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Abstract Environmental variability poses a major challenge to any field study. Researchers attempt 
to mitigate this challenge through replication. Thus, the ability to detect experimental signals is deter-
mined by the degree of replication and the amount of environmental variation, noise, within the exper-
imental system. A major source of noise in field studies comes from the natural heterogeneity of soil 
properties which create microtreatments throughout the field. In addition, the variation within different 
soil properties is often nonrandomly distributed across a field. We explore this challenge through a 
sorghum field trial dataset with accompanying plant, microbiome, and soil property data. Diverse 
sorghum genotypes and two watering regimes were applied in a split-plot design. We describe a 
process of identifying, estimating, and controlling for the effects of spatially distributed soil properties 
on plant traits and microbial communities using minimal degrees of freedom. Importantly, this process 
provides a method with which sources of environmental variation in field data can be identified and 
adjusted, improving our ability to resolve effects of interest and to quantify subtle phenotypes.

Editor's evaluation
In this study, the authors took an experimental, empirical approach to tackle the thorny problem of 
micro-scale variation in soil properties within and among field plots in confounding statistical analyses. 
The issue is that in field experiments, small variation in one or more soil property variables can obscure 
true effects of experimental variables on plant phenotypes. The main result is that without their frame-
work they would not have found the association between water treatment, plant growth and Microvirga 
bacterial abundance, it would have been lost to the noise inherent in these kind of large-scale experi-
ments with relatively modest degrees of freedom. Overall, the PC-based approach to de-noise these 
kinds of datasets provides an important advance by pulling out subtle phenotypic effects in field trials.

Introduction
Environmental variation makes the real world a noisy place to conduct science. In the context of 
experimental agriculture fields, variation in topography may result in uneven water moisture accu-
mulation. Similarly, soil nutrients such as nitrogen and phosphate are often nonuniformly distributed 
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across a field. These unintended and often unknown sources of environmental variation may signifi-
cantly affect the experimental results. The traditional approach to mitigate this variability is through 
experimental designs that include replicate blocks (Piepho et al., 2013; Fisher, 1925). While helpful 
for controlling for variation that is relatively uniform within the blocks, true biological signal may still 
be masked by other experimental noise that is heterogeneous within blocks.

Analytical approaches have been used to parameterize spatial variation within a field using 
traditional mixed-effect modeling. These methods come in two general flavors: estimating spatial-
covariance structures and spatial-smoothing using splines (Rodríguez-Álvarez et al., 2016; Piepho 
et al., 2008; Velazco et al., 2017). The former is older and canonical but requires advanced statis-
tical knowledge to interpret the results. The latter is newer and easier to use courtesy of advance-
ments in computation. Spatial-smoothing has been shown to effectively account for spatial variations 
in uniform barley fields and promotes genetic heritability in simulation studies (Rodríguez-Álvarez 
et al., 2016). While spatial-smoothing using splines does effectively address spatial variation of a trait 
in a field, traditional parameterizations using spatial-covariance structures do so as well and further 
provide intuitive metrics on the type and shape of the structure. Estimating and accounting for spatial 
structure have proven useful for a variety of biological systems including nematodes (Quist et al., 
2019), microbiomes (Franklin and Mills, 2003), forestry (Ohashi and Gyokusen, 2007; Möttönen 
et al., 1999; Bai et al., 2012), and ionomics QTL mapping (Pauli et al., 2018). These previous studies 
have used spatial-covariance estimation methods to identify and associate spatial effects on various 
traits of interest. These methods are also the backbone of geospatial statistics where the goal is to 
interpolate values between sampling points (Olea, 2018).

Another challenge facing field studies is to identify which factors of a multivariate dataset influence 
the traits of interest and then adjust for the effects from all covariates while maintaining sufficient 
degrees of freedom for statistical inference. This challenge is similar to the challenge associated with 
genome-wide association studies (GWAS) that must handle population structure. In GWAS studies, 
phylogenetic relatedness is managed by principal component analysis (Price et al., 2006). Principal 
components (PCs) capture axes of most variation and effectively reduce a complex multivariate 
dataset down to only a few independent vectors of greatest importance. PCs have also previously 
been used for dimension reduction to investigate how various soil nutrients affect natural selection on 
plant roots (Murren et al., 2020).

Here, we combine approaches from geospatial statistics with dimension reduction to deal with 
environmental variation in field studies. Specifically, we estimated spatial-covariance structures for 
each factor and then accounted for these effects using principal component regression. Applying 
this approach reduced experimental noise due to environmental variation and revealed previously 
hidden associations in a field study. This field study with 24 varieties of sorghum and 2 watering treat-
ments, well-watered and water stressed, arranged in a split-plot design with 8 replicate blocks, was 
completed in 2017. Several types of data were collected including, but not limited to, plant harvest 
traits (height, fresh and dry weight, and panicle size), soil property composition (calcium, magnesium, 
nitrate, organic matter, pH, phosphate, potassium, salinity, sodium, sulfate, and total cations), three 
microbiome samplings for each plot (root, rhizosphere, and soil), leaf traits (specific leaf area, C and N 
content, and stable isotopes of C and N), and root metabolomic profile. In this study, the soil chemical 
and physical properties were used as the multicovariates that exhibited spatial-covariance structure 
and subsequently created microtreatment effects throughout the field that are associated with plant 
traits. We demonstrate that accounting for these effects via residuals of principal component regres-
sion is an effective method to improve the detection of effects of treatment factors and reduce the 
noise caused by spatial variation within a field.

