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Vast quantities of Magnetic Resonance Images (MRI) are routinely acquired in

clinical practice but, to speed up acquisition, these scans are typically of a

quality that is su�cient for clinical diagnosis but sub-optimal for large-scale

precision medicine, computational diagnostics, and large-scale neuroimaging

collaborative research. Here, we present a critic-guided framework to

upsample low-resolution (often 2D) MRI full scans to help overcome these

limitations. We incorporate feature-importance and self-attention methods

into our model to improve the interpretability of this study. We evaluate

our framework on paired low- and high-resolution brain MRI structural full

scans (i.e., T1-, T2-weighted, and FLAIR sequences are simultaneously input)

obtained in clinical and research settings from scanners manufactured by

Siemens, Phillips, and GE. We show that the upsampled MRIs are qualitatively

faithful to the ground-truth high-quality scans (PSNR = 35.39; MAE = 3.78E−3;

NMSE = 4.32E − 10; SSIM = 0.9852; mean normal-appearing gray/white

matter ratio intensity di�erences ranging from 0.0363 to 0.0784 for FLAIR,

from 0.0010 to 0.0138 for T1-weighted and from 0.0156 to 0.074 for T2-

weighted sequences). The automatic raw segmentation of tissues and lesions

using the super-resolved images has fewer false positives and higher accuracy

than those obtained from interpolated images in protocols represented with

more than three sets in the training sample, making our approach a strong

candidate for practical application in clinical and collaborative research.

KEYWORDS

super-resolution,Magnetic Resonance Imaging, deep learning, image reconstruction,

explainable artificial intelligence, brain imaging, U-Net, generative adversarial

networks

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.887633
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.887633&domain=pdf&date_stamp=2022-08-25
mailto:m.valdes-hernan@ed.ac.uk
https://doi.org/10.3389/fncom.2022.887633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2022.887633/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2022.887633

1. Introduction

Due to its non-invasive nature and radiation-free imaging

approach, Magnetic Resonance Imaging (MRI) is commonly

used in clinical diagnosis to visualize soft-tissue body structures,

such as the brain. However, there is an inherent trade-

off between the spatial resolution of the images and the

time required for acquiring them. In clinical settings, to

save time, scans are often obtained at the minimal spatial

resolution that allows the visual neuroradiological assessment.

It is common, e.g., to ensure high spatial resolution in only

one of the 3D planes (e.g., axial/horizontal), and acquire

these images spaced 5 mm or more from each other, which

results in poor spatial resolution in other views (e.g., sagittal

or coronal/vertical planes). Also, sequence parameters and

acquisition protocols differ between patients and hospitals,

mainly owed to differences in scanner manufacturers and

clinical manifestations. This all yields these images often

impossible to process by standardized pipelines, rendering

them inadequate for automated precision medicine approaches

and large-scale collaborative research. Data-driven methods to

upsample scans obtained in clinical settings that can preserve

relevant clinical features without introducing visual artifacts

could drastically speed up the diagnosis process. Hence, there

is a need to automate the scan processing including providing

clinically accurate priors to support clinical decision-making, in

addition to facilitating clinical research (Wardlaw et al., 2010;

Crowe et al., 2017).

With the recent advances in deep learning, artificial neural

networks have achieved human-level performance across a

range of tasks, such as image classification, natural language

translation, and protein structure predictions to name a few

(He et al., 2015; Wu et al., 2016b; Jumper et al., 2021).

Because they are able to self-learn and extract features from

high dimensional data, artificial neural networks have shown

exceptional capabilities in increasing the spatial resolution (i.e.,

known as super-resolution (SR)) of single images (Dong et al.,

2015; Ledig et al., 2017; Zhang et al., 2018). Therefore, using

artificial neural networks to increase the spatial resolution of

clinically-acquired MRI holds potential and has seen rapid

development in recent years (Greenspan et al., 2002; Pham

et al., 2017; Chen et al., 2018a). If successful, this could

be especially useful for potentially reducing acquisition time

requirements or reconstructing poor-quality sequences within

a scanning session. Retrospective assessment of the low quality

or low resolution data, e.g., to investigate whether a pathology

identified at a later point in time was already present (or not)

in an earlier scan of the same patient, could also benefit from

SR algorithms.

1.1. MRI super-resolution

Research in the MRI SR field has been helped by large-scale

and publicly available datasets such as Human Connectome

Project (HCP) (Glasser et al., 2016) and fastMRI (Zbontar

et al., 2018). We have compiled a list of models which

achieved state-of-the-art (SOTA) performance in a number

of these benchmark datasets and report their results [in

terms of Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Metric (SSIM)] in the Supplementary material

labeled Li_Castorina_et_al_Supplementary_file_SOTA.pdf.

Nevertheless, the vast majority of these publicly available

research datasets only contain high-resolution MRI scans

generated in highly expensive research environments that do

not reflect clinical practice. Thus, downsampling methods

(i.e., subsequently represented abbreviated as fdownsample) are

needed to synthesize the corresponding low-resolution scans,

in order to obtain low-resolution (X) and high-resolution

(Y) paired samples (Chen et al., 2018a) to train and test

these algorithms. The deep learning models presented so

far are trained on the generated low-resolution scans X̂ to

learn to approximate the inverse function f−1
downsample

, such

that g(X̂) ≈ f−1(X̂) = f−1(f (Y)) ≃ Y . The caveat with

this approach is that the network is trained on “synthetic”

low-resolution samples X̂, meaning that the output model may

not perform as well on “real-world” low-resolution scans X,

which may contain more artifacts than the estimated X̂.

Commonly used scaling methods for downsampling natural

images such as a nearest neighbor or bicubic interpolation,

may not effectively represent the difference in quality between

high- and low-resolutionMRI scans (Chun et al., 2019). K-space

truncation has been used as an alternative for the production

of low-resolution MR images (Chen et al., 2018b). These are

obtained by applying the Fourier transform to the image

obtained from the MRI scanner, where the intensity of each

point represents the relative contribution of that point’s unique

spatial frequency to the final image (Block et al., 2008). K-

space truncation refers to the process of removing the points

with higher frequencies, thus removing finer image details. Since

MRI scans are obtained in k-space, this method is relatively

straightforward for downsampling, but in addition to removing

scan details, it can worsen visual artifacts such as Gibbs ringing,

which appear as high frequency lines around areas of high

contrast (Block et al., 2008; Bernal et al., 2019, 2020, 2021). A

major problem of this downsampling method is that the low-

resolution scans may contain consistent artifacts which can be

falsely interpreted by deep learning methods as clues about the

high-resolution scans, leading to poor performance on real-

world data.
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1.2. SR using convolutional neural
networks

Recently, SR methods have been implemented using deep

learning techniques, facilitated by the growing capacity of

computing power which allows the use of deeper architectures

(Pham et al., 2017). These are better than common linear

interpolation methods (Dong et al., 2015), and relatively

fast to compute due to the parallelization of calculations

(Li et al., 2021b). Several metrics and comparisons with

conventional interpolation methods (Castorina et al., 2021)

show an indisputable advantage of these techniques in the

problem at hand. Convolutional layers are effective in extracting

features from images and scans, and stacking multiple layers

allows for a more complex representation of the extracted

features (Li et al., 2021b).

The Super-Resolution Convolutional Neural Network

(SRCNN) introduced by Dong et al. (2015), was one of the

first works that used convolutional neural networks (CNNs)

to upsample RGB images. SRCNN first interpolates the

low-resolution input image using bicubic interpolation to

the same dimension of the target high-resolution image. The

input image is, then, passed through two convolutional layers:

the first extracts feature maps, while the second introduces

non-linearity, mapping these features to a higher resolution

representation. A final layer combines the predictions

producing the reconstructed high-resolution image.This

method outperformed those considered state-of-the-art at the

time, such as Bicubic Interpolation, Sparse-Coding (Yang et al.,

2010), Anchored Neighborhood Regression (Timofte et al.,

2013), and Kernel Ridge Regression (Kim and Kwon, 2010), in

image upsampling tasks.

Dong et al. (2016) further improved the SRCNN by

proposing the Fast SRCNN (FSRCNN). FSRCNN does not

rely on the bicubic interpolation and, instead, uses three

convolutional layers to extract the features, shrink the

dimensionality to map the low-resolution features into the high-

resolution feature space, and learn the non-linear mapping.

Then, the dimensionalities are expanded and deconvolved into

the output (i.e., reconstructed high-resolution image). This

method could run 40 times faster than SRCNN while achieving

similar or better results.

Building on their research, Kim et al. (2016) proposed the

use of Very Deep Residual Neural Networks (VDSR), which

outperformed SRCNN in both, performance, as measured by

Peak Signal to Noise Ratio (PSNR), and runtime, by the use

of higher learning rates coupled with residual CNN layers

to speed up the training process. Kim et al. (2016) also

made use of gradient clipping as a solution to the exploding

gradients problem.

Shi et al. (2018) used the residual connection to enhance

the SRCNN architecture with global residual learning and

local residual learning, which aimed to overcome the partial

loss of information that increases with the depth of neural

networks. Their study outperformed popular architectures

such as SRCNN, FSRCNN, and VDSR in terms of PSNR

and Structural Similarity Index Measure (SSIM, Wang et al.

2004). Pham et al. (2017) applied similar techniques to MRI

scans, using an architecture similar to SRCNN, but with

residual skip connections between layers. They found that

using PSNR as their metric, residual architectures achieved

better performance compared to their non-residual counterpart,

even when using a larger numbers of layers. Additionally,

increasing the number of layers seemed beneficial only to

residual architectures.

