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The DNA damage repair (DDR) genes are increasingly gaining attention as potential therapeutic targets in cancers. In this study,
we identified the DDR genes associated with the tumor mutation burden (TMB) and prognosis of cervical squamous cell
carcinoma (CESC) based on The Cancer Genome Atlas (TCGA) database. Through LASSO Cox regression, the prognostic
signature involving five DDR genes (ACTR2, TEX12, UBE2V1, HSF1, and FBXO6) was established, and the risk score was
identified as an independent risk factor for CESC. The nomogram consisting of the five genes accurately predicted the overall
survival (OS) and the immunotherapeutic response of CESC patients. Finally, the loss of the copies of the transcription factor
(TF) SP140 in CESC patients may decrease the expression of FBXO6, improve DNA repair function, and reduce the diversity
of neoantigens, thereby lowering the response to immunotherapies. Therefore, the DDR gene signature is a novel prognostic
model and a biomarker for immunotherapies in CESC patients.

1. Background

With 530,000 newly diagnosed cases each year, cervical squa-
mous cell carcinoma (CESC) is the fourth most common
cancer worldwide and the third most common cancer in
women [1, 2]. Almost all CESC cases are the result of human
papillomavirus (HPV) infection [3]. While cervical screening
and antiHPV vaccination are effective preventive measures,
CESC remains the leading cause of cancer-related mortality
with approximately 270,000 deaths per year [2, 4]. Currently,
the primary treatment for CESC patients consists of radiation
and/or cisplatin-containing chemotherapy in addition to sur-
gical resection. Unfortunately, the majority of the patients are
at an advanced stage that limits therapeutic success when
diagnosed. Both local and distant recurrence is common,
which highlights the need for improved therapeutic options
[5, 6]. The clinical trials of therapeutic HPV vaccines, adop-

tive T cell therapy, and immune checkpoint inhibitors have
shown promising response rates [7–10]. It is nevertheless
crucial to identify more effective prognostic biomarkers for
CESC and modify the current treatment strategies.

The DNA damage repair (DDR) response maintains
genome stability and protects cells against endogenous and
exogenous DNA damage [11]. Variations in the DDR genes
in tumor cells are frequently associated with high somatic
mutation load, which in turn triggers the production
of tumor-specific neoantigens [12–15]. Consistently, as
reported in a recent study, the DDR gene signature of glioma
cells was predictive of patient prognosis and intratumoral
immune cell infiltration [16]. Furthermore, the Arg399Gln
polymorphism of the X-ray repair cross-complementing
group 1 (XRCC1) gene is associated with the prognosis of
nonsmall cell lung cancer (NSCLC) patients receiving plati-
num therapy, and the patients with the Gln/Gln genotype
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have a survival benefit [17]. Another study reported a
correlation between polymorphisms of DDR genes and the
response metastatic urothelial cancer patients to PD-1/PD-
L1 blockers [18]. Thus, DNA repair defects are potentially
novel biomarkers of immune checkpoint blockade response
[12]. Mutations in the DNA polymerase required during
DNA repair can also improve the overall survival rate of
patients by increasing mutations in DDR genes [19]. In
addition, mutations in DDR genes are closely related to the
resistance of tumors to radiotherapy and chemotherapy
[20, 21]. Few studies have reported the clinical significance
of DDR genes in CESC, and so far, only XRCC4 has been
associated with the progression of cervical cancer [22].
These studies indicate that DDR genes are emerging bio-
markers of the clinical prognosis and immunotherapeutic
response of various cancers. Furthermore, most DDR genes
are regulated by upstream transcription factors (TFs), such
as p53, BRCA1, AP-1, and NF-κB [23], which offers new
insights into the mechanisms underlying their role in cancer
prognosis.

The aim of this study was to identify novel DDR bio-
markers for the prognosis and immunotherapeutic response
of CESC. To this end, we screened for the differentially

expressed DDR genes in CESC from TCGA (The Cancer
Genome Atlas) and analyzed their relationship with the
immune microenvironment in CESC. A five-DDR gene sig-
nature was identified that can predict CESC prognosis and
immunotherapeutic response with high sensitivity.