Results
Geospatial statistics interpolates soil property composition throughout 
the field
We previously described a field-level experiment in which sorghum and its associated microbiome 
were evaluated across two different watering treatments (Qi et al., 2022). As is typical of field studies, 
the collected data showed significant variability across all measured parameters. We also measured 
several different soil properties at multiple points throughout the field including organic matter, pH, 
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phosphate, nitrate, sum of cations, calcium, magnesium, potassium, sodium, sulfate, and salinity 
compositions. We hypothesized that variation across the field in these soil properties may explain 
some of the variability in the other measurements. Here, using the field and microbiome datasets from 
Qi et al., 2022, we describe and evaluate a general method for reducing noise and apply this method 
to additional metabolomics and stable isotope datasets.

First, because only a limited set of points across the field were sampled for soil properties, there 
was a need to estimate the missing values (Figure 1A). We suspected that sample proximity would 
introduce correlation within the measured soil properties. To assess this type of spatial correlation, 
we employed techniques from geospatial statistics to capture the correlation structure of any pair of 
samples in the field. Of the 12 properties tested, 6 properties exhibited evidence of spatial distribu-
tions (p value <0.05): salinity (mmho), nitrate (ppm), sulfate (ppm), calcium (ppm), magnesium (ppm), 
and phosphate (ppm) (see Methods: Statistical testing for evidence of spatial structure). For these six 
soil properties we estimated the missing values throughout the field. Interpolation of values between 
sampling points was performed by leveraging spatial correlation structure to predict unobserved 
values, a process called kriging (see Methods: Geospatial interpolation methods) (Table 1). To test 
the kriging accuracy, we performed a leave-one-out cross-validation for each soil property. Through 
this analysis we observed that the error of the predictions, when scaled to unit variance of the obser-
vations, exhibit distributions that resemble the expected standard Z-distribution (Figure 1—figure 
supplement 1). The ratio of the partial sill to the nugget is a proxy for the magnitude of the variance 
that is attributable to the spatial structure. Comparing this ratio for nitrate and phosphate shows that 
the phosphate spatial correlation was much stronger than the nitrate spatial correlation (Figure 1). 
Calcium also exhibited correlation structure of distances larger than nitrate, but much smaller than 
phosphate (Figure 1). To visualize the spatial structure for each soil property, the kriged values of 
each property were centered around the mean and scaled to unit variance (Figure 1). This analysis 
revealed that the soil properties exhibited different topographies across the field. For example, phos-
phate levels were high in a band across the center of the field while nitrate and calcium levels were 
more variable with several high and low spots (Figure 1). We also considered correlation between the 
different soil properties and observed several correlation blocks, implying similar spatial structures 
(Figure 1—figure supplement 2).

Soil property variation influences plant phenotypes and microbiome 
composition
The above analyses clearly showed that soil properties were variable across the field site. However, it 
was not clear whether the observed variation was large enough to affect plant-associated phenotypes 
or the microbiome. To address this, we used constrained analysis of principal coordinates (CAP). With 
CAP, it is possible to identify specific effects on a multidimensional dataset while acknowledging 
variation due to other effects. For example, to understand if and how soil property variation affected 
microbiome composition, we first had to control for the effects of the watering treatments, the 
different genotypes and their interactions (see Methods: Statistical testing for phenotype–property 
associations). First, CAP was computed and a permutation analysis of variance (ANOVA), using 999 
iterations, was performed on each soil property to identify if there is an interaction with the different 
compartments on the overall microbiome composition and resulted in all but one soil property, sulfate, 
showing an interaction effect (Table 2). Following the interaction effect permutation ANOVA, post 
hoc permutation ANOVAs, using 999 permutations, were performed to identify specific soil property 
influence on the three compartments independently. From this analysis, we observed that the root 
microbiome was invariant to all soil property variations. In contrast, the rhizosphere and soil microbi-
omes were influenced by the variation in several soil properties (Figure 2A). Additionally, there were 
some soil properties (salinity, sulfate, and calcium) whose variation affected either the rhizosphere 
or soil microbiomes but not both. This suggests that microbiome compartments are differentially 
sensitive to different types of soil property variation. CAP and permutation ANOVA were also applied 
to annotated root metabolomic profiles. In contrast to the large effects seen in the microbiomes, no 
soil property variances were associated with changes in the metabolomic profile (Figure 2—figure 
supplement 1). This may reflect the relative stability of the metabolites identified from gas chroma-
tography–mass spectrometry (GC–MS) which mostly represents primary metabolites, or the sensitivity 
of measurements.

https://doi.org/10.7554/eLife.70056
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Figure 1. Graphical depictions of field layout where each cell is a plot in the field. Water treatment is specified on right; WS = water stressed, WW = 
well-watered. Eight split-plot replicate blocks are denoted in gray vertical bars. Color scale represents data with genotype and treatment removed. 
Green indicates larger than average, white indicates approximately average, and magenta indicates below average values. (A) Nitrate values are shown 