Although the above-mentioned convolution-based methods

achieved remarkable results in image SR, they relied on

conventional image metrics, such as mean-absolute error (MAE),

PSNR and SSIM, to evaluate upsampled images against the

target high-resolution images (Dong et al., 2015; Kim et al.,

2016; Shi et al., 2018). These metrics, albeit efficient to

compute and easy to optimize, are not the most clinically

relevant as they evaluate the quality of the entire image

space (e.g., including background non-brain regions). In

addition, both upsampled and target high-resolution images

are needed in order to compute the mentioned image metrics,

rendering it impossible to estimate how well the upsampled

image is on inference if the target high-resolution image is

missing, as is the case with most MRI scans acquired in

clinical practice.

1.3. SR using generative adversarial
networks

Generative Adversarial Networks (GAN), first introduced in

Goodfellow et al. (2014), are deep generative models that learn

to generate compelling images which resemble the distributions

of real datasets. GAN consists of two modules that “learn”

back-to-back: a generator and a critic (also known as a

discriminator). The generator learns to generate realistic images

that mimic the true data distribution, whereas the critic learns

to distinguish generated data from real data. This minimax

optimization objective has seen tremendous success in data

generation (Karras et al., 2017; Donahue et al., 2018; Li et al.,

2020), unsupervised translation (Zhu et al., 2017; Bansal et al.,

2018), and many more (Pathak et al., 2016; Wu et al., 2016a).

Subsequently, such critic-guided training objective has also been

adopted into the realm of single-image SR (Ledig et al., 2017;

Wang et al., 2018).

In the first SRGAN, in addition to the adversarial training,

Ledig et al. (2017) implemented a perceptual loss function,

which unlike pixel-based metrics like MAE and PSNR, calculates

loss on relevant characteristics of the image. In this scheme,

the total loss is calculated as the weighted sum between the
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adversarial loss and the results of this perceptual loss function

(i.e., the VGG loss), which is a deep CNN per-se trained on

the ImageNet dataset (Johnson et al., 2016). The VGG loss is

calculated as the Euclidean distance between the reference image

and a feature map from a pre-trained 19-layer VGG network

truncated at the convolution, after activation, and right before

performing max pooling. The adversarial loss, obtained from

the discriminator of the GAN applied to all training images, is

calculated as the average classification accuracy of all training

images (0 low-resolution, 1 high-resolution).

The SRGANwas later improved by truncating the perceptual

VGG loss before the activation, which resulted in sharper

edges, therefore, being termed ESRGAN (Wang et al., 2018).

Subsequently, Liu et al. (2019) used a two-stage SR Generator

Network based on VDSR to generate a high-resolution image

fromwhich MSE loss is calculated. The pair of real and generated

high-resolution images are also fed to a discriminator network

which calculates a loss by distinguishing whether or not the

input image is from the true or generated distributions. The

pair also undergoes a Sobel filtering before calculating the edge

loss. The study proposed an Edge Enhanced Hybrid (EEH) loss

function which sums together the MSE loss, the Discriminator

adversarial loss, and the edge loss (Liu et al., 2019). This was

proposed as an alternative to perceptual loss, which, in the

context of medical images such as MRI, tends to produce

smoother images with spot artifacts, as the feature extraction

of the VGG model is primarily trained on natural images.

Additionally, training only on MSE loss usually results in blurred

edges which the EEH loss avoids due to the Sobel Edge loss (Liu

et al., 2019).

A potential disadvantage of GAN methods is that, although

the generated output image has a seemingly “real” spatial

intensity distribution, it may not match the input image (Li

et al., 2021b). To tackle this, You et al. (2019) introduced GAN-

CIRCLE, a framework based on CycleGAN (Zhu et al., 2017),

which consists of two GAN networks, with two generators

and discriminators joined together. From an input image x,

the forward GAN will produce an SR image ŷ which is

then fed to the backward GAN to produce an estimate of

the input image x̄, thus completing the circle. This circle

is used to calculate the cycle-consistent loss Lcycle = ‖

x − x̄ ‖ which aims at ensuring consistency between x and

x̄. Additionally, other losses are taken into consideration in

the overall objective function: 1) Adversarial loss from the

discriminator, aimed at promoting consistent distributions in

the output image; 2) Identity loss, fast to calculate, used

for regularization, and to refine the output image; 3) Joint

Sparsifying Transform loss, calculated from two components:

one which aims at maintaining general characteristics of the

image such as anatomy, and a second one which reduces

artifacts; and 4) Supervision loss, which is calculated from the

paired real and generated samples P(ŷ, y) and P(x̄, x). This use

of multiple GANs combined to learn the mapping in unpaired

data has shown promising results beyond the field of computer

vision (Cohen et al., 2018; Kanazawa et al., 2018; Li et al.,

2021a).

1.4. Our contributions

We use a dataset of paired low- and high-resolution scans

of the same patients, who had an MRI head scan as part of

a routine clinical examination, and, within 3 months, were re-

scanned at a field strength of 3 Tesla using a research protocol,

after consenting to participate on a study of sporadic small

vessel disease (SVD) (Clancy et al., 2021). Thus, instead of

using downsampled scans X̂, we use true low-resolution scans

X acquired in routine clinical settings, for our framework to

approximate the quality difference between low- and high-

resolution scans directly g(X) ≈ Y independent of any choice

of downsampling function.

We developed an attention-based and critic-guided deep

learning scheme that combines the advantages of both CNNs

and GANs, and those of data fusion, to upsample clinical low-

resolution whole MRI scans. Different from previous studies

that propose an SR algorithm to upsample a single MRI

sequence despite referring to “MRI scans,” we propose and

evaluate the use of data fusion for upsampling simultaneously

the three MRI structural sequences most commonly acquired

in a clinical MRI scan: T1-weighted, T2-weighted, and fluid-

attenuated inversion recovery (FLAIR). Our data fusion method

considerably improves the quality of the upsampled full scans

(i.e., of the three MRI sequences taken in the scan) both,

qualitatively and quantitatively, through inter-channel pass-

through of information.

We also explore the effect of 1) different image co-

registration methods and 2) variations in the image acquisition

parameters, in the performance of the proposed framework.

In addition, we explore the attention gates of the network

to explain which details are extracted at each depth of

its architecture, thus improving the explainability of the

upsampling process. We also incorporated GradCAM (Selvaraju

et al., 2017) into the Critic to improve the interpretability of

the Critic model. Moreover, the learned activation maps can

assist us in identifying potential artifacts in the upsampled

images and not only upsample but also reconstruct low-quality

high-resolution scans.

To evaluate the applicability of our method in clinical

research and, potentially, in clinical practice, 1) each of the test

scans underwent the same image processing pipeline used in

our clinical research studies to assess tissues and lesions, and 2)

a neurologist and an experienced scan manager, independently

and blind to each other’s results, visually assessed all the (full)

scans involved in the test subsample, to evaluate the scope of the

proposed framework and its feasibility for its further application

to clinical research and practice.

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.887633
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2022.887633

2. Dataset

The data used in this study is part of an ongoing

observational clinical study of sporadic cerebral SVD, a disease

of the small brain blood vessels that, if progresses, can

result in stroke and/or dementia, and is currently diagnosed

by the presence of specific pathological features in brain

MRI scans. The primary study that provided the data (Trial

registration ISRCTN 12113543) includes a comprehensive set of

assessments such as blood tests, blood pressure, retinal imaging,

electrocardiograms, cognitive tests, and more to elucidate which

factors determine the progression and rate of changes in the

disease (Clancy et al., 2021). The present study only uses low-

resolution and high-resolution paired brain MRI sets from 61

patients (mean age [std. dev.] 67.14 [9.78] years old, 19 women),

each containing the structural MRI sequences T1-weighted, T2-

weighted, and FLAIR. These sequences differently highlight

tissues and neuroradiological features including pathology

(Preston, 2006) and are acquired as part of all routine clinical

MRI examinations. The only inclusion/exclusion criteria applied

to select our sample was the acquisition of paired low- and high-

resolution scans within a small time-frame. The median time

elapsed between both scans was 52 days (ranging from 8 to

95 days).

The low-resolution scans were obtained mainly at 1.5 Tesla

(T) scanners from four different hospital sites in the Lothians

and Fife regions in Scotland. Specifically, 34 were obtained

from a 1.5T GE scanner model Signa-HDxt, 16 from a 1.5T

Siemens scanner model Aera, 2 from a 1.5T Siemens Avanto, 1

from a 3T Siemens Prisma, 1 from a 1.5T Siemens Symphony

Tim, 2 from a 3T Phillips Ingenia, 5 from a 1.5T Phillips

Ingenia-Ambition X, and 1 from a 1.5T Phillips Ingenia. The

sample comprises five different acquisition protocols in terms

of spatial resolution and orientation of the three MRI sequences

involved in the analyses. One example of a scan from each of

these acquisition protocols is shown in Figure 1, referred to

subsequently as protocols 1 to 5. For sequences’ details, refer

to Supplementary material. The high-resolution scans were all

obtained at 3T using a Siemens Prisma operating a research

scanning protocol, at the Edinburgh Imaging Facility, using a 32-

channel head coil, which facilitates high SNR and enables higher

acceleration factors. Ethical approval for the primary study that

provided the image data was obtained from South East Scotland

Research Ethics Committee (Ref 18/SS/0044) on 31 May 2018,

and from NHS Lothian Research & Development on 31 May

2018 (Ref 2018/0084).

The validation subsample included 10/61 patient datasets. In

terms of the spatial resolution and orientation of the acquisition

protocol of the low-resolution scans, 1/14 patient datasets of this

subsample were from protocol 1, 6/36 from protocol 2, 2/6 from

protocol 3, 0/1 from protocol 4, and 1/4 from protocol 5. Also,

given the time elapsed between the high- and low-resolution

scans, in our evaluation we used MRI data from the first

190 patients recruited for the same clinical study, acquired in

subsequent visits separated up to 3 months (i.e., the time elapsed

between the low- and high-resolution scans of our main sample)

with the high-resolution research protocol, as a “control” group

(mean age [std. dev.] at recruitment 66.31 [11.22] years old, 59

women). Informed consent to participate in the parent study and

for secondary use of anonymized data was obtained by all those

who provided the images used in this study.