2. Materials and Methods

2.1. Data Collection. RNA-seq data as well as clinical
information (age, days to death, vital status, clinical stage,
mutations, copy number variations, etc.) of 306 CESC sam-
ples were obtained from TCGA database (https://portal.gdc
.cancer). Besides, samples with incomplete clinical informa-
tion were excluded. DDR gene data was downloaded from
AmiGO2. (http://amigo.geneontology.org/).

2.2. Identification of Differentially Expressed Genes. The
RNA-seq data of DDR genes were processed using the
“limma” package. For high-tumor mutation burden (TMB)
and low-TMB samples, the differentially expressed genes
(DEGs) were screened between them. Univariate Cox regres-
sion of the overall survival (OS) was performed using the

RNA-seq expression profiles of 306 CESC samples and mRNA sequencing data
matching DNA repair genes were downloaded from TCGA; DNA repair genes were

taken from AmiGO2

“limma” R package screened out DEGs; “survival” R package performed univariate Cox
analysis on OS to screen DNA repair genes with prognostic potential

�e “glmnet” R package performs LASSO Cox regression analysis on prognostic genes,
penalizing the regularization parameter 𝜆 to avoid overfitting effects

Calculate the risk score according to the gene expression level and the corresponding
regression coefficient, and divide it into high and low risk groups

Create Kaplan-Meier curves and time-dependent ROC curves between the two groups to
assess the predictive power of gene signatures

�e “rms” R package completes predicted nomograms and calibration plots; the GSVA
and TIDE predict immunotherapy response; co-expression analysis identifies TFs

ATAC-seq data taken from TCGA to identify chromatin accessibility; Cistrome database
validation

Figure 1: The flow chart of the analysis process. CESC: cervical squamous cell carcinoma; TCGA: The Cancer Genome Atlas; DEGs:
differentially expressed genes; OS: overall survival; GSVA: Gene Set Variation Analysis; TIDE: tumor immune dysfunction and exclusion;
TFs: transcription factors.
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Figure 2: Continued.

3Journal of Oncology



“survival” R package to identify DDR genes with prognostic
relevance.

2.3. Identification of Prognostic Genes as well as
Establishment of Prognostic Model. Analysis of the prognos-
tic genes was performed by LASSO Cox regression based on
the “glmnet” R package. To avoid overfitting, ten-fold cross-
validation was adopted to determine the penalized
regularization parameter λ in the model. For each patient,
the risk score was calculated as following: risk score = SUM
ðexpression level of each gene × corresponding coefficientÞ.
Based on the median of the risk score, CESC patients were
then categorized into the low-/high-risk groups. The
Kaplan-Meier curves of both groups were plotted using the
“survminer” R package. The “survivalROC” R package was
used to plot the time-dependent ROC curve in order to
evaluate the predictive power of the gene signature. The
independent prognostic predictors of OS were determined
by Cox regression using TCGA data. The nomograms and
corresponding calibration plots were constructed based on
the independent predictors with the “rms” R package, and
the predictive power of the nomogram was determined by
ROC curve analysis.

2.4. Predictors of Immunotherapeutic Response. Single-sam-
ple gene set enrichment analysis (ssGSEA) was carried out
on thirteen immune-related pathways. Meanwhile, the
infiltration of sixteen immune cell types was evaluated using
the “gsva” R package. The response of the CESC patients to
ICB was predicted on the basis of pretreatment genomics
using the tumor immune dysfunction and exclusion (TIDE)
program (http://tide.dfci.harvard.edu/).

2.5. Identification of the Upstream TFs. TFs coexpressed with
the key genes significantly were identified if their correlation
coefficients >0.50.

2.6. Validation of the Regulatory Mechanism of TFs. For
CESC samples, their ATAC-seq data was retrieved from
TCGA, and the accessibility of the chromatin located at
these biomarker genes were determined. The binding of
the TFs to the putative targets was validated by the Cistrome
database (http://cistrome.org/db/#/).