Figure 1 continued on next page
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While microbiome and metabolite data are highly multivariate, plant phenotypes, composed of 
individual phenotypic traits, are much less so and are therefore suited to univariate statistical anal-
yses. Just as the microbiome has the potential to be influenced by the soil property variations, the 
same could be true for the univariate phenotypic traits. Similarly, the effects due to the experimental 
design must be acknowledged to more precisely evaluate the association a given property has on the 
phenotypic trait. Mixed-effect models were created for each soil property–phenotypic trait pair with 
treatment, genotype, and their interaction as fixed effects and random effect for the split-plot repli-
cates each having multivariate-normal spatial correlation structure (see Methods: Statistical testing 
for phenotype–property associations; Equation 4). The precise effect a given soil property has on 
a phenotypic trait was evaluated using type III sum of squares to account for the other sources of 
variance (treatment, genotype, and the interaction) on the phenotypic trait. Traditional F-test from 
the ANOVA revealed that plant height and total fresh weight are influenced by soil phosphate and 
magnesium variation, respectively (Figure 2B). Similar modeling of the leaf traits indicated the soil 
phosphate variation is significantly associated with ẟ15N (Figure 2C). Many other phenotypic traits 
were examined and did not have statistically significant associations with the variation in soil prop-
erties (Figure 2—figure supplement 1). Closer examination showed that soil phosphate levels are 
mildly inversely correlated to plant height (Figure 2D). This supports the hypothesis that excess phos-
phate inhibits plant growth and development (Shukla et al., 2017; Song et al., 2016) and suggests 
that the levels found in the center of the field were too high for optimum sorghum growth.

Statistical approach to place field noise into PCs
We have shown that many of the soil properties exhibit spatial distribution and influence various 
plant and microbiome traits. Therefore, to understand the effects of treatment and genotype on the 
phenotypic traits more precisely, we must first account for the effects of the soil properties. The repli-
cation in our study was not sufficient to include all the soil properties as covariates to account for their 
influence – this would require a degree of freedom for every soil property. A generalized approach to 
overcome limited sample size is reducing the dimensionality of the covariates using principal compo-
nent analysis and regressing against the first several PCs, known as principal component regression. 
In this approach, the PCs retain a percentage of the influence from the individual properties and can 
be used as a proxy to adjust for as much variation as possible.

To adjust for the spatial effect of soil properties unrelated to genotype and treatment, we used 
the observed soil properties, not the kriged values, and fit linear models for each soil property with 

for each cell (outlined in gray) that were sampled for soil property analysis. (B) Kriged nitrate values to estimate nitrate levels in unsampled plots. (C, D) 
Kriged values for phosphate and calcium. Variogram fit of spatial model is indicated with model type, nugget, partial sill, and range.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Leave-one-out cross-validation of soil property observations.

Figure supplement 2. Pearson correlations between all pairwise soil properties.

Figure 1 continued

Table 1. Shown are sum-of-square errors for each soil property (columns) and each spatial model 
tested (rows).
Cells that have asterisks are those models that have minimal errors and are chosen to be the best-fit 
model for kriging for the respective soil property.

Salinity Nitrate Sulfate Calcium Magnesium Phosphate

Nugget only 1.92115E−05 203.668 10645.6 833211000 2261360 149,688

Exponential 1.1769E−06 41.2651 1909.53 17886300000 65136300 27556.2

Spherical 2.03099E−06 25.5247 2058.42 244155000* 1038010* 32351.9

Gaussian 2.16269E−06 22.3183* 289,060 17669600000 64365000 100,531

Matern 0.00000113273* 23.0069 1682.03* 266373000 1087980 18961.6

Stein’s Matern 1.13273E−06 23.0069 290,357 17886300000 65136300 18827.8*

https://doi.org/10.7554/eLife.70056
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fixed effects being treatment, genotype, and 
their interaction. The residuals from these linear 
models were the adjusted soil properties unre-
lated to genotype and treatment. These residuals 
were then processed with principal component 
analysis. To test the success of accounting for 
our experimental design, we investigated clus-
tering within the first two PCs and observed 
that indeed the treatment and genotype effects 
were accounted for (Figure 3A) as there were no 
obvious treatment or genotype effects remaining 
in these PCs. We selected the first three PCs as 
regressors which represented approximately 66% 
of the total variance in the soil property data 
(Figure 3B). Next, we visualized the contribution 
of each soil property within each PC (Figure 3C). 
PC1 is primarily represented by calcium, magne-
sium, potassium, sodium, and sum of cations. PC2 
is primarily represented by sulfate, salinity, and 
pH. PC3 is primarily represented by phosphate 
and nitrate. Then, we used kriging (see Methods: 
Geospatial interpolation methods) to interpolate 

the missing values for the rest of the field. Since many soil properties exhibited spatial distributions 
(Figure 1), we expected that the PCs would also display a spatial distribution. Indeed, the spatial 
distribution of the kriged first PC resembles the calcium distribution which emphasizes the contribu-
tion of that property (Figures 1 and 3D). In summary, through this approach, we revealed specific 

Table 2. Shown for each soil property that 
exhibits significant spatial distribution (see 
Methods: Statistical testing for evidence of 
spatial structure) (first column) is the interaction 
effect with the different microbiome tissue 
compartments on the overall microbiome 
composition (p value <0.05 indicates significant 
interaction, PERMANOVA from model: 
Composition ~ Property:Compartment).