3. Methods

In this section, we detail our SR framework, including

data preprocessing, generator and critic model architectures,

evaluation metrics, and inference procedure. An illustration of

the complete workflow is shown in Figure 2.

3.1. Data preprocessing

Image intensities can be influenced by instrumental and

human factors, such as b1+ and b0 field inhomogeneity,

the receive coil sensitivity profile, patient characteristics, and

patient positioning.

Once the images are acquired and converted into NIfTI-1

format1, the preprocessing steps applied to all of them included

correction of bias field inhomogeneities using FAST from the

FMRIB Software Library (FSL, Woolrich et al., 2009) to remove

the slow-varying b1 magnetic field effects that could distort

the images and facilitate further brain extraction and scan

alignment. The brain was extracted using the Brain Extraction

Tool (BET2, Smith, 2002), also a tool from the FMRIB Software

Library (Woolrich et al., 2009), to fully anonymize the data by

removing all extracranial features (i.e., eyes, face, skin, and skull)

from the images. All intracranial volume binary masks obtained

from this step were individually visually checked for accuracy

and manually edited when/if required. The brain-extracted scan

sequences were then aligned to an age-/atrophy-relevant brain

template (Job et al., 2017) in standard space. For evaluation, this

alignment was performed, separately, in three ways:

• Rigid: using a rigid-body space transformation that

involves only translations and rotations (i.e., 6 degrees of

freedom). The shape and size (in volumetric units) of the

individual brains are unaltered.

• Affine: using a linear transformation that, in addition

to translations and rotations, also involves shearing and

scaling (i.e., shrinking or enlarging, 12 degrees of freedom).

This transformation, although preserves the shape by

ensuring collinearity and preserving ratios of lengths

of parallel planes’ segments, distorts the proportions of

1 https://nifti.nimh.nih.gov/nifti-1/
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FIGURE 1

Example images from each MRI scanner and acquisition protocol (in terms of spatial resolution and sequence orientation) that provided low

resolution data for our analyses, displayed at the same scale to appreciate the heterogeneity in the native resolution and in terms of image

contrast and orientation (i.e., 2D, 3D, sagittal, axial, or coronal). In ascending order from top to bottom, the protocols displayed are referred in

the text as protocols 1 to 5.

the brain structures/features among themselves: features

located toward the cortex shrink or enlarge more than

features at the center of the brain.

• Warp: using a non-linear transformation aimed at

achieving voxel-wise correspondence between the images

involved, distorting not only the size but also the shape and

morphology of the brain and all its features.

All space transformations were done with Niftyreg through

TractoR (Clayden et al., 2011) using the default parameters

defined in Modat et al. (2010). However, as all registrations

involved resampling and interpolation, to evaluate their

effectiveness against the results from our SR framework, linear

space transformations were conducted in three ways: 1) using

trilinear interpolation and the correlation ratio as cost function

(default), 2) using sinc interpolation and mutual information

as cost function, and 3) using spline interpolation and mutual

information as cost function. As a result, images were aligned to

the high resolution standard brain template, and the intracranial

volume of the template was used to crop the image space to
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FIGURE 2

Scheme of the complete workflow of our super-resolution (SR) framework. Green colored blocks indicate pre- and post-processing operations,

gray colored blocks indicate deep learning (DL) models, purple colored blocks indicate optimizers for the DL models, light blue colored blocks

indicate low-resolution (LR) data, orange colored blocks indicate high-resolution (HR) data, yellow colored blocks indicate super-resolution (SR)

data, and red colored blocks indicate loss calculations. Arrow lines indicate the flow of the data and the number next to them indicates the order

of the data flow. Note that some operations are performed concurrently.

reduce sparsity. Hence, in terms of axial slices, 148 per scan

(instead of 256) were processed, which represent a sample size

of 27,084 (i.e., 61 full MRIs x 148 axial slices = 9,028 slices per

full MRI scan; 9,028 x 3 structural sequences = 27,084 image

slices).The intensity values of the MRI scan sequences were

linearly rescaled (i.e., linear normalization) to the range [0, 1].
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3.2. Network input

TorchIO (Pérez-García et al., 2021) was used to build the

majority of the input pipeline. We represent each image i as a

volume Vi with dimensions (S,H,W). In this study, each image

has dimensions (148, 137, 135). We treat each volume as a 3D

image of a brain slice (S), with height (H) and width (W). In

order to upsample each slice using a 2D CNN, we expand the

second dimension C in each image [i.e., Vi = (S, 1,H,W)],

effectively, treating each slice as a gray-scale image. As each

scan has 3 image sequences, namely FLAIR, T1-weighted,

and T2-weighted, and since each sequence captures different

information, we combine all 3 sequences with the hypothesis

that the data fusion of the three sequences can further improve

the up-sampling performance (Valdes and Inamura, 2001). To

that end, we concatenate the sequences in the second dimension

(i.e., (148, 3, 137, 135)) and feed the “3-channel”-images (i.e.,

where the 3 sequences are like “RGB channels”) to the SRmodel.

We evaluate two different approaches to data input to the

SR model:

• Slices are randomly selected, and entire slices with

dimensions (C,H,W) are input to the model. Zero

paddings are added to the spatial dimensions such that

height and width are power-of-two values.

• Patches B with size (P, P) are randomly selected from

each scan, each resulting in 3D input data of dimensions

(C, P, P). This method is commonly used in other SR works

in MRI (Chen et al., 2018b; Lyu et al., 2018; Zbontar

et al., 2018). Note that in this approach, depending on the

number of patches B, not all regions of a scan may be

exposed to the model.

We apply the data preparation procedure to both low-resolution

and high-resolution scans in parallel to ensure the input data

are in pairs. When training with mini-batching with batch size

N, the size of the input to the model would be (N,C,H,W)

or (N,C, P, P) depending on the preparation method, each

requiring
⌈

S
N

⌉

or
⌈

B
N

⌉

steps to train one scan, respectively.

To explore the influence of training the model with FLAIR,

T1-weighted, and T2-weighted sequences separately vs. doing

so simultaneously, we also treat each channel individually (i.e.,

(N, 1,H,W) or (N, 1, P, P)). The dataset was randomly split into

train, validation, and test with 40, 11, and 10 patient full MRI

scans, respectively, (i.e., 5,920, 1,268, and 1,480 “3-channel-

image” slices).

3.3. Model

The super-resolution model G used in this study is based

on the UNet architecture (Ronneberger et al., 2015), a popular

model commonly used in medical image segmentation tasks,

which has also shown promising results in image super-

resolution study (Hu et al., 2019; Lu and Chen, 2019; Masutani

et al., 2020). Briefly, the U-Net architecture can be conceptually

divided into two sub-modules. 1) encoder, where data features

are compressed in the spatial dimension while increasing

the number of channels, usually via consecutive blocks of

convolutional and pooling layers. 2) decoder, which mirrors

the encoder, though instead of compressing, it consists of

transposed convolutional layers to decompress the data in its

spatial dimension while decreasing the number of channels.

The output of each convolutional block in the encoder is

concatenated in the channel dimension with the inputs of the

corresponding convolutional block in the decoder via residual

connections. Such architecture has shown excellent results in

extracting information from input features, and the addition of

residual skip connections allows very deep networks to be used

while mitigating the issue of vanishing or exploding gradients

(He et al., 2016). In our model, each convolutional block consists

of a 2D convolutional layer with (3, 3) kernel and stride (1, 1),

followed by a normalization layer and activation layer. We use

Instance Normalization (Ulyanov et al., 2016) and LeakyReLU

(LReLU) activation (Clevert et al., 2015). The down-sampling

block consists of a max pooling layer with (2, 2) kernel, which

compresses the spatial dimension by a factor of 2, followed

by a convolutional block. The up-sampling block consists of

a transposed convolutional layer with a stride size of (2, 2), to

upsample the input variable by a factor of 2, followed by a

convolutional block. When the shape of the residual connection

and the input to the convolutional block differ, we apply zero

padding to the variable with the smaller spatial dimension so that

they can be concatenated. After the final convolutional layer, we

scale the output logits to [0, 1] via a sigmoid layer to match the

input data. Figure 3 illustrates the model architecture.

3.4. Model objective

To ensure that our framework can generalize on different

datasets, we train the up-sampling model G using generic

objective functions, including mean-absolute error (MAE),

mean squared error (MSE), binary cross-entropy (BCE), and

(maximize) the Structural Similarity Index (SSIM, Wang et al.

2004).

3.5. Critic

To overcome the issue of various image-based metrics not

being able to capture the minute difference in MRI scans, we

employ a separate critic network D to learn the distinction

between high-resolution scan y and upsampled scan ŷ. The

critic serves a very similar purpose to the discriminator in a
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FIGURE 3

Up-sampling model G architecture. The two-shaded yellow block denotes a convolutional block, which consists of a convolutional layer

followed by a normalization layer and an activation layer. The orange, dark-blue, green, and purple blocks denote the down-sample, up-sample,

and output activation layer, respectively. The green arrow between each block represents the flow of the data and the purple arrow above

represents the residual connection. The number below each block indicates the number of filters used in the corresponding block.

GAN, with the exception that our G and D networks can be

trained separately.

The architecture of the critic model D follows a similar

structure as the discriminator in DCGAN (Radford et al., 2015).

