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Abstract

Imbalance in lipid homeostasis is associated with discrepancies in immune signaling and is 

tightly linked to metabolic disorders. The diverse ways in which lipids impact immune signaling, 

however, remain ambiguous. The phospholipid phosphatidylinositol (PI), which is implicated in 

numerous immune disorders, is chiefly defined by its phosphorylation status. By contrast, the 

significance of the two fatty acid chains attached to the PI remains unknown. In this study, 

by using a mass spectrometry–based assay, we demonstrate a role for PI acyl group chains in 

regulating both the priming and activation steps of the NOD-like receptor family pyrin domain-

containing 3 (NLRP3) inflammasome in mouse macrophages. In response to NLRP3 stimuli, cells 

deficient in ABC transporter ATP Binding Cassette Subfamily B Member 1 (ABCB1), which 

effluxes lipid derivatives, revealed defective inflammasome activation. Mechanistically, Abcb1 

deficiency shifted the total PI configuration exhibiting a reduced ratio of short-chain to long-chain 

PI acyl lipids. Consequently, Abcb1 deficiency initiated the rapid degradation of Toll/IL-1R 

domain–containing adaptor protein, the TLR adaptor protein that binds PI (4,5)-bisphosphate, 

resulting in defective TLR-dependent signaling, and thus NLRP3 expression. Moreover, this 

accompanied increased NLRP3 phosphorylation at the Ser291 position and contributed to blunted 

inflammasome activation. Exogenously supplementing wild-type cells with linoleic acid (LA), but 

not arachidonic acid, reconfigured PI acyl chains. Accordingly, LA supplementation increased 
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Toll/IL-1R domain–containing adaptor protein degradation, elevated NLRP3 phosphorylation, 

and abrogated inflammasome activation. Furthermore, NLRP3 Ser291 phosphorylation was 

dependent on PGE2-induced protein kinase A signaling because pharmacological inhibition of 

this pathway in LA-enriched cells dephosphorylated NLRP3. Altogether, our study reveals, to 

our knowledge, a novel metabolic-inflammatory circuit that contributes to calibrating immune 

responses. ImmunoHorizons, 2022, 6: 642–659.

Introduction

The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a 

multiprotein complex activated in response to diverse pathogen-associated and “danger” 

signals; it plays important roles during infectious and inflammatory diseases (1–3). 

The activation of NLRP3 inflammasome involves two steps in which NLRP3 is first 

licensed downstream of TLR signaling. This step, also known as the priming step, has 

both NF-κB–dependent and -independent consequences during NLRP3 activation. Upon 

sensing an apt stimulus, NLRP3 complexes with pro-caspase-1 and the adaptor molecule 

apoptosis-associated speck-like protein containing a CARD (ASC). Consequently, caspase-1 

is activated by autoproteolysis, which further results in the maturation and release of 

biologically active forms of cytokines IL-1β and IL-18. Additional regulation is mediated 

by the posttranslational modification of distinct NLRP3 domains, which may affect either 

the priming or activation of the NLRP3 inflammasome (4, 5). Inflammasome activation also 

results in the induction of an inflammatory form of cell death, pyroptosis, by a gasdermin-d 

(GSDMD)–dependent mechanism (6). Recent studies have revealed elaborate links between 

lipid metabolism and inflammasome activation (7). We, and others, previously demonstrated 

vital roles for cholesterol biosynthesis and transport in NLRP3 inflammasome activation (8, 

9). Other recent studies have demonstrated that NLRP3 recruitment to the dispersed trans-

Golgi network requires binding to phosphatidylinositol (PI) 4-phosphate prior to NLRP3 

activation (10). The mechanisms of NLRP3 inflammasome activation and, remarkably, the 

roles lipids play in the process remain ambiguous.

Lipid homeostasis is critical to all physiological processes, including immune signaling (11). 

Lipids form the structural framework that imparts fluidity to membranes. Driven by their 

amphipathic nature, membrane lipids enable compartmentalization of cellular constituents 

both from the outside environment and into discrete organelles (12). The lipid composition 

of membranes, in addition, is pivotal in shaping the localization, conformation, and thus 

the activity of lipid–protein and protein-protein complexes (13). The latter is fundamental 

to cellular signaling emanating from the cholesterol-rich membrane-microdomains, which 

serve as signaling platforms and are the preferred sites for pathogen entry (14). In addition, 

phosphoinositides (PIPs), the phosphorylated derivatives of the parent PI, play important 

roles in immune signaling by ensuring precise recruitment of the adaptor protein Toll/IL-1R 

domain–containing adaptor protein (TIRAP), also known as Mal, to the activated TLRs at 

the plasma and endosomal membranes (15). Structurally, PI consists of an inositol head 

group and two fatty acyl chains linked by a glycerol backbone (16). The binding of 

PIPs to the PIP-binding domain of TIRAP results in the recruitment of MyD88 and the 

IL-1R–associated kinase (IRAK) family of kinases to activated TLRs, thereby promoting 
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downstream NF-kB activation. Accordingly, the synthesis, turnover, and localization of PIPs 

may influence TLR-dependent signaling.