Soil property p value

Sulfate (ppm) 0.24

Salinity (mmho/cm) 0.011

Phosphate (ppm) 0.001

Nitrate (ppm) 0.001

Magnesium (ppm) 0.003

Calcium (ppm) 0.005

Figure 2. Association of soil property variations with multiple phenotypes. Six soil properties were assessed for effect on root microbiome and plant 
phenotypes using permutation ANOVA. Cells are colored by −log10 p value of the effect. (A) Effect of each soil property on microbiome beta diversity 
from three root compartments: root (endosphere), RHZ (rhizosphere), and soil (bulk soil), while constraining on genotype and treatment. Effect of 
each soil nutrient on the height and weight (B) and leaf δ15N (C) using type III sum of squares while including treatment, genotype, and interaction as 
additional fixed effects. (D) Example effect of kriged phosphate, x-axis, on plant height, adjusted for genotype and treatment, y-axis.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Same analysis as Figure 2A-C, but here are shown the phenotypes that did not demonstrate soil property associations.

https://doi.org/10.7554/eLife.70056
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Figure 3. Variation in soil properties can be collapsed into principal components. (A) First two principal components of soil property residuals as x- and 
y-axis, respectively, colored by genotype and shaped by treatment. (B) Scree plot of the first 10 principal components. Shown is the percent variance 
explained of the total property variance by each component. Dashed line is at 10% variance explained. (C) For the first three components, colored is the 
contribution of each soil property to its respective variance explained within each component. (D) Spatial distribution of kriged PC1. Each cell colored 
by scaling the values to unit variance. Variogram fit with nugget, partial sill, and range displayed.

https://doi.org/10.7554/eLife.70056
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sources of field-level noise and successfully captured a significant proportion of the field-level varia-
tion into three PCs.

Using PCs to denoise field data
Having reduced the soil property influences into a limited number of PCs, next we aimed to account 
for these unintended influences on our phenotypes of interest. Similar to how we removed the exper-
imental design effects, we created mixed-effect models for each of our phenotypes as the dependent 
variable with multivariate normal spatial structure within each split-plot replicate, and the first three 
PCs as fixed effect independent variables (see Methods: Principal component regression; Equation 
5). For the univariate phenotypes, we extracted model residuals (Equation 2) to generate soil prop-
erty invariant phenotypes. In the microbiomes, residuals were not comparable to the original counts, 
therefore we back transformed the model estimates to create an adjusted count for each operational 
taxonomic unit (OTU) (see Methods: Principal component regression; Equation 6).

In the microbiome datasets, we expected the variance within each of the compartments to decrease 
and the difference between compartments to be more obvious. To test this, we combined the original 
observed counts and the adjusted counts for microbes that were able to be modeled and performed 
principal component analysis. We observed larger distances between microbiome compartments 
using the adjusted counts versus the observed counts (Figure 4A). This indicates the sources of vari-
ation from the soil properties were better controlled thereby increasing the differentiation between 
compartments. Within each compartment, the root microbiome was least affected by soil factors 
which was demonstrated by the small distance between the observed and adjusted counts, followed 
by rhizosphere with a larger separation, and soil being the farthest and most affected (Figure 4A). 
The adjusted counts produced clusters that were larger than their respective original counts, again 
indicating sources of variation were addressed so that the within compartment effects were better 
elucidated (Figure 4A). Next, we examined the experimental design effects within each compartment 
using variance components (PERMANOVA) and found mirroring results (Figure 4B). The experimental 
design was not differentially resolved in the root microbiome after principal component regression; 
however, the rhizosphere and soil microbiomes saw an increase in 3% and 2%, respectively. Noting 
that treatment was the effect of largest change, we sought to visualize treatment effect changes within 
each of the tissue compartments. Given the strong compartment differentiation, identifying clusters 
within a compartment required principal component analysis to be performed on each compartment 
individually. In the rhizosphere, we observed treatment differentiation using both the observed and 
adjusted counts; however, the distance between the centers of each cluster was larger after adjust-
ment further indicating within-group variation was reduced (Figure 4—figure supplement 1).

To assess how principal component regression affected the univariate plant phenotypes, we 
compared the data before and after principal component regression. Prior to removing noise from 
soil properties, plant height and fresh weight both showed drought effects, and after performing prin-
cipal component regression, these effects were maintained (Figure 4—figure supplement 2). Further, 
by plotting the original values against the change for each value after adjustment, we showed that 
this correction method is equitable for all plant sizes; in other words, short and tall plants were not 
overly adjusted either positively or negatively (Figure 4). Additionally, the variation attributable to soil 
properties was as much as ±10% for fresh weight and ±6% for plant height for some individual obser-
vations. Additionally, variance components were computed for all harvest traits but both fresh weight 
and plant height did not demonstrate an increase in experimental design resolution (Figure 4—figure 
supplement 2). Lastly, leaf delta δ15N showed an association with phosphate (Figure 2C), and vari-
ance components for the experimental design effects found that the R2 between the unadjusted and 
adjusted increased by approximately 5% (Figure 4E). This is similar to the changes in the explained 
variance in rhizosphere and soil microbiome compositions.

Microbiome analyses often have less-than-ideal replication and therefore elimination of confounding 
variations is crucial in identifying effects of interest, such as identifying plant-growth promoting 
microbes. For instance, change-point models can identify microbial impacts on plant phenotypes 
once the abundance of the microbe reaches a particular level (Qi et al., 2022). We show that in water-
stressed samples before the adjustment on both plant height and microbe abundance of Microvirga 
in the soil microbiome, we do not see any evidence of an association. However, after accounting for 
the variance from the soil properties, there is a strong positive correlation between plant phenotype 

https://doi.org/10.7554/eLife.70056
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Figure 4. Accounting for influence from soil property variance within microbiome data reveals plant phenotypes that correlate with microbe abundance. 
(A) Principal component analysis on the combined raw and residual microbiome tables. Shown are the first two components with their respective 
variance explained. Samples are colored by tissue type and shaped by original or residual values. Gray points are the centers of each respective 
cluster, and gray lines connect the centers of each cluster. (B) Partial correlations of experimental design variables in each microbiome compartment’s 
composition before and after principal component regression. (C) Observed plant height values, x-axis, and the change in that value as a result of the 
adjustment, y-axis. (D) Similar to C, shown are the fresh weight values and their respective changes. In both C and D, horizontal green dashed lines 
represent the 95% confidence interval for the change in observation. Light gray dots are within the interval, and dark gray dots are outside of the 
interval. (E) Partial correlations of experimental design variables in leaf δ15N before and after principal component regression. (F, G) For only water-