An illustration of the model is shown in Figure 4. The model

consists of 4 consecutive blocks of convolutional layers with a

kernel size of (4, 4) and stride size of (2, 2), each followed by

an activation layer and dropout layer (Srivastava et al., 2014).

After the final dropout layer, a convolutional layer with 1 filter

is used to compress the channel information into a single value,

and if the spatial dimension of the variable is larger than one,

then an additional flatten layer is added to convert the 3-

dimensional variable to 1-dimensional. The latent variable is

then further compressed with a dense layer so that it returns

a single scalar, which is then followed by sigmoid activation to

output a score value.

Ideally, the critic should learn to predict a value of 1 when

receiving a high-resolution input y and a value of 0 when

receiving an upsampled input ŷ. We call this value the critic

score ∼ [0, 1], i.e., a critic score closer to 1 indicates the input

y resembles data from the high-resolution Y distribution. After

each model step ŷ = G(xlow), we feed both ŷ and y to the critic

D and optimize the model with the following loss function:

LD = E

[

− logD(y)
]

+ E

[

− log (1− D(ŷ)
]

(1)

To ensure the critic can distinguish real scans against upsampled

scans, we train D for multiple steps (i.e., 5 steps) for every G

update. However, due to the very limited data, the critic model

over-fits the training set very quickly, hence a high dropout rate

of 0.5 is needed.

3.5.1. Critic-guided training

In addition, to use the critic score as a metric for evaluation,

we can also use the critic model to train the SR model in an

adversarial process. To that end, we can present the overall

objective for the SR model G as:

L
total
G = LG + λ critic

(

1− E
[

D(ŷ)
]

)

(2)

where λcritic is the [0, 1] critic intensity hyper-parameter which

allows us to control the influence of the critic on the overall

optimization objective. In other words, the SRmodel is not solely

generating a sample ŷ that closely matches its corresponding

high-resolution target y, but samples Ŷ that should also resemble

the overall data distribution of Y . Such formulation is very

similar to the adversarial training procedure in GANs. The

choice of the models (both G and D) hyper-parameters were

based on the original recommendations from both Ronneberger

et al. (2015) and Oktay et al. (2018), and a random search

optimization procedure to find the best hyper-parameters in

the validation set. Supplementary Table S2 reflects the final

configurations used for the SR model G and critic model D.

3.6. Inference

The trained model can be used to upsample new data if

the model is trained on slices (refer to Section 3.2), as each

slice of the MRI scan is passed to the model. However, we also

randomly generated several patches for each scan to facilitate

the training process with smaller GPU memory as has been

proposed previously (Johnson et al., 2016; Chen et al., 2018b;

Lyu et al., 2018).

When patches were generated, each patch of a slice was

upsampled. For reconstructing the output image, the upsampled

patches were stitched together in a process that is handled by

TorchIO (Pérez-García et al., 2021). The upsampled scans were

then saved as a .mat file for further conversion to NIfTI-1

formatted files for clinical assessment by a medical professional.
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FIGURE 4

Critic architecture. Yellow, red, light blue, light green, and purple block denote convolutional, activation, dropout, dense, and output activation

layer, respectively. The green arrow between each block represents the flow of data and the number below each block indicates the number of

filters used in the corresponding block.

3.7. Attention and activation maps

We incorporated some state-of-the-art methods to increase

the explainability of our deep learning models. We added

shortcut connections in the vanilla UNet (Ronneberger et al.,

2015), to connect the output of each down-sampling block

to the input of their corresponding up-sampling block

via concatenation (e.g., purple arrows in Figure 3). In our

framework, we incorporated the Attention Gate (AG) module,

introduced in Oktay et al. (2018), into our up-sampling model

G. The AG module has two inputs: the output from the

previous up-sampling block, and the shortcut connection from

its corresponding down-sampling block. It learns a sigmoid

mask (i.e., the “attention” mask) via two separate convolution

layers applied to the inputs. Then, the sigmoidmask is applied to

the original shortcut connection. Conceptually, the AG module

encourages the overall model to focus on regions of interest

in the input (i.e., the shortcut connections which are a latent

representation of the original input) and mask out the irrelevant

information. This architecture is simple to implement and can

be extended to existing UNet models with minimal modification

(i.e., the only change is the variable to concatenate with). In

addition to increasing the capacity of the model, the learned

sigmoid “attention” masks can then be overlaid on top of the

input image as a heatmap, thus allowing us to visualize the areas

of interest learned by the model and verify if they are indeed

reasonable. Since there are 4 down-sampling and up-sampling

block pairs, we, therefore, employ 4 AG modules, each with a

dimension of 32, 64, 128, and 256.

In addition to the AG modules, we analyzed the activation

map of the critic model using GradCAM (Selvaraju et al.,

2017). Similarly, the activation map generated by GradCAM

shows areas of relevance (or irrelevance) to the final predictions;

though, with one major distinction, the activation maps are not

directly learned by the critic model.

3.8. Evaluation of the results

3.8.1. Image quality metrics

After reviewing the MRI SR literature from 2017 until May

2021 and compiling the list of metrics used by each publication

(refer to full list in Castorina et al., 2021), we selected four of

the metrics most frequently used to evaluate image quality: MAE,

Normalized Mean Squared Error (NMSE), PSNR and SSIM, to

evaluate the similarity between the upsampled and the “ground-

truth” high-quality scan of our testing subsample, and, at the

same time, allow comparability between our results and those

already published, developed for the same purpose. Briefly, MAE

is the absolute voxel-wise difference, averaged over the entire
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scan. NMSE is the ordinary MSE normalized by the value of the

ground-truth voxel:

NSE(y, ŷ) =
(ŷ− y)2

y2
(3)

where y and ŷ are voxels at the same position of the ground-truth

and upsampled scans, respectively.We compute themean across

all voxels from all image slices to obtain the NMSE. Similarly,

PSNR captures the relation between the maximum value of a

voxel and the MSE, and is given by

PSNR = 10 log10

( I2max

MSE

)

(4)

where Imax is the maximum value a voxel can take, and

MSE is the unnormalized MSE. Absolute error metrics such

as MAE and PSNR only compute the difference between two

corresponding pixels and ignore the spatial information in the

image. For example, brightening a black-and-white image can

lead to high NMSE and PSNR values, yet the resulting image

would be structurally identical to the original image and we

would expect the error value to be small. To that end,Wang et al.

(2004) proposed the Structural Similarity Index (SSIM), which

considers the structural information in the images by computing

the similarity between two given images y and ŷ via the weighted

average of 1) luminance, 2) contrast, and 3) structure:

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ2

ŷ
+ c1)(σ

2
y σ 2

ŷ
+ c2)

(5)

where µy and µŷ are the average of y and ŷ; σy and σŷ are the

variances of y and ŷ; σyŷ is the covariance of y and ŷ; c1 and

c2 are the stabilizing terms for the denominator. The SSIM has

since been used extensively in the field of computer vision and

medical imaging (Dong et al., 2015; Isola et al., 2017; Ledig et al.,

2017; Zbontar et al., 2018; Defazio, 2019; Zhang et al., 2019).

While these metrics are useful in quantitatively assessing

the overall quality of the upsampled images, they do not clearly

reflect clinically meaningful results. We, therefore, in addition,

computed the following metrics:

• Coefficient of Joint Gray and White Matter Variation

(CJV): Quantifies the intensity variability in white matter

(WM) and gray matter (GM) accounting for the overlap

between their distributions (Ganzetti et al., 2016). It is

calculated as:

CJV =
stdev(WM)+ stdev(GM)

mean(WM)− mean(GM)
(6)

• Entropy Focus Criterion (EFC): Uses the Shannon entropy

of voxel intensities as an indication of ghosting and blurring

induced by head motion (Atkinson et al., 1997).

EFC =

N
∑

n=1

(

Bvoxel
Bmax

∗ ln
Bvoxel
Bmax

)

(7)

where n is the number of voxels and B is the

voxel’s brightness.

• Full-Width Half Maximum (FWHM): The full-width half

maximum of the spatial distribution of the image intensity

values in voxel units. Represents the smoothness of voxels.

FWHM =
max(I)

2
(8)

where I is the intensity across all voxels.

• White-matter to maximum intensity ratio (WM2max):

Median intensity within the WM mask over the 95%

percentile of the full intensity distribution (i.e., calculated as

the 95% confidence interval of the image intensities), with

values around the interval [0.6, 0.8].

• The ratio between the summary stats of gray matter

(GM), whitematter (WM), and cerebrospinal fluid (CSF):

These are mean, SD, 5% percentile, and 95% percentile

of the intensity distribution in CSF, GM, and WM.

For example:

mean(IWM)

mean(IGM)
,

mean(ICSF)

mean(IWM+GM)
,
stdev(IWM)

stdev(IGM)
, · · ·

To ensure fair comparability, the GM, WM, and CSF binary

masks used in these evaluations were generated out from

the brain-extracted T1-weighted images of the high-resolution

subset using FSL-FAST (Zhang et al., 2001): a tool from the

FMRIB Software Library.

3.8.2. Comparison with state-of-the-art
methods

As discussed in Section 1.1, numerous benchmark

datasets were made publicly available in recent

years to provide a systemic evaluation of different

SR approaches (refer to Supplementary material

Li_Castorina_et_al_Supplementary_file_SOTA.pdf). But

the majority of these datasets contain only high-resolution

MRI, requiring artificial transformations to create low- and

high-resolution pairs of images, such as k-space truncation

or Gaussian blurring followed by multidimensional space

shrinking, unlikely to capture the properties of low-resolution

MRI scans obtained from clinical settings. To that end, we

compared our method against two state-of-the-art SR models,

previously evaluated using the fastMRI dataset (Zbontar et al.,

2018), but using our dataset instead. We implemented the

vanilla UNet (Ronneberger et al., 2015) (refer to Section 3.3)

and a Vision Transformer-based (ViT, Dosovitskiy et al.