2.7. Statistical Analysis. Statistical analysis was carried out
using R software 4.0.3. For the gene expression levels,
Student t-test (2-sided) was used to compare the difference
of CESC and adjacent nontumor tissues. Besides, Kaplan-
Meier method was adopted to evaluate the OS, and log-
rank test was used for the comparison between groups.
The ssGSEA scores of immune pathways or cells were
compared using Mann–Whitney U test. p < 0:05 indicated
statistical significance.

3. Results

3.1. Identification of Prognostic DDR Genes in CESC. The
procedure of bioinformatics analysis is summarized in
Figure 1. To identify the prognostic DDR genes, CESC
patients were divided into the high and low TMB groups
according to the median TMB, and the differentially
expressed DDR genes were screened (Figure 2(a)). Univari-
ate Cox regression analysis revealed ACTR2, TEX12,
UBE2V1, HSF1, and FBXO6 as the potential prognostic
DDR genes (Figure 2(b)). We summarized the incidence of

Altered in 4 (1.38%) of 289 samples
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Figure 2: Identification of prognostic genes related to DNA damage repair: (a) Differentially expressed genes in the high and low TMB
groups; (b) univariate Cox regression analysis to determine potential prognostic genes; (c) the incidence of major somatic mutations in
CESC; (d) the mutation frequency of 5 DNA damage repair genes.
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main somatic mutations in CESC (Figure 2(c)) and
detected low somatic mutation frequency in the above
genes (Figure 2(d)).

3.2. Correlation with Prognosis of CESC Patients. The
prognostic model consisting of ACTR2, TEX12, UBE2V1,
HSF1, and FBXO6 was established based on LASSO Cox
regression. The total risk score of these five genes was
calculated as ð0:418 × expression of ACTR2Þ + ð−1:995 ×
expression of TEX12Þ + ð0:147 × expression of UBE2V1Þ +
ð0:543 × expression of HSF1Þ + ð−0:217 × expression of
FBXO6Þ. Considering the median of the risk score as the

cutoff, the samples were categorized into low-/high-risk
groups (Figure 3(a)). Compared to the low-risk group, the
mortality rate of patients was higher in the high-risk group
with statistical significance (Figure 3(b)). Consistently,
compared to the high-risk patients, Kaplan-Meier analysis
discovered a better OS in low-risk group (Figure 3(c), p <
0:05). The areas under the receiver operating characteristic
curve (AUROCs) for 1-, 2- and 3-year OS were 0.744, 0.714
and 0.703, respectively (Figure 3(d)).

3.3. Construction and Verification of DDR-Related Prognostic
Model in CESC. For the risk score of DDR gene, univariate
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Figure 3: Prognostic analysis of the 5-gene marker in TCGA cohort: (a) risk score of samples from TCGA cohort; (b) the overall survival in
TCGA cohort; (c) Kaplan-Meier curves showing the overall survival of the high-/low-risk groups in TCGA cohort; (d) the area under
receiver operating characteristic curve showing the prognostic performance of the risk score.
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Figure 4: Construction and verification of the prognostic model: (a) the results of the univariate Cox regression analysis for the overall
survival in TCGA cohort; (b) the results of multivariate Cox regression analysis; (c) nomogram construction; (d) verification of area
under receiver operating characteristic curve.
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analysis was used to assess the prognostic value in different
subgroups of CESC patients. The risk score and tumor stage
were significantly associated with the survival rate of CESC
patients, and the risk score had a greater impact. However,
no significant difference was observed in the survival rates
of patients in terms of age (Figure 4(a)). Multivariate analy-
sis further revealed tumor stage as well as risk score to be
prognostic factors for CESC in TCGA cohort (Figure 4(b)).
A nomogram consisting of the risk scores and tumor stages
was then constructed to put the risk score into clinical
prediction (Figure 4(c)). We found that the nomogram
could predict the 3- and 5-year OS of cervical cancer
patients, and the risk score was the main influencing factor.
AUCs were 0.775, 0,734, and 0.726 for 1-, 2-, and 3-year OS,
respectively (Figure 4(d)). The prognostic nomogram also
showed good predictive ability and clinical value in
terms of calibration and decision curve analysis (DCA)
(Figure 4(e)). Taken together, the risk score consisting of
DDR genes can effectively predict the survival outcomes of
CESC patients.