Figure 4 continued on next page

https://doi.org/10.7554/eLife.70056
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and OTU abundance (false discovery rate (FDR)-adjusted p value <0.05) (Figure 4F, G). This further 
emphasizes that if an experimental factor is expected to have a small effect size, that it would be lost 
to noise. We observe an order of magnitude more significant OTUs in the change-point associations 
before principal component regression versus after (Table 3). Adjusting the soil property effect or 
other nuisance factors in experimental design can lead to increased power of detecting biological 
signals.

Discussion
Large-scale trials within complex environments are an important component of many biological 
subdisciplines. Because of environmental variability, these experiments must include high levels of 
replication and even so, results often fail to repeat in subsequent trials. For agricultural field studies a 
major source of variation is heterogeneous soil property distributions that create their own microtreat-
ments and are covariates to planned experimental designs. Because these microtreatments are often 
unknown, and therefore not accounted for, they show up as experimental noise and may lead to false 
inferences. For instance, nitrogen is known to affect plant growth (size, color, yield, etc.) (Veley et al., 
2017; Chapin, 1987). If nitrogen is unevenly distributed across a field experiment aimed at charac-
terizing biomass among diverse genotypes, the variability in nitrogen may confound the experiment. 
In this study, by intentionally measuring multiple soil properties across the field experiment, we were 
able to account for this known variation through PCs and gain novel biological insight into possible 
field relevant interactions between plants and microbes (Qi et al., 2022).

After accounting for environmental variation, we observe a reduced total number of OTUs that 
correlate with plant phenotypes (Table 3). While the total number is smaller, we also observe new 
‘hits’ that were not observed before accounting for environmental factors. Additional work will be 
required to fully understand these patterns but here we offer a few theoretical explanations. We note 
that accounting for the environmental variation reduced our degrees of freedom that may reduce the 
power of detecting some associations. More importantly, after adjusting for environmental effect, 
we have focused our analysis on conditional associations instead of marginal associations. Marginal 
associations measure whether two variables change in the same or opposite directions simultane-
ously, regardless of other factors that may affect those two variables. Conditional associations, on 

stressed samples and only the soil microbiome, plant height, y-axis, and operational taxonomic unit (OTU) abundance of Microvirga, x-axis, before 
and after principal component regression. Shown in G, is the fit of a change-point model where the red line is no change before threshold, the vertical 
dashed line, and the blue line is a linear fit after the threshold.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Principal component analysis on the root (A), rhizosphere (B), and soil (C) samples using the combined raw and residual 
microbiome tables.

Figure supplement 2. Effect of applying principal component regression on plant morphology.

Figure 4 continued

Table 3. Shown for each microbiome compartment are the number of operational taxonomic units 
(OTUs) that showed significant association (p value <0.05) in their abundance to the respective 
phenotype, either positive or negative, both before (original) and after (PC123 Adj) principal 
component regression.
The intersection column shows the number of OTUs shared between these two sets of counts.

Compartment Phenotype Original PC123 Adj Intersection

Soil Dry weight 7950 445 155

RHZ Dry weight 5619 897 333

Root Dry weight 3320 231 96

Soil Plant height 7991 342 137

RHZ Plant height 5614 854 329

Root Plant height 3397 245 97

https://doi.org/10.7554/eLife.70056
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the other hand, adjust for the impacts of other variables, and measure the relationship between 
two variables that cannot be explained by other variables. In a scenario in which the environment 
affects a microbe abundance and a plant phenotype, this may be observed as marginal associations 
between the two even though the microbe abundance and plant phenotype are not directly asso-
ciated with each other. It is possible that many of the ‘hits’ before environmental factor adjustment 
are results of such marginal associations. By accounting for environmental factors, we focus on 
conditional associations that measure the rarer direct or possibly causal interactions between OTUs 
and plants. Nevertheless, future experimental work will be required to refine the list of candidate 
microbes.

While the approach described here represents a major advance forward, we acknowledge several 
opportunities for further improvement. For example, the soil property data were collected at just 
one time point, approximately 1 month prior to harvest. While we expect some soil properties to 
remain constant over the course of the experiment, others likely fluctuate (e.g., water content). Future 
studies might gather soil property composition at multiple time points, including before planting and 
at the time of phenotyping, to generate paired data. Additionally, advancements have been made in 
spatiotemporal modeling using Bayesian hierarchical modeling with time as an autoregressor (Finley 
et al., 2015; Rushworth et al., 2014) which may prove powerful if soil property composition were 
densely sampled over time. We also note that replication remains a crucial aspect of these types of 
experiments. In this analysis, we used three degrees of freedom by including the first three PCs of the 
soil property data in a regression to account for their contributions on the phenotypes. We chose to 
only include PCs that have at least 10% variance explained and only include up to replication number 
minus three so the experimental design effects could still be estimated. In our case, had a fourth PC 
shown a significant source of variance, degrees of freedom would have become limiting. On the other 
hand, had we included additional replication, it may have been possible to correct for covariates such 
as the soil properties by directly regressing on the properties themselves, rather than using a dimen-
sion reduction technique.