2020) model as proposed by Lin and Heckel (2022), and

trained them on our dataset from scratch using their default

hyper-parameters.
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3.8.3. Applicability to clinical
research-structural image segmentation

In our testing sample, we automatically segmented lesions,

normal tissues, and anatomical structures in 1) images

upsampled using our framework, 2) images upsampled from

different types of interpolations (refer to Section 3.1), and 3)

high-resolution images. We also segmented the same features

in the images of the larger “control” sample, fully automatically,

individually at each time point following the same procedure, to

explore the variability in the longitudinal measurements using

only high-resolution images acquired within the same time

frame elapsed between the acquisition of the low- and high-

resolution paired scans. CSF, veins and sinuses, pial layers, and

normal brain tissue were segmented using Gaussian clustering

of a multidimensional array formed by combining the three

MRI structural sequences (i.e., FLAIR, T2-weighted, and T1-

weighted images). The multispectral clustering results were

subsequently optimized using the expectation-maximization

algorithm. CSF-filled spaces are identified as hypointense in

T1-weighted and FLAIR and hyperintense in T2-weighted.

Venous sinuses and main venous pathways are hypointense

in T2-weighted and with mid-to-low range intensities in T1-

weighted and FLAIR. Pial layers, CSF-brain parenchyma partial

volume effects and interstitial fluids, indistinguishable from each

other and, therefore, classed together, are hypointense in T1-

weighted and hyperintense in FLAIR and T2-weighted. Mid-

range intensities in the three sequences correspond to normal-

appearing gray and white matter tissues, each with characteristic

image contrast depending on the sequence.

Binary masks of ischaemic lesions (i.e., these including

white matter hyperintensities (WMH) and stroke lesions) were

generated by thresholding the intensity values of the brain-

extracted FLAIR, with a threshold equal to 1.3 × SD above

the mean, using an adjusted method from Zhan et al. (2015).

The resulting hyperintense areas unlikely to reflect pathology

were removed automatically using a lesion distribution template

generated from the segmentation results of a large study of

cognitive aging (Wardlaw et al., 2011). Further refinement of

the lesion segmentation was achieved by applying a Gaussian

smoothing, followed by the removal of voxels with intensity

values below 0.1 and with z-scores below 0.95. TheWMHbinary

mask obtained from the high-resolution image was visually

checked and manually edited to correct for inaccuracies and

inclusion of the stroke lesion, for evaluating the raw results from

the different upsampling methods, against the edited mask. The

manual editing was performed using MRIcron2.

3.8.4. Visual assessment of image quality

A neurologist and an experienced scan manager,

independently and blind to each other’s results, rated the

2 https://www.nitrc.org/projects/mricron

quality of the scans of our test subsample: low-resolution,

high-resolution as well as the upsampled images from the

models that provided the best results using our SR framework,

on a quality scale ranging from 0 to 5, being 5 high quality. Each

rater was asked to outline the own criteria followed for rating

the scans.

3.9. Code implementation and availability

The codebase3 was predominantly written in Python 3.8,

where the core part of the deep neural networks and model

training procedures were implemented using the PyTorch

(Paszke et al., 2019) library and the scikit-image (Van der

Walt et al., 2014) library was used for image manipulation.

We experimented with the model training and inferencing on

various GPUs, including the NVIDIA RTX 2060, NVIDIA RTX

2080 Ti, and NVIDIA V100, to ensure our model works with

different levels of computing hardware. To further improve

the model training performance, we have incorporated mixed-

precision training where the majority of the computation was

done in half-precision (Micikevicius et al., 2017), effectively

allowing us to fit twice as much data onto the GPU memory. In

addition to the implementation of our methods, the repository

also contains clean, modular code for training, evaluating,

and applying models to different datasets with extensive

logging functionality with TensorBoard4.Under the current

implementation, in inference, using a batch size of 1, it took on

average 10 s to up-sample one scan using an Nvidia 2080Ti GPU

or 40 s using a 20-cores Intel Xeon CPU.

4. Results

In this section, we first, present the results from sampling

random patches of the scans (Section 4.1) and full scan slices

(Section 4.2) in a framework that used a common objective

function as a loss function. In Section 4.3, we present the

results from using full scan slices as input but in a framework

trained with an adversarial loss instead. We present the results

of evaluating the influence of the scan alignment techniques

(i.e., rigid vs. affine vs. warping) in Sections 4.4,4.5. We then

compare our best model against two state-of-the-art models

in Section 4.6. Results of the implementation of attention and

activation gates are presented in Sections 4.7, 4.8, respectively.

We show the results from evaluating the applicability of our

framework in clinical research and its potential for being

introduced in clinical practice, in Section 4.9. We performed a

3 The software codebase is attached in the submission as

Supplementary material, and will be made publicly available upon

acceptance.

4 https://www.tensorflow.org/tensorboard
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simple random search (Bergstra and Bengio, 2012) optimization

to find a reasonable hyper-parameter configuration on the

validation subset with affine transformation and using full slices.

The exact configuration is available in Supplementary Table S2.

All results presented below were generated by models (both

G and D) trained on our dataset from scratch for 100 epochs

using the Adam optimizer (Kingma and Ba, 2014) where all

models converged.

4.1. Upsampling random patches

Due to the large size of the MRI scans, sampling patches

(i.e., as opposed to sampling whole slices) may be necessary,

depending on available GPU memory. We evaluated the

effects that: 1) variations in the content of the input data

(i.e., multi-channel vs. single-channel), and 2) variations

in key hyper-parameters, had on our three quantitative

performance metrics.

4.1.1. Multi-channel vs. single channel input

We evaluated the effect of using a single MRI sequence as

input, therefore, processing the three sequences separately, vs.

using as input the three sequences (i.e., FLAIR, T1-weighted,

and T2-weighted) simultaneously (i.e., multi-channel input). As

Supplementary Figures S1, S4 show, the models trained with the

three scan sequences simultaneously input (i.e., data fusion)

yielded significantly better performance. By using multi-channel

input data, information from different channels complement

information that may have been missed in some areas. For

instance, in Figure 5, the supramarginal gyri (highlighted in

red), appear missing in the original low resolution FLAIR

(i.e., due to interpolating thicker slices), but are present in

the T1-weighted sequence and partially visible in T2-weighted.

The upsampled scan from a model that uses the multi-

channel input has the previously missing information present

in all sequences, being the result qualitatively closer to the

target high-resolution.

4.1.2. E�ect of key hyper-parameters-patch
dimensions

We tested patches of dimensions: 8 × 8, 16 × 16, 32 × 32,

48 × 48, and 64 × 64. Generally, the larger the patch size,

the better the performance of all the three metrics (i.e., PSNR,

SSIM, and MAE). Larger patch sizes encompassed an increase

in computational cost for training the model, as the batch

size for larger patches is smaller and, therefore, training (and

upsampling) takes longer. Refer to Supplementary Figure S1

for results.

4.1.3. E�ect of key hyper-parameters-number
of patches

The number of patches obtained from one scan influences

the MRI space explored by the network. We evaluated our

framework using 100, 500, 1000, and 5000 patches, given

that the volume size of each sequence is (148, 137, 135).

The more patches sampled, the higher the performance.

Extracting more patches come at a computational cost during

training, but it generally resulted in higher upsampling (i.e.,

SR) performance. The best performance was obtained when

using a patch dimension of 64 × 64 with the largest number

of patches evaluated (i.e., 5000 patches per scan, refer to

Supplementary Figures S2, S3).

4.1.4. E�ect of key hyper-parameters-number
of filters

As shown in Supplementary Figure S4, generally, increasing

the number of filters helped to improve the performance up to a

certain point. Using 128 filters often yielded good performance

but also showed signs of over-fitting. For our dataset, we found

64 filters to yield the best upsampling (i.e., SR) performance

with the least computational requirements, offering a

very good trade-off between performance, generalizability,

and expressiveness.

4.2. Upsampling full scans slices

We evaluated using each scan’s slice as input vs. patching

while using as an input each sequence (i.e., FLAIR, T1-weighted,

and T2-weighted) simultaneously in a multi-channel approach

vs. treating each sequence separately.

4.2.1. Patching vs. full slices

Super-resolution of full scan slices was possible

although this required larger GPU memory. As shown in

Supplementary Figure S4, using whole slices as input had

a major increase in performance for single sequence input

(i.e., input data split per sequence). In the models that used

multi-channel input (i.e., sequences merged in a single data

array), training using whole slices as input produced only

a slight improvement over patching but at an increased

computational cost.

4.3. Upsampling full scans slices with
adversarial loss

The metrics commonly used for measuring the performance

of SR models (Castorina et al., 2021) at times fail to consider the

upsampled scan as a whole and reflect just pixel-wise differences.
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FIGURE 5

Axial slice of a scan in the test subsample. The left hand-side column shows the input low-resolution image sequences, the middle shows the

generated (output), and the right hand-side column shows the target high-resolution images. The red square represents an area of possible

inter-channel pass-through information.

We, therefore, implemented the use of a critic in the training

process to distinguish between generated upsampled images

and real high-resolution images. In this framework design, we

calculate the error rate, which is then optionally added to the

loss function. As shown in Supplementary Table S1, adding the

critic score to the loss function did not seem to improve the

performance. However, in our proposed framework, we still

train the critic in conjunction with the conventional model

(i.e., that uses MAE, SSIM, and PSNR in the loss function)

without adding on the loss, for being able to use GradCAM to

identify potential artifacts in the upsampled scan, as discussed

in Section 4.8.