3.4. Association between Risk Score and Immunotherapeutic
Response of CESC Patients. To determine the correlation
between risk score and immunotherapeutic response, we
quantified the different immune cell subpopulations and
activity of immune-related pathways using ssGSEA. Next,
the distribution of immune cells and activity score of
immune-related pathways between the high-risk group and
the low-risk group is used as reliable evidence to assess the

infiltration of immune cells. Compared to the low-risk
group, the infiltration of 15 immune cell types was lower
in the high-risk group with statistical significance, whereas
macrophage infiltration showed no difference (Figure 5(a)).
Furthermore, all but the type II IFN response immune
pathways scored significantly higher in the low-risk group
(Figure 5(b)). TIDE results further showed that CESC
patients with lower risk score had less immune deficiency
(Figure 5(c)) and were able to mount a more potent immune
response (Figure 5(d)). In other words, compared to the
high-risk patients, those with low-risk scores of DDR gene
responded better to immunotherapies. Therefore, the risk
score of DDR gene is a reliable biomarker for predicting
the immunotherapeutic response in CESC.

3.5. FBXO6 Is Downregulated in CESC due to Loss of SP140.
Thirty-five upstream TFs significantly associated with the
DDR genes were identified by coexpression analysis, of
which SP140 showed maximum copy number loss in CESC
(Figure 6(a)). There was clear correlation between the
expression levels of SP140 and FBXO6 (R = 0:523, p <
0:001) (Figure 6(b)). To further explore the underlying
mechanisms, we used the ATAC-seq data of SP140 and
FBXO6 in CESC samples from TGCA and verified their
binding in the Cistrome database. As shown in Figure 6(c),
there are multiple open chromatin regions in the promoter
of FBXO6, indicating that it is transcriptionally regulated
in CESC. We also detected multiple binding peaks corre-
sponding to SP140 in the FBXO6 sequence according to
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the chip sequence data of SP140 in the Cistrome database
(Figure 6(d)). Therefore, the loss of copy number of SP140
in CESC may be a critical factor for FBXO6 downregulation.

4. Discussion

DNA carries genetic information which is necessary to syn-
thesize RNA and proteins. Hence, to maintain the structural
and functional integrity of DNA is critical for the normal
development of all organisms. DNA damage due to endoge-
nous events (oxidative damage, replication fork collapse, or
errors that occur naturally during DNA replication or
immune cell maturation) or by exogenous factors (ultravio-
let rays, ionizing radiation, or chemical reagents) can result
in mutations, eventually leading to malignant transforma-
tion [24–27]. In order to maintain the integrity of the cellu-
lar genome, a series of DNA damage responses, such as
repair mechanisms, have evolved that can eliminate or adapt
to damage [28].

DDR pathways were consisted of direct repair (DR), base
excision repair (BER), nucleotide excision repair (NER),
double-strand break repair (DSBR), and interstrand cross-
link repair (ICLR) [28] and are regulated by specific genes
and their upstream TFs [23]. More than one DDR pathway
is often inactivated during cancer initiation and progression,
and mutations among DDR genes have been linked to the
chemoresistance of tumor cells as well [29, 30]. Thus, DDR
genes are prognostically relevant and can be used to predict
treatment response along with the overall prognosis of can-
cer patients. Based on above, we established a prognostic
model for CESC involving five DDR genes, which accurately
predicted the survival, immune infiltration, and the efficacy
of immunotherapy in CESC patients. Thus, this novel prog-

nostic signature can be used to select suitable patients for
immunotherapy.

Referring to the expression levels of the five DDR genes,
CESC patients are divided into low-/high-risk groups, and
the former exhibited worse prognosis in terms of the OS
rates. The TNM staging and risk scores of the low-/high-risk
groups were significantly different, whereas age did not have
a significant impact on the prognosis. Furthermore, the risk
score was identified as an independent prognostic factor.
The nomogram indicated high predictive power of the risk
score for 3- and 5-year OS, whereas ROC analysis showed
that 1-, 2-, and 3-year OS could be predicted by the risk
score. The accuracy of this prognostic model was also
validated by the decision curve analysis (DCA). Thus, the
DDR gene-based risk score can precisely forecast the
survival outcome of CESC patients and, at the same time,
provide more therapeutic options.