A significant advantage of the method described here, is that the sources of variation (soil proper-
ties) are known. This allows the researcher to examine how these fluctuations might influence exper-
imental results and may also lead to additional biological insight. However, we note that it is not 
possible to measure every potential source of variation. In many cases, it may prove useful to apply an 
approach that is agnostic to the source of variation, such as the SpATS method described previously 
(Velazco et al., 2017).

We note that in these datasets, the stable isotopes and primary metabolite profiles are invariant 
to the measured soil properties. For the isotopes, this may be indicative of stability relative to the 
fluctuations in the properties across the field, but it is possible that if the soil property variations were 
larger, then a relationship might be established. The metabolite profile used in these analyses is only 
those captured from GC/MS and mostly consist of primary metabolites such as sugars, organic and 
amino acids, small phenolics, and fatty acids. It may be true that secondary metabolites that were 
not examined in these analyses may associate with the soil property variations. We observe that a 
relatively small amount of variation in plant height and weight were attributed to the soil property 
composition, other types of data, particularly microbiome composition, were much more susceptible. 
Microbiome quantification has been shifting from using OTUs to amplicon sequence variants (ASVs) 
which are designed to identify and retain more specific bacterial identification. Some microbes were 
overtly sparse across the samples and principal component regression could not successfully estimate 
model parameters. The microbiome table generation pipeline used for this field allows for the identifi-
cation of very sparse microbes by way of using 99.5% identity clustering which results in 23,617 OTUs 
detected. After applying principal component regression, approximately 25% of the microbes were 
successfully modeled and retained. The methods proposed here should also be applicable to those 
types of tables as well with one caveat: ASV tables are sparser than OTU tables. While the methods 
here are zero-inflated, it is likely the percent of ASVs not successfully modeled would be larger than if 
using classical OTU techniques.

In conclusion, here we demonstrate the impact of spatially distributed soil property variations on 
several phenotypes of interest and present principal component regression as a method to alleviate 
the effects analytically. We observed that the microbiome communities were heavily influenced by the 
soil properties while the plant phenotypes were more resilient but nonetheless affected. Identifying 
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sources of variation and removing their influence enhances the ability to resolve other effects of 
interest and enables more honest, reliable, and believable quantification of subtle phenotypes.

Materials and methods
In a related research manuscript (Qi et al., 2022), we describe analysis of the field dataset and include 
additional details on experimental design (sorghum varieties, watering regimes, and field layout). 
Microbes were not intentionally added to these experiments, but instead were allowed to evolve natu-
rally from the environment. For clarity, we summarize key details here, as well. In short, we planted 24 
varieties of sorghum in a split-plot design with 8 replicate blocks with 2 watering treatments per block 
(WW: well-watered and WS: drought). End of season harvesting procedures, microbiome sampling, 
DNA extraction, and sequencing are also fully described in Qi et al., 2022.

Processing amplicon reads with VSEARCH and OTU table QC
Three microbiomes were collected for each plant: root endophytes, rhizosphere, and bulk soil, and 
all samples were sent for 16S PE amplicon sequencing at JGI (see Qi et  al., 2022 for extraction 
and sequencing methods). What follows is the VSEARCH (v2.9.0) (Rognes et al., 2016) workflow for 
taking the reads for each sample and processing them to curate the OTU table: merge paired ends, 
merge all samples, fastq filter, sequence dereplication, cluster unique sequences, remove chimeras, 
and read quantification. Merging paired ends had the following parameters: max diffs = 10, max diff 
percentage = 90, min merge length = 230, max merge length = 540. Samples were then combined 
into a single fasta file. Fastq filtering had the following parameters: maxee = 1, strip left = 19, strip 
right = 20, fastq max n’s=0, fasta width = 0. Dereplication had the following parameters: min unique 
size = 1, fasta width = 0. OTU clustering had the following parameters: id percentage = 0.995, strand 
= both. Removing chimeras had the following parameters: fasta width = 0. Read quantification had 
the following parameters: id percentage = 0.9. These steps were combined all together in a directed 
acyclic graph (DAG) workflow and executed on a HTCondor high-throughput computation cluster. A 
total of 171,273 OTUs were detected and of those 114,179 had quantification across all 1280 samples. 
OTU table quality control was done in two steps: samples were removed if the total number of reads 
quantified across all OTUs was less than 10,000. In addition, OTUs were removed if the total number 
of reads quantified across all samples was less than 100 or greater than 200,000. After applying this 
filter 92,385 OTUs and 1280 samples remained. Of the OTUs removed only 422 had counts larger 
than 200,000 indicating the majority of the OTUs removed were rare and would not have enough 
information to perform proper statistical analysis. Once OTUs and samples that did not meet the 
quality control filters were removed, each OTU count in a sample was scaled proportionally to the 
same number, max number of reads per sample, so that all samples had the same number of OTU 
counts quantified.

Geospatial interpolation methods
One major assumption of fitting spatial models is that the distribution is stationary, meaning that the 
mean and covariance between any two samples are the same throughout the grid. However, this field 
trial included two treatment factors (watering treatments and sorghum genotypes) which may have 
directly affected the measured soil properties. Thus, to satisfy the stationary assumption, we needed 
to account for any influence on the soil properties from the two treatment factors and/or their inter-
action. To do this, we fitted linear models including treatment factors and their interaction for each 
soil property as follows:

	﻿‍ Property = intercept + Treatment + Genotype + Treatment ∗ Genotype + residual error‍� (1)

Then we calculated residuals for each property to generate stationary soil properties by subtracting 
the observed values by the predicted values based on model (1), as follows:

	﻿‍ Residuals = Propertyij − Predicted
(
Propertyij

)
‍� (2)

https://doi.org/10.7554/eLife.70056
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The residuals were used to estimate variances at multiple distances to produce a variogram and 
then, several spatial models were fitted to the data. The spatial models that were considered include 
(1) No Structure, (2) Exponential, (3) Spherical, (4) Gaussian, (5) Matern, and (6) Stein.