4.4. Comparing scan alignment
techniques

The numeric results obtained from using affine and rigid

registration techniques for aligning the MRI sequences of the

low resolution and high resolution scans to the high resolution
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standard brain template, can be seen in Supplementary Table S1.

Warping consistently under-performed the linear registration

techniques in all tests and did not render clinically useful

results. From the two linear registration methods, the affine

transformation gave slightly better results.

4.5. Best model

Supplementary Table S1 shows the test performance of

different models trained with different data pre-processing

procedures and objective functions. Overall, Model 0 achieved

the best result, which uses an affine transformation to align

the scans to the template, and full slices of the three MRI

sequences (i.e., FLAIR, T1-weighted, and T2-weighted) input

simultaneously. In our validation set, we obtained MAE =

3.783E− 03, NMSE = 4.32E− 10, PSNR = 35.39, and SSIM =

0.9852. An upsampled scan from the low-resolution acquisition

protocol 2 is available in Figure 6. The visual improvements are

especially visible for FLAIR- and T2-weighted sequences, with

higher contrast between white and gray matter, added details,

and sharper (i.e., less blurry) images.

Of the models that used rigid-body transformation to align

the input and target (i.e., reference) images to the template,

Model 6 (which also used a multi-channeled full slice input

approach) was the best. In the validation set, we obtained MAE =

3.88E − 03, NMSE = 4.35E − 10, PSNR = 35.2, and SSIM =

0.984 using this model.

We further compared the generated images of each model

with the target high-resolution images plotting the difference

maps as shown in Figure 7. As per the example shown in the

figure, the difference between the brain tissue of the target

and the generated SR image for the T2-weighted sequence

was very low across the sample, because the tissue contrast of

this sequence in the native low-resolution and high-resolution

images of all the data used in testing and training was

similar. Large variations in T1-weighted and FLAIR sequence

acquisition parameters across the dataset used caused differences

between the upsampled and target image contrasts in these

two sequences.

4.6. Comparison with state-of-the-art
methods

The mean SSIM and PSNR values (or best result

as specified) of the state-of-the-art methods applied

to reconstruct and/or upsample MRI, achieved on the

datasets used for their development are shown in the

Supplementary material5. Those obtained with our framework

in our dataset (Supplementary Table S1), regardless of the

5 Li_Castorina_et_al_Supplementary_file_SOTA.pdf.

model configuration, are comparable to the ones reported

by these methods and rank among the top 10. Table 1 shows

the performance of the three models from the two state-

of-the-art methods implemented, trained, and tested using

our dataset. While all three models yielded decent results

our proposed model achieved the best overall result while

having the fewest trainable parameters. Of note, the SSIM

values obtained by Lin and Heckel (2022) using the Vision

Transformer (ViT-M) approach to reconstruct the images

from the fastMRI dataset were in the range of 0.823 to 0.926,

lower than those obtained here using our dataset (i.e., 0.9443

and 0.9562).

4.7. Attention gates visualization

The self-learned attention maps (refer to Section 3.7) in

Figure 8 illustrate the areas of focus learned by each AG module

in Model 0. This makes it possible to understand which areas

of the convolved image were deemed relevant by the SR model

in its up-sampling process at each up-sampling stage: AG1 (size

32 × 32) has moderate attention in the background and higher

attention around the edges of the brain. Some areas of low

attention are present inside the brain and at the cerebellum;

AG2 (size 64 × 64) also has a moderate attention level in

the background and lower in the brain tissue, especially in

the white matter. Higher attention areas are located bordering

the brain and around the brain ventricles; AG 3 (size 128 ×

128) has moderate attention in both the background and the

brain tissue. Brain borders and sulci have contrasting low

and high attention. Background areas bordering the brain

with high and low attention in AG2 appear consolidated and

extended in this gate; AG4 (size 256 × 256) compared with

AG3 shows lower attention in the brain and reduced extent

of the low attention areas outside. Areas of high attention

are concentrated toward the inferior and lateral background

surrounding the brain.

4.8. GradCAM activation visualization

Activation plots highlight areas of interest to the Critic. As

shown in Figure 9, when scans are aligned to the template using

affine registration (i.e., 12 degrees of freedom), in the generated

images the Critic generally focuses on the white matter. In the

target images (i.e., high-resolution images), the activation seems

to be focused on the brain contour. The aqueduct also seems

to be an area of attention in the target images (bottom left in

Figure 9). When scans are aligned using rigid-body registration

(i.e., 6 degrees of freedom), the pattern of activation is similar

(Supplementary Figure S5).
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FIGURE 6

Input, generated (i.e., upsampled), and target mid-coronal slices from a scan-set with low-resolution images acquired with protocol labeled as

2. The left hand-side column shows the input images, the middle column shows the generated (output) images from Model 0 and the right

hand-side column shows the target images.

4.9. Clinically relevant evaluation

4.9.1. Brain image quality metrics

Table 2 shows the results of subtracting the added quality

metrics calculated from the upsampled images using Model 0

and Model 6, and the low resolution images resampled to the

dimensions of the high resolution images using different types

of interpolations and cost functions, from the quality metrics

calculated from the target high resolution images.

In general, with the exception of the EFC, in which the

trilinear interpolation and the correlation ratio as cost function

(i.e., default transformation used nowadays in clinical research)

performed better for most protocols (i.e., 3 out of 4) represented

in the testing subsample, in the rest of the metrics, our SR

reconstructed images were closed to the target high resolution

images. Better GM/WM mean intensity ratio was obtained

for the images from protocol 2, which comprised more than

half of the testing set, upsampled using Model 0. Individual
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FIGURE 7

Di�erence map of input, target, and generated mid-coronal images upsampled using Model 0 from an MRI scan acquired with the protocol

labeled as 2. The left hand-side column is the di�erence between target and input, the middle is between the input and the generated and the

right is between target and generated.

TABLE 1 Comparison of UNet (Ronneberger et al., 2015), ViT-M (Lin and Heckel, 2022), and Model 0 (i.e., the best model, refer to Section 4.5) on our

dataset with true paired low-resolution and high-resolution MRI scans.

Method Merge Patch size Num. Parameters NMSE PSNR SSIM

UNet True 32 31M 9.63E-07 21.35 0.7398

ViT-M False 8 32M 2.49E-09 27.68 0.9443

ViT-M True 8 32M 1.37E-09 30.31 0.9562

ours True N/A 29M 1.16E-09 31.08 0.9706

All models were trained from scratch on our dataset with affine-registered scans, as specified in Section 3.1. We used the default hyper-parameters in UNet and ViT-M as proposed in their

respective study. MERGE: combine FLAIR, T1-weighted, and T2-weighted as a single input (refer to Section 3.2). The best method in each metric is in bold font for visibility.
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FIGURE 8

The self-learned attention masks from AG 1-4 in the self-attention Upsampler for a�ne-registered scans (Model 0). The attention mask is

represented in a jet colormap, with areas of high attention in red and low attention in blue.
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FIGURE 9

GradCAM activation plots for the Critic for a�ne-registered scans. Activation is represented in a JET colormap, with areas of high activation in

red and low attention in blue.

results from the different protocols for each of the three scan

sequences that are included in our models can be seen in the

Supplementary material spreadsheet.

4.9.2. Tissue segmentation accuracy-results in
the testing set

Volumes of the WMH, CSF, veins and dural meninges, total

brain and pial layers of the reference high resolution images,

the SR images from Models 0 and 6, and the low resolution

images resampled using different types of interpolation and

cost functions, for each of the 5 test samples are given in the

Supplementary Tables S3–S6. The same tables show the values of

other similarity metrics that evaluate spatial agreement between

the segmentation masks obtained in the high resolution sets

against those in the upsampled. These are: Dice coefficient, true

positive and negative fractions, and positive predicted values.

Figure 10 shows the Bland-Altman plots of the agreement

between three of the volumetric measurements obtained from

the high-resolution images, and the images upsampled by

different procedures, using the same scripts with identical

(default) parameters. With the exception of two cases with
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TABLE 2 Mean Absolute Error (MAE) and its standard deviation (STD) of the results of computing the anatomically meaningful metrics for upsampled

and interpolated images against the high resolution images for each acquisition protocol in the testing subsample.

Metric (Protocol no.)
Model 0 Model 6 Interpolated Spline Interpolated Sinc Interpolated trilinear

MAE STD MAE STD MAE STD MAE STD MAE STD

EFC (1) 18437 N/A 9,480 N/A 53,836 N/A 56,046 N/A 28,045 N/A

EFC (2) 76,065 36,119 99,743 63,486 65,339 40,743 65,720 40,366 58,639 49,944

EFC (3) 14,188 N/A 12,565 N/A 17,625 N/A 17,170 N/A 6,318 N/A

EFC (5) 55,260 N/A 45,987 N/A 34,107 N/A 33207 N/A 10,418 N/A

CJV (1) 0.03499 N/A 0.02999 N/A 0.04869 N/A 0.04874 N/A 0.09952 N/A

CJV (2) 0.05463 0.05659 0.07352 0.03924 0.08816 0.04262 0.08856 0.04239 0.07706 0.05998

CJV (3) 0.02844 N/A 0.3429 N/A 0.1595 N/A 0.1610 N/A 0.08374 N/A

CJV (5) 0.01244 N/A 0.00580 N/A 0.01444 N/A 0.01443 N/A 0.1108 N/A

GM/WMMean

Intensity Ratio (1)
0.02285 N/A 0.03899 N/A 0.01551 N/A 0.01641 N/A 0.08344 N/A

GM/WMMean

Intensity Ratio (2)
0.03269 0.02544 0.07791 0.06963 0.09623 0.07512 0.09620 0.07480 0.09952 0.06232

