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Cardiovascular complications are the leading cause of

mortality in chronic (CKD) and end-stage renal disease

(ESRD). The risk of developing cardiovascular complications is

associated with changes in the structure and function of the

arterial system, which are in many aspects similar to those

occurring with aging. The presence of traditional risk factors

does not fully explain the extension and severity of arterial

disease. Therefore, other factors associated with CKD and

ESRD must also be involved. Arterial calcification (AC) is a

common complication of CKD and ESRD, and the extent of

AC in general population as well as in patients with CKD is

predictive of subsequent cardiovascular mortality beyond

established conventional risk factors. AC is an active process

similar to bone formation that implicates a variety of proteins

involved in bone and mineral metabolism and is considered

part of a systemic dysfunction defined as CKD-associated

mineral and bone disorder (CKD-MBD).
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Premature vascular aging and arterial stiffening are observed
with progression of chronic kidney disease (CKD) and in end-
stage renal disease (ESRD).1 Damage of large arteries is a major
contributory factor to cardiovascular complications, and a
leading cause of mortality in CKD including ESRD.2,3 Arterial
stiffening in such patients is of multifactorial origin, with
extensive arterial calcifications (ACs) representing a major
covariate.4–6 ACs are predictive of cardiovascular mortality
beyond established conventional risk factors.7,8 ACs are largely
contributing to myocardial ischemia, cardiac hypertrophy, and
microvascular disease in brain and kidney.9,10

MECHANISMS OF AC

Long time considered a passive process associated with
cellular aging and death, and high extracellular fluid
calcium–phosphate concentrations, the results of many recent
studies have indicated that cardiovascular calcifications are
an active process, in many aspects similar to embryonic bone
formation, which is regulated by a variety of genes and
proteins implicated in mineral and bone metabolism. This
process involves differentiation of contractile vascular
smooth muscle cells (VSMCs), and pericytes into distinct,
‘osteoblast-like’ cells with a secretory phenotype. VSMC
synthesize bone-associated proteins, including alkaline phos-
phatase, osteocalcin, osteopontin, and a coat of collagen-rich
extracellular matrix, via the formation of matrix vesicles,
nodules, and apoptotic bodies, which serve as initiation sites
for apatite nanocrystal deposition (but also with bone
formation and real ossification).11–16 Clinical and experi-
mental data show that this process can be triggered by many
factors including dyslipidemia,17 oxidative stress,18 advanced
glycation end-products and hyperglycemia,19 hyperphospha-
temia,20 increased serum aldosterone levels,21 and age-
associated cellular senescence.22–24 These risk factors have in
common that they all converge to a final pathway, that is,
inflammation and nuclear factor (NF)-kB activation.25–28

Molecular imaging in vivo has demonstrated inflammation-
associated osteogenesis in early-stages of atherosclerosis,29

confirming the role of inflammation in triggering the
metabolic cascade leading to the transformation of VSMC
into an osteogenic phenotype. Macrophage activation
releases proinflammatory cytokines (such as interleukin-6
and tumor necrosis factor-a), and proteolytic enzymes
(matrix metalloproteinase-2, matrix metalloproteinase-9,
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and cathepsin S) whose release is associated with osteochon-
drocytic VSMC transdifferentiation.29,30 Interleukin-6 and
tumor necrosis factor-a are the first steps for the activation of
BMP2:BMP4 and Msx2, which promotes calcification by
activating paracrine Wnt signals and nuclear activation and
localization of b-catenin, an indispensable coregulator of
expression of Runx2, osterix, and Sox9, which are all
transcription factors associated with the osteochondrogenic
phenotype conversion of VSMC and pericytes.30–32 The
second aspect of inflammation-related calcification is the
proteolytic activation of elastolysis and degradation of
extracellular matrix. The fragmentation of elastic lamellae
and release of biologically active elastin-derived peptides also
promote VSMC dedifferentiation and calcium deposition.29,33

Aging is the most typical condition associated with the
development of vascular calcifications. VSMC senescence
is associated with the switch to a secretory phenotype
(senescence-associated secretory phenotype) that initiates
osteoblastic transition with calcifications and artery-wall
remodeling.22–24 Senescence-associated secretory phenotype is
linked to low-grade arterial inflammation with increased NF-
kB activation.34 NF-kB activity, inflammation, and excessive
production of reactive oxygen species are associated with
several features of the progeroid syndrome such as accumula-
tion of prelamin A,35 low telomerase activity and telomere
shortening,36 and DNA damage,24,35 all conditions being
associated with the development of an osteogenic program
and AC.

In vitro, calcium and phosphate promote both synergis-
tically and independently VSMC calcification.37 Recent
findings indicate that hyperphosphatemia, through activation
of mitochondrial respiration, stimulates the production of
reactive oxygen species with final activation of NF-kB,
enhancing Runx2 (Cbfa1) activation and matrix vesicle
release and promoting the differentiation of mesenchymal
cells into osteoblastic lineage.38

In presence of normal serum, VSMC do not calcify. Serum
inhibits spontaneous calcium and phosphate precipitation in
solution,39 indicating that systemic calcification inhibitors
are present in the serum and also in VSMC, which
constitutively express potent local or systemic inhibitors of
calcification,40 such as matrix GLA protein,41 which may
limit AC by binding to bone morphogenic proteins.42

Osteopontin and osteoprotegerin are potent inhibitors of
AC in vivo, and inactivation of their genes enhances the
calcification process.43 Fetuin-A (AHSG or a2-HS glycopro-
tein) is a potent circulating AC inhibitor that is abundant in
plasma.44 Pyrophosphate is another potent inhibitor. In vitro,
phosphate-stimulated apatite production can be completely
prevented by adding pyrophosphates.45