This was fully implemented in the R package ‘gstat’ using the fit.variogram() function, and full 
spatial model parameterizations can be found (Pebesma and Wesseling, 1998; Pebesma, 2004; 
Pebesma and Wesseling, 1998; Pebesma, 2004). The best fitting model was selected as the one 
that produced the minimal sum-of-squares errors. Given a spatial model, there are three metrics that 
describe a spatial fit and help us understand how the sampled points are correlated. The nugget is 
the estimated variance between two adjacent samples and represents the noise of the data. The 
range is the distance at which the change in variance with respect to distance first becomes zero and 
represents how far away sampled points demonstrate the correlation structure. Finally, the partial sill 
is the variance at the range minus the nugget variance. Since each spatial model is fully parameter-
ized by only these three coefficients, model complexity is not a factor in estimating the model sum of 
squares to identify the best fitting parameterization.

With the best spatial model, we estimated spatial weights as a function of the distance between 
two sampling points and used these weights to predict values at nonsampled positions by kriging, a 
method to interpolate by using a weighted average of the observed values in the neighborhood of 
nonsampled position. More specifically, we applied ordinary kriging and let the sum of spatial weights 
to be one so that ordinary kriging is unbiased (Olea, 2018).

	﻿‍ Residualkrig
(
position0

)
=

∑n
i=1 λiResidual

(
positioni

)
‍� (3)

	﻿‍ where
∑n

i=1 λi = 1‍�

Kriging was performed using the krige() function in the R package ‘gstat’.

Statistical testing for evidence of spatial structure
Using the residuals of the soil properties from Equation 2 (see Methods: Geospatial interpolation 
methods), multiple models were created with different spatial-covariance structures: intercept-only 
(no structure), spherical, exponential, Gaussian, linear, and rational-quadratic. A soil property is 
considered to exhibit evidence of spatial structure if any of five spatial covariance structure models 
are significantly more likely than the intercept-only model using likelihood ratio test (p value <0.05).

Statistical testing for phenotype–property associations
Using only the soil properties that were determined to have significant spatial structure (see Methods: 
Statistical testing for evidence of spatial structure), the kriged soil property (Equation 3) was computed 
and used in the following association model for the mean structure:

	﻿‍ f
(
Phenotypeijk

)
= intercept + Treatment + Genotype + Treatment ∗Genotype + Propertykrig + Z + error‍

� (4)

where f() is the transformation function, Z is the multivariate normal spatial distribution nested 
within each split-plot replicate. In the case of plant height, fresh weight, and δ13C, the f() is the identity 
function and significant association is determined by computing a chi-square statistic based on type III 
sum of squares for the Property_krig. In the metabolite and microbiome estimation, f() is a Canberra 
distance transformation and significant association is determined by using constrained analysis of 
principal coordinates using the capscale() function in the vegan R package and constraining on all 
terms except Property_krig, which has its effect on metabolite composition estimated using permuta-
tion ANOVA with 999 iterations.

Principal component regression
Starting with the stationary soil properties, that is, the residuals obtained from Equation 2, principal 
component analysis was performed using the PCA() function in the FactoMineR R package, and the 
first three components were extracted. Each PC was then kriged using the same methods described 
previously in the method section of geospatial interpolation methods using Equation 3. The kriged 
PCs were then used to create the following principal component regression model:

https://doi.org/10.7554/eLife.70056
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	﻿‍ g
(
E
(
Phenotype

))
= α + β1PC1krig + β2PC2krig + β3PC3krig + Z ‍� (5)

where g() is the link function for the expected value of the phenotype, α is the model intercept, 
each β is the regression coefficient for the respective term, Z is the multivariate normal spatial distri-
bution nested within each split-plot replicate. In the case of plant height, fresh weight, and δ13C, the 
g() is the identity function. For the microbiome data, each tissue compartment was performed inde-
pendently with Equation 5, and g() is the log link to the zero-inflated negative-binomial distribution 
implemented in the R package NBZIMM R package with the ​glmm.​zinb() function. The metabolites 
were not modeled.

Soil property invariant data were created for the univariate phenotypes by extracting model 
residuals similar to Equation 2. For each microbiome compartment, every OTU was modeled inde-
pendently and an adjusted count-like value was created by dividing the original count by the expo-
nentiated regression coefficients for each PC as follows:

	﻿‍ Adjusted OTUi = Observed OTUi / exp
(
b1 + b2 + b3

)
‍� (6)

where each b coefficient is an estimated beta coefficient by fitting model (5).

Soil property composition sampling and processing
Selected plants were excavated using a shovel to a depth of 12–14 inches. The soil (approximately 
200 g) from the excavated root ball was shaken off into a wash pan in the field, homogenized and 
collected into a quart-size Ziploc bag. In addition to the collection of roots for microbiome analysis 
a subset of roots were collected for metabolite analysis as described in Sheflin et  al., 2019. The 
soil used for chemical and physical analysis was stored in the Ziploc bags at 4°C and sent to Ward 
labs for analysis of pH, buffer pH, sum of cations , base saturation (%), soluble salts, organic matter, 
nitrate–nitrogen, phosphorus, potassium, calcium, magnesium, sodium, sulfur, zinc, iron, manganese, 
and copper.