GM/WMMean

Intensity Ratio (3)
0.02627 N/A 0.0296 N/A 0.03597 N/A 0.03480 N/A 0.01541 N/A

GM/WMMean

Intensity Ratio (5)
0.01237 N/A 0.00882 N/A 0.00939 N/A 0.00982 N/A 0.00600 N/A

CSF/WMMean

Intensity Ratio (1)
0.1705 N/A 0.1469 N/A 0.3339 N/A 0.3319 N/A 0.2337 N/A

CSF/WMMean

Intensity Ratio (2)
0.3133 0.3927 0.4501 0.5840 0.6675 0.8260 0.6665 0.8224 0.7128 0.8975

CSF/WMMean

Intensity Ratio (3)
0.2110 N/A 0.2104 N/A 0.4060 N/A 0.4032 N/A 0.5501 N/A

CSF/WMMean

Intensity Ratio (5)
0.1720 N/A 0.1790 N/A 0.3829 N/A 0.3819 N/A 0.4487 N/A

Model 0 was trained with affine pre-processing and BCE while Model 6 was trained with rigid pre-processing and BCE loss. Full details are present in Supplementary Table S1. Protocols 1 and

5 are represented in image data from only one patient (respectively). Two patient image data were acquired using protocol 3, and data from 5 patients are reflected in the results from protocol

2. N/A stands for Not Available, as STD cannot be calculated for data from only one or two sources. The best results are highlighted in bold.

protocols under-represented in the training set, for which the SR

images obtained from our framework were of lower quality, the

volumetric results from our segmentations differed from those

obtained from the target images in a value ranging from 0 to

20-40% of the mean value between the two measurements. This

is comparable (e.g., CSF segmentation) or better (e.g., venous

sinuses and pial surfaces/brain-CSF boundaries/partial volume)

than the measurements obtained from the upsampled images

using any type of interpolation. Specifically, the volume of

the pial surfaces reported, as comprises CSF-brain parenchyma

partial volume effects, is greatly affected by interpolated images

as can be seen in the correspondent plot.

Figure 11 illustrates the segmentation masks of CSF-

filled spaces, venous sinuses and dural meninges, and pial

layers and membranes covering the brain parenchyma surface,

superimposed in the FLAIR sequence, for one case, with a

stroke lesion (i.e., hyperintensity) in the superior parietal cortex

extending to the deep white matter visible in the coronal slice

selected. The stroke is misclassified as pial structure in its

entirety in the original high resolution image, and partially in the

interpolated low resolution image, while correctly excluded from

the masks shown in the reconstructed SR image. Normal tissues

[gray (GM) and white matter (WM) masks not shown] yielded

results comparable in accuracy between the high resolution and

SR images, but run with different parameters and software.

For example, while the FSL-FAST run with default parameters

yielded consistently good results segmenting GM and WM in

high resolution images, this was not the case when the SR images

were used as input, and priors needed to be given for it to

perform well. Still, in some cases, the SR T1-weighted images

did not have enough contrast between GM and WM, and it

was necessary to add anatomical knowledge to a multispectral

segmentation (explained in Section 3.8.3 but considering more

classes) developed in-house to obtain good results.

The results from manually editing the WMH segmentations

obtained from using the high-resolution images spatially agreed

better with the automatic results obtained from the upsampled

scans than with those using interpolated images. Low Jaccard
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FIGURE 10

Bland-Altman plots of the agreement between the volumetric measurements obtained from the high-resolution images, and the images

upsampled by di�erent procedures, using the same scripts with identical parameters. The horizontal axes represent the average volume

between the two volumetric measurements compared expressed in ml. The vertical axes represent the percentage di�erence between the

volumetric measurement obtained from the upsampled image and the one obtained from the high-resolution (target) one, with respect to the

mean value between the two measurements.
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FIGURE 11

Coronal FLAIR slice of low resolution (left column) resampled and aligned to the high resolution image (right column) using trilinear

interpolation, and the correspondent SR image (center column). Binary masks of CSF (red), pial layer (blue), and dural meninges and venous

sinuses (green) are superimposed in the bottom row.

and Dice coefficients, in general, were in cases with prominent

new and old stroke lesions manually removed from the reference

segmentations, and partially included in the automated masks.

Figure 12 illustrates an axial FLAIR slice of a case in which

the high-resolution image suffers from motion artifact and low

SNR, and the low resolution FLAIR image has higher in-plane

spatial resolution than the 3D-acquired images of the high

resolution scan (voxel sizes of 0.47 × 0.47 × 6 mm3 vs. 0.973

× 0.973 × 0.973 mm3, respectively). As can be appreciated, the

image upsampled with our SR scheme Model 0 has perceptually

no motion artifacts and less noise compared to the high-

resolution and less or no partial volume effect compared to the

low-resolution; and the automatic WMH segmentation in the

SR image has fewer false positives than the segmentation in both

low- and high-resolution images. However, subtle lesions visible

in the low resolution image are not reflected in the SR image,

yielding few false negatives.

4.9.3. Tissue segmentation accuracy-results in
the control subsample

From the first 190 patients recruited in the primary study

that provided data for the present analysis, 188 provided MRI

data at baseline, 10 at 1 month, 24 at 2 months, 64 at 3 months,

and 11 at 4 months. Longitudinal MRI data in this interval,

all acquired with the same high resolution research protocol,

was acquired for 87 patients. We analyzed the variability in

the segmentations on this subset to conclude the plausibility

of the differences found between the volumetric measurements

of the upsampled images and their high-resolution target

images acquired within a similar interval. Figure 13 shows the

distribution of the volumetric measurements of the same tissue

classes for which the agreement with the upsampled results is

reflected in Figure 10, not only for the baseline (reference) time

point but also at 1, 2, 3, and/or 4 months. Certainly, fluctuations

in the mean, median, and quartiles at each month may be due

to missing values, as not all participants were imaged at the

same intervals, but the subtraction of baseline volumes from

those at subsequent time points showed median differences in

the range of 1 to 4.72% [IQR from 0.91 to 8.21%] for CSF, 0.5 to

2.70% [IQR from 0.75 to 5.12%] for venous sinuses, and 9.24 to

12.71% [IQR from 7.60 to 14.27%] for pial surfaces/CSF-brain

boundaries’ partial volume.

Supplementary Figure S6 shows the distribution (and

variability) of the volumes of the venous sinuses (i.e., expected

to be more stable across this small period of time) in the

same subsample, across the same time intervals. As can be

appreciated, the differences between baseline and subsequent
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FIGURE 12

Axial FLAIR slice of low resolution (left column) resampled and aligned to the high resolution image (right column) using trilinear interpolation,

and the correspondent SR image (center column). The bottom row shows the automatically generated binary masks of WMH superimposed in

red for the low resolution and SR images, and in yellow for the high resolution image. The manually corrected WMH mask is also superimposed

in the high resolution image and can be appreciated in an orange tone.

measurements range up to approximately ±13%, similar

to the variability in the agreement between measurements

obtained from the upsampled and target images in the

test sample.

4.9.4. Visual evaluation

Results of the visual evaluation can be appreciated

in the Supplementary material labeled: Li_Castorina_Valdes-

Hernandez_et_al_Visual_evaluation.xlsx. The scan manager

established the following criteria for rating the images: 1) images

pretty pixelated with no discernible disease markers, unsuitable

for assessing them; 2) images quite fuzzy with barely visible

disease markers, artifacts, most possibly unsuitable for assessing

disease markers; 3) some fuzziness on images, visible disease

markers such as lesions and lacunes, suitable for assessing them;

4) image quality satisfactory, very light blurriness, suitable for

assessing disease markers; 5) high image quality, no blurriness,

quite clear images, suitable for assessing disease markers.

As per the scan manager’s evaluation, the upsampled images

for protocols 2 and 3 had a superior or equal quality to the native

images (i.e., native images have a low spatial resolution at least

in one plane), the results from protocol 5 were poor overall,

and the dataset from protocol 1 saw a slight improvement

only for the T1-weighted image, but the quality of the FLAIR

and T2-weighted images from the patient data acquired with

this protocol was considered being slightly downgraded in

the upsampling.

The neurologist graded the images according to the visibility

of anatomical details and feasibility/clarity in the display

of pathology. As per the neurologist’s evaluation, with the

exception of the images from protocol 5, for which the

upsampling produced results of poor quality, T1-weighted and

FLAIR were considered of equal or improved quality after

Frontiers inComputationalNeuroscience 23 frontiersin.org

https://doi.org/10.3389/fncom.2022.887633
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2022.887633

FIGURE 13

Box plots showing the full range, mean, median, and interquartile range of the volumetric measurements of CSF-filled spaces, venous sinuses,

and pial layers/CFS-brain partial volume e�ects, for a subset of patients that underwent brain MRI scan at baseline, and subsequently, monthly

up to 4 months after enrolling in the primary study that provided data for the present analysis.

being upsampled, but all T2-weighted images ranked lower than

the native images. In the two cases where the target high-

resolution T2-weighted images were corrupted with artifacts,

the upsampled T2-weighted were considered of superior quality

with respect to them, although of equal or slightly inferior

quality compared to the native images.

Overall, the majority of the SR images show all anatomical

details of the high resolution images with high fidelity, with

the exception of the images from the patient scanned with

the protocol labeled as 5, which also was underrepresented

in the training sample (i.e., 4/51 datasets). Target and

native images corrupted by noise saw an upgrade in the

results from using the framework proposed (average score

of 4/5).

5. Discussion

5.1. Upsampling patches, slices, and critic

Generally, upsampling whole slices rather than patches

led to better results. This may be due to the redundancy of

the patches which may not cover the full image space whilst

oversampling some specific areas.