Interestingly, for the low-/high-risk groups, the infiltra-
tion of 15 immune cell types differed significantly, whereas
the infiltration of macrophages was similar. The low-risk
group showed greater immune cell infiltration, especially
that of T-helper cells, Treg cells, and CD8+ T cells. Further-
more, 13 immune-related pathways scored higher in the
low-risk group, while type II IFN response showed no signif-
icant difference between groups. In addition, the association
between the risk score of CESC and immunotherapeutic
response was evaluated by TIDE program and revealed
46% and 35% positive responders in the low-risk and high-
risk groups, respectively, which further underscores the role
of DDR genes in determining the response of CESC patients
to immunotherapy.

The checkpoint kinase CHK1 (CHEK1) recognizes DNA
damage, delays the cell cycle, and initiates DNA repair [31].
FBXO6 can specifically recognize activated CHEK1 and

Ref Gene FBXO44
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FBXO44
FBXO44
FBXO44
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Figure 6: FBXO6 is positively regulated by SP140: (a) volcano map of TFs significantly related to DDR gene, CNV (gene copy number) of
SP140 was the least; (b) SP140 is coexpressed with FBXO6; (c) multiple open chromatin regions in the FBXO6 promoter; (d) multiple peaks
binding to SP140 in the FBXO6 sequence.
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promote its ubiquitin-dependent degradation [32], thereby
inhibiting DNA repair and function and eventually leading
to increased neoantigen diversity and sensitivity to immuno-
therapy. Studies show that FBXO6 expression is related to
the OS of NSCLC patients, and in vitro experiments have
shown that FBXO6 inhibits cell proliferation, promotes
apoptosis, and sensitizes the cells to cisplatin [33]. Further-
more, FBXO6 also inhibits the antiviral response by interfer-
ing with the production of IFN-I [34]. Ji et al. reported that
the high expression levels of FBXO6 in tissues were corre-
lated with poor survival of patients with advanced ovarian
cancer. FBXO6 directly interacts with the tumor suppressor
gene RNASET2 to target it for ubiquitin-dependent degra-
dation, thus functioning as an oncogene in ovarian cancer
[35]. Wang et al. found that FBXO6 is one of the coex-
pressed genes on CD8+ T cells and promotes infiltration
of the cells into urothelial carcinoma tumors, which affects
the clinical phenotype and the immune microenviron-
ment [36].

TFs are the main regulators of gene expression in
eukaryotic cells [37]. SP140 belongs to the speck protein
(SP) family of TFs that are also known as human chromatin
“readers.” A chromatin reader is the core interpreter of the
epigenome that promotes cell-specific transcription and is
a therapeutic target for cancer and inflammation [38, 39].
SP140 is involved in various immune-related diseases such
as Crohn’s disease, chronic lymphocytic leukemia, and mul-
tiple sclerosis [40–42] and has recently been identified as the
main regulator of the immune response in ovarian cancer
[43]. We detected a significant decrease in the copy number

of SP140 in CESC patients, which correlated with the down-
regulation of its downstream target FBX06.

Our study is the first to show that SP140-FBXO6 is
related to the prognosis as well as immune microenviron-
ment of CESC. Loss of SP140 in CESC cells downregulated
the DNA repair gene FBXO6, which resulted an increased
DNA repair and decreased generation of tumor-specific
antigens (Figure 7). Thus, DDR genes are promising bio-
markers of prognosis and immunotherapeutic response of
CESC. Further studies are necessary to elucidate mechanism
of SP140/FBXO6 in cervical cancer. In addition, it will be
challenging to combine the DDR gene status with other
known biomarkers for clinical applications.

5. Conclusion

We identified five DDR genes that are related to the OS of
CESC patients, and the gene signature can predict prognosis
and the response to immunotherapy. Nevertheless, the
markers will have to be verified by functional analyses and
clinical tests, and further research on the molecular mecha-
nism of these genes is urgently needed.

Data Availability

The datasets generated during and/or analyzed during the
current study are available from the corresponding author
on reasonable request.
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