Root metabolomics sampling and processing
Nontargeted metabolite profiling using GC–MS
Metabolite extraction was conducted by weighing out 19–21 mg of each freeze-dried sorghum root 
and placing them into clean 2 ml autosampler glass vials (VWR, Radnor, PA, USA). Automated control 
of sample extraction (i.e., solvent proportions, solvent volumes, sample agitation, and supernatant 
transfers) was accomplished using a standalone Gerstel MultiPurpose Sampler (MPS). Samples were 
extracted by adding 770 μl of methyl-tert-butyl-ether (MTBE) and 385 μl to each vial and vortexing on 
the MPS at room temperature for 30 min. To separate organic and aqueous layers, 640 μl of water was 
added to the remaining extract and vortexed for 15 min. Samples were then centrifuged for 25 min 
at 3500 rpm at 4°C. The organic layer was extracted twice by transferring into a new 2 ml autosam-
pler vial without disturbing the lower layer then adding 600 μl of MTBE and transferring again. The 
aqueous layer was also extracted twice by transferring out of the vial into a new 2 ml autosampler 
vial without disturbing the pellet then adding 300 μl of methanol and 300 μl of acetonitrile, vortexing 
for 3 min and transferring again. The aqueous layer was completely dried under N gas, resuspended 
in 300 μl of 75% methanol. 20 µl of the aqueous layer from each sample was transferred to another 
set of glass vials, centrifuged for 2 min at 3500 rpm and then dried under N2 (g) for 30 min. Dried 
samples were stored at −80°C until derivatization. Derivatization (methoximation and silylation) took 
place immediately prior to running the samples. Dried down samples were allowed to warm to room 
temperature and then resuspended in 50 µl of methoxyamine HCl (prewarmed to 60°C) and centri-
fuged for 30 s. Samples were then incubated at 60°C for 45 min, followed by a brief vortex, sonication 
for 10 min and an additional incubation at 60°C for 45 min. Following this, the samples were centri-
fuged before receiving 50 µl of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) + 1% trimeth-
ylchlorosilane (TMCS) (Thermo Fisher Scientific, Waltham, MA, USA), briefly vortexed and incubated 
at 60°C for 40 min, as described previously (Chaparro et al., 2018). Samples were loaded (~100 µl) 
into glass inserts within glass autosampler vials and centrifuged for 30 s prior to GC–MS analysis. In 
addition, a pooled extract was created by combining equal volumes of each sample into one glass vial 
for use as a consistent representative quality control sample (QC).

https://doi.org/10.7554/eLife.70056
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GC–MS analysis was performed using a Trace 1310 GC coupled to a Thermo ISQ mass spectrom-
eter (Thermo Scientific). Derivatized samples (1 µl) were injected in a 1:10 split ratio. Metabolites were 
separated with a 30 m TG-5MS column (Thermo Scientific, 0.25 mm i.d. 0.25 μm film thickness). The 
GC program began at 80°C for 0.5 min and ramped to 330°C at a rate of 15°C per min and ended 
with an 8 min hold at a 1.2 ml min−1 helium gas flow rate. The inlet temperature was held at 285°C and 
the transfer line was held at 260°C. Masses between 50 and 650 m/z were scanned at 5 scans/s after 
electron impact ionization.

Metabolomic data processing was conducted as previously described (Chaparro et al., 2018). GC–
MS files were converted ​to.​cdf format and processed by XCMS in R (Smith et al., 2006; Mahieu et al., 
2016; R Core Team, 2015). All samples were normalized to the total ion current. RAMClustR was 
used to deconvolute peaks into spectral clusters for metabolite annotation (Broeckling et al., 2014). 
RAMSearch (Broeckling et al., 2016) was used to match metabolites using retention time, retention 
index, and matching mass spectra data with external databases including Golm Metabolome Data-
base (Hummel et al., 2007; Hummel et al., 2013) and NIST (Broeckling et al., 2016).

Leaf traits analyses
The middle portion (10–12  cm long) of the uppermost fully expanded leaf from individual plants 
was harvested in a coin envelope for the analysis of specific leaf area, C and N content, and stable 
isotopes of C and N. Leaf samples were oven-dried at 65°C to a constant mass and ca. 2.5 mg of 
the dry leaf was subsample using a custom-made leaf punch system in a tin capsule. The leaf punch 
provided the leaf area of subsample, which were weighed to estimate specific leaf area. The N, C and 
δ15N and δ13C concentrations of dry leaf were determined by combusting encapsulated samples in an 
elemental analyzer (ECS 4010, Costech Analytical Technologies) coupled to a continuous flow isotope 
ratio mass spectrometer (Delta XP, Finnigan MAT) at the Stable Isotope Core Laboratory, Washington 
State University.

Software used and data availability
All analyses herein were performed in R using the following packages: raster(3.4.5), ggplot2(3.3.3), 
deldir(0.1.21), vegan(2.5.5), plyr(1.8.4), gridExtra(2.3), reshape(1.4.3), FactoMineR(2.4), facto-
extra(1.0.7), chngpt(2019.3.12), stringr(1.4.0), gstat(2.0.6), sp(1.4.2), scales(1.0.0), lme4(1.1.21), 
nlme(3.1.140), parallel(3.5.2), and patchwork(1.1.1). All data and scripts used to create all figures and 
perform all analyses can be found at https://zenodo.org/record/4715924.
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