Additionally, using a critic did not improve the model’s

performance. We however believe that its utility goes beyond

improving the accuracy, as it is a useful tool to identify

potential artifacts in the upsampled images, thus increasing the

explainability of themodels.We propose the use of GradCAM to

visualize the activations, highlighting potential artifacts, which
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may be useful as added information in clinical settings if the

framework proposed is applied.

5.2. Upsampling MRI sequences
separately and as channels

Using data fusion of the three MRI structural sequences

(i.e., FLAIR, T1-weighted, and T2-weighted), increased

the performance of our model, as information from one

sequence is used in the upsampling/reconstruction of other

sequences (e.g., illustrated in Figure 5). In this multi-channel

architecture, the convolution process considers more than just

one sequence/channel, thus allowing the flow of information

between channels. As we combine FLAIR, T1- and T2-weighted

much like RGB images, and input the combination as a single

channel, the convolution operation is performed over the

three dimensions, taking into account the three channels at

once while producing the convolved image. We have not

applied feature fusion, which could be explored in the future

to improve the extraction of features in the different channel

spaces. However, the UNet architecture with skip (i.e., residual)

connections should account for features extracted early on in

the convolutional processes and account for them in the later

depths of the network.

5.3. Interpreting attention gates

We proposed the use of attention gates to visualize the

attention of the model at each step of the upsampling process

as shown in Figure 8. We found a peculiar pattern, where

the attention of AG2 and AG4 was complementary to their

respective previous gates, indicating that the network focuses

on different areas of the images at different depths. It is

likely that the network is learning to extract different levels of

details at different gate dimensions. The lower gates might be

differentiating the brain from the background while the higher

gates might be focused on more specific details such as cortical

folds and gray matter.

Additionally, AG2 and AG3 also cover areas of the brain

which contain SVD clinical neuroradiological features, thus

further research could explore the effects of hyper-parameters

and their effect on the quality of upsampled areas covering the

disease-specific features.

We believe that attention gate plots are essential tools in

the SR field to increase the explainability of the process and

results. Currently, super-resolution models are understood as

black-boxes, making them potentially sensitive to the bias in

the training data and, consequently reducing their usefulness in

practical scenarios.

Further investigations of these maps may include

channel-wise attention to differentiate attention for each

sequence and understand to which extent one sequence,

or an area of the sequence, is contributing toward the final

upsampled image.

5.4. Insights from the clinically relevant
evaluation of the SR framework’s
performance

5.4.1. Datasets

The framework proposed yielded very good results for

datasets acquired with protocols represented three ormore times

in the training set; especially in cases when the input low-

resolution sequences of the scan were heterogeneously acquired,

e.g., one sequence acquired axially, other coronally, and the

other 3D or sagitally; or when the sequences were acquired in

the same orientation but with different voxel sizes and spatial

resolutions. When the images that conform to the scans are

homogeneously acquired in terms of orientation and spatial

resolution, the framework proposed may have limited utility,

given that the information missing in the low-resolution image

sequences in their native space may not be synthesized properly.

Seeking the generalizability of our approach by using a

larger sample, we also pre-trained both G and D on the

publicly available fastMRI (Zbontar et al., 2018) and Human

Connectome Project (Van Essen et al., 2012) datasets, fine-

tuning the model afterward with our data. But we did not

observe a noticeable improvement in the performance of the

resulting model on our validation set, hence these results

are not part of the work presented. As using any image

dataset acquired under research protocols for training entitles

artificial downsampling, the SR scheme is likely to “reverse

engineering” the operations performed rather than using the

cross-channel information to add the missing information and

reconstruct the input image with higher resolution. Therefore,

the use of routinely acquired images in clinics is crucial for the

task undertaken.

Due to the nature of the clinical condition of the patients

that provided imaging data (i.e., diagnostic scan acquired soon

after presenting with mild stroke symptoms), and the resources

required to obtain paired scans, the dataset of paired low- and

high-resolution scans available was comprised from only 60

samples (i.e., one low-resolution scan from the testing sample

did not have a corresponding high-resolution scan acquired

in the acceptable time frame). This limits the amount of

training data for our model and, therefore, its performance.

Also, all scans available were from patients with sporadic

SVD, who presented to a clinic with a mild to moderate

stroke symptoms. Patients with other diseases/brain anomalies

(e.g., tumors, large hemorrhages, brain injuries, Alzheimer’s or

Huntington’s diseases, rare genetic neuropathies), or in a wider

age range (e.g., children, adolescents) were not represented in

Frontiers inComputationalNeuroscience 25 frontiersin.org

https://doi.org/10.3389/fncom.2022.887633
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2022.887633

the data. Therefore, inaccuracies of a wider range than those

discussed and presented in the Results would be expected

if scans from other than patients with sporadic SVD are

input. With MRI scans becoming a more common practice,

we expect more training data to be available in the future

for re-training our model and improving its performance.

Nevertheless, given that the most represented protocols in the

training dataset are those used throughout the years in the

two largest hospitals in the region, and the high incidence of

sporadic SVD, this framework “as is” will allow the use of a large

amount of scan data for the development of robust AI-powered

precision-medicine schemes.

5.4.2. Representation of clinically relevant
details

It is difficult to assert the extent to which the SR framework

proposed reduces or enhances subtle clinically relevant details

or not, given that the input and target images (used for training

and testing) were acquired in a time frame up to approximately

3 months apart. As all data used were obtained from clinical

settings, and resources were not available to allow both, high-

and low-resolution scans, to be acquired on the same day or

consecutive days, subtle lesional changes present in the low-

resolution scan were sometimes absent in its SR reconstruction.

As the low-resolution data was acquired soon after patients

presented with stroke symptoms, subtle differences in the MRI

are expected to occur in the interval elapsed between both

scans. Results show that the SR framework proposed is useful in

reconstructing scans that have been affected by image artifacts,

which, otherwise have limited usefulness or even lack it. The

proposed model could be applied, therefore, to reduce scan

duration without compromising the quality of the scan when

patients cannot tolerate a longer scanning time.

5.4.3. Feasibility for automated precision
medicine applications

While the WMH, total brain tissue, non-brain tissue

structures, and CSF-filled spaces could be consistently

segmented with the same parameters using SR, original, and

interpolated image data, allowing comparison of the results,

this was not the case for normal tissues (i.e., WM and GM).

These needed separate adjustments (i.e., priors and anatomical

reference locations in a multispectral approach that used the

three sequences) for yielding good results using SR images,

thus contrasting with the good segmentations that are obtained

from using only T1-weighted images acquired under research

protocols as input to FSL-FAST, which is considered the brain

tissue segmentation tool for excellence. Given the small size

of the training dataset, and the low (or even absent) WM/GM

contrast in some of the T1-weighted images acquired in

clinical settings (i.e., used for training), this is not surprising.

Re-training the model with more datasets could perhaps

overcome this hurdle. However, in addition, it is worth noting

that, for applying our CNN-based SR framework, we linearly

normalized the image intensities to double-precision values in

the interval [0,1], so linearly rescaling back the intensities of the

upsampled images to a full-scale 12-bit resolution integer values

do not necessarily ensure fidelity in the intensity adjustment

process. Future studies can evaluate the gain (if any) in applying

such a more complex segmentation pipeline instead of using

FSL-FAST with a single-sequence input, to the original and

high-resolution scans.

5.5. Limitations and future study

In addition to the previously mentioned limitations related

to representativeness and size of the data available, transmit

radio-frequency field inhomogeneity and inhomogeneity of the

receive coil sensitivity, for which compensatory methods are

imperfect, can be affected by individual patient characteristics,

scanner/coil properties and patient positioning, introducing a

non-reproducible bias in the input data. In this study, we also

expect the low- and high- resolution scans to have the same

dimension. This was done by either using rigid, affine or warping

space transformations of the scans to a template. In future

studies, this pre-processing step can be optimized, and this

optimization is integrated as part of the data processing pipeline.

The fact that the template and high-resolution images had

nearly 1mm3 voxel dimensions and some of the low-resolution

images had double the in-plane resolution of the target images

(despite having only few slices), influenced the neurologist’s

preference for the low-resolution scan for visual diagnostic

assessment in some cases. Brain template and full scans with

higher spatial resolution and isotropic voxels were not available.

This limitation, however, reflects the present challenges that the

whole fields of medical image analysis and precision medicine

need to overcome in the near future. The use of transfer-

or continuous-learning techniques with higher-resolution brain

templates from higher-resolution isotropic brain scans will be

beneficial not only to enhance the applicability of our framework

but to advance the whole field.

Another limitation is that the GradCAM activation map

was averaged per channel, which is acceptable for identifying

areas of interest to the model. However, for clinical use, using a

channel-wise localized attention map could trace the activation

onto the specific MRI sequence that provides (vs. lacks) the

information the network is synthesizing at each time and

location. Similarly, this applies to our attention map obtained

from the attention gates, meaning our model cannot learn

fine-grained attention per sequence. Future study on channel-

wise attention would identify specific areas in the sequence

relevant for the upsampled scan as well as further understanding

the inter-channel information transfer. These will generally
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improve the explainability of the upsampled scans with clinically

useful information.

Future study could also explore the use of VGG perceptual

loss as described in Johnson et al. (2016) to enforce the

performance to be reliant on the overall quality of the image

rather than on pixel-wise metrics.

6. Conclusion

We have presented a framework for upsampling and

reconstructing low resolution and low quality scans acquired in

clinical practice to facilitate their integration in research settings

and, therefore, the collaboration between sites. The proposed

model shows promising for being applied to clinical research and

precisionmedicine, and for adequately synthesizing information

from incomplete or corrupted sequences; making it a strong

candidate for being applied in clinical settings to reduce

scanning time without compromising the quality of the scan.

In addition, we have shown that multi-channel data fusion and

input data heterogeneity are essential to achieving quality in our

framework’s output.
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