In CKD and ESRD patients, the relationships between AC
and changes in phosphate and calcium homeostasis are
associated with disruption of endocrine and humoral path-
ways, including parathyroid hormone (PTH), calcitriol, and
the fibroblast growth factor-23—Klotho–vitamin D axis. The
increase in bone resorption observed in CKD patients with

secondary hyperparathyroidism is frequently associated with
AC. Excessive phosphate and calcium efflux from bone
probably has an important role. The direct intervention of
PTH is less clear. Chronically elevated PTH upregulates
RANKL, downregulates OPG gene expression, and raises the
RANKL/OPG ratio.46 However, intermittent increases in
serum PTH exert an anabolic action on bone, and
intermittent PTH administration has been shown to prevent
AC.47 Low Klotho expression and resistance to the phospha-
turic effect of fibroblast growth factor-23 are also associated
with AC.20,48–50

CLINICAL IMPACT OF ACs

Both intima and media calcifications are associated with
increased morbidity and mortality,7 but they alter arterial
functions by different pathological mechanisms.1 Intima
plaque calcification occurs in the context of common
atherosclerosis.2 Intima calcification induces arterial dysfunc-
tion resulting from the narrowing of the arterial lumen with
ischemia affecting the tissues and organs downstream.9 As
calcification advances with the progression of atherosclerosis,
it is uncertain whether the calcification itself represents a risk
factor or whether it is only a surrogate marker of plaque
burden and disease extension. Acute coronary events and
myocardial infarction are more related to the biomechanical
stability of atherosclerotic plaques and rupture of the fibrous
cap of the plaque. Although a higher coronary AC score is
associated with a poorer cardiovascular prognosis, the
influence of calcification on plaque stability is controversial.
The results of several studies indicate that AC does not
increase plaque vulnerability, which seems more attributable
to a large lipid pool, thin fibrous cap, and intensity of local
inflammation.51–53

Media calcification (Mönckeberg’s sclerosis or media
calcinosis) is characterized by diffuse mineral deposits within
the arterial tunica media. Media calcification is concentric,
not extending into arterial lumen in its typical pure form and
is associated with abnormal cushioning function of blood
vessels (arteriosclerosis–arterial hardening) by promoting
arterial stiffness.5 The first, principal consequence of arterial
stiffening is increased systolic pressure, resulting in elevated
cardiac afterload and left ventricular hypertrophy. The second
consequence is decreased diastolic pressure and impaired
coronary perfusion.9 As the two forms of AC are frequently
associated in patients with CKD abnormalities of conduit
and cushioning function are often associated as well.

MANAGEMENT AND PREVENTION

Several experimental studies have shown that the develop-
ment of AC calcification can be prevented or delayed
by several interventions such as treatment with pyropho-
sphates,54 inhibition of receptor activator of NF-kB,55

treatment with bisphosphonates,56 estrogens,57 cinacalcet,58

angiotensin-converting enzyme inhibitors,59 and mineralo-
corticoid receptor antagonists,60 and inhibition of bone
morphogenic proteins signaling.61
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Regression of AC is rarely observed in humans; therefore,
the primary goal is prevention and stabilization of existing
calcifications. As intimal AC are related to atherosclerosis, the
general approach is nonspecific, as advocated for patients with
atherosclerosis: control of blood lipids (but no evidence of a
benefit with statins), use of aspirin, treatment of obesity and
hypertension, increase in physical activity, cessation of
smoking, and optimal control of diabetes. More specific
preventive measures for patients with CKD and ESRD include
controlling serum calcium and phosphate levels, thereby
avoiding hypercalcemia and hyperphosphatemia. Prevention
of hyperphosphatemia is based on the diet, increased dialysis
efficiency and the prescription of phosphate binders, with the
preference for non-calcium-containing binders. Calcium-
containing phosphate binders should be avoided or prescribed
carefully in patients with permanently low PTH, presence of
extensive ACs (old patients), and hypercalcemia. Hypercalce-
mia and calcium overload are associated with the progression
of AC,62 oversuppression of PTH, and adynamic bone disease.
Oversuppression of PTH and adynamic bone disease are
frequently associated with AC63 and should be avoided.
Positive calcium balance could be induced by high dialysate
calcium concentrations, pharmacological doses of active
vitamin D, and calcium-containing phosphate binders. Severe
secondary hyperparathyroidism is associated with AC and
bone resorption–associated calcium and phosphates release,
with hypercalcemia and hyperphosphatemia. In these condi-
tions, the prescription of cinacalcet seems the preferable
pharmacological treatment.64 Some endogenous calcification
inhibitors such as matrix GLA protein are vitamin K
dependent. Dialysis patients have vitamin K deficiency and
increased levels of inactive dephosphorylated-uncarboxylated
matrix GLA protein, which could be reduced by daily vitamin
K2 supplementations.65,66 The efficiency of vitamin K2
supplementation on AC is under study. Considering these
interrelationships, the benefit of warfarin prescription in ESRD
patients should be carefully weighed against potential risk.

In conclusion, AC is an active process associated with
phenotype transition of VSMCs to osteoblast-like cells. This
transition is associated with disrupted balance between
factors inducing calcifications and those preventing it. The
principal disorders associated with development of vascular
calcifications in CKD/ESRD are phosphorus retention in
association with positive calcium balance, and decreased
activity of factors preventing calcification process.
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