycolysis or HIF-1 pathway may provide a

new direction for the treatment of influenza A (H1N1)

infection.
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