Homeostasis of the cellular lipid composition is largely maintained by the SREBP family 

of transcription factors that transcribe genes involved in lipid uptake, biosynthesis, and 

efflux (17). When in excess, lipids are either stored in the form of lipid droplets or are 

effluxed by the activity of the ABC family of transporters. The family members ABCA1 

and ABCG1 facilitate cholesterol efflux to apolipoproteins and high-density lipoprotein, 

respectively (18). Moreover, deficiency in ABCA1 and ABCG1 is associated with enhanced 

secretion of inflammatory mediators, including IL-1β (19). Correspondingly, the efflux 

transporters play anti-inflammatory functions in diverse diseases (20, 21), suggesting a 

possible link between lipid metabolism and immune signaling (22). Cells deficient in 

Abca1 and Abcg1 cannot unload surplus lipids exhibiting elevated cholesterol accumulation, 

which independently improves cytokine secretion (18, 19). Overall, this argues that immune 

signaling is profoundly determined by lipid metabolism, but cholesterol accumulation 

remains a confounding factor, and detailed mechanisms remain poorly defined. In this 

study, we investigated the role of lipid metabolism in immune signaling by studying ATP 

Binding Cassette Subfamily B Member 1 (ABCB1). ABCB1 (or P-glycoprotein) is a well-

characterized family member that imparts multidrug resistance to malignant cells but has 

no impact on cellular cholesterol levels (23, 24). The precise functions of ABCB1 in 

inflammasome activation remain undefined.

In this study, we demonstrate a role for ABCB1 and PI fatty acyl chains in regulating 

the NLRP3 inflammasome. Mechanistically, Abcb1–/– cells displayed a reduced ratio 

of short-chain to long-chain PI acyl chain lipids. This change in PI configuration was 

independent of the expression of enzymes that both synthesize PI and are involved in 

acyl chain remodeling. Remarkably, the shift in acyl chain composition regulated both 

NLRP3 priming and activation steps: it resulted in the depletion of TLR adaptor protein, 

TIRAP, and additionally elevated phosphorylation in the NAIP, CIITA, HET-E, and TP-1 

(NACHT) domain of NLRP3. Intriguingly, exogenously supplementing wild-type (WT) cells 

with linoleic acid (LA) reconfigured PI acyl chains, which accordingly mimicked Abcb1-

deficient cells in TIRAP depletion, NLRP3 phos-phorylation, and blunted inflammasome 

activity. Our study thus identifies an important role for PI lipid chain configuration in 

modulating inflammasome activity, which may have significant implications in metabolic 

diseases.

Materials And Methods

Ethics statement

Experiments involving animals were performed in accordance with the Animals (Scientific 

Procedures) Act 1986, in accordance with a current U.K. Home Office license, and with 

approval from the Imperial College Animal Welfare and Ethical Review Body.
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Bone marrow–derived macrophage isolation and cell culture

Bone marrow obtained from C57BL/6 mice (Charles River) was isolated from the femurs 

and tibias of 6- to 8-wk-old mice and cultured for macrophage differentiation as previously 

described (25, 26). WT immortalized bone marrow–derived macrophages (iBMDMs) were 

kindly provided by K. Fitzgerald and grown in DMEM containing 10% FBS, 1% penicillin/

streptomycin, 1% HEPES, and 10% L929 conditioned medium. HEK293T cells were grown 

in DMEM containing 10% FBS and 1% HEPES at 37° C, 5% CO2. Cells were incubated 

and grown at 37° C, 5% CO2 and passaged every 2–3 d.

Generation of CRISPR-Cas9 ABCB1b knockout cells

Guides targeting exons 10 and 11 of the Abcb1b gene were designed using the 

CHOPCHOP online software (http://chopchop.cbu.uib.no/) and the Zhang Lab CRISPR 

design software (http://crispr.mit.edu/). The guides contained a BsmBI overhang and were 

as follows: exon 10 guide RNA (gRNA), 5′-CACCGAAG CCTTTGCAAACGCACGA-3′, 

and its reverse complement, 5′-AA ACTCGTGCGTTTGCAAAGGCTTC-3′; and exon 

11 gRNA, 5′-CA CCGCCCATCGAGAAGCGAAGTTC-3′, and its reverse complement, 

5′-AAACGAACTTCGCTTCTCGATGGGC-3′. Guide RNAs were annealed and ligated 

into the LentiCRISPRv2 plasmid (52961; Addgene) at the BsmBI restriction 

site. The recombinant plasmids (LentiCRISPRv2.gRNA10, LentiCRISPRv2.gRNA11) 

were then transformed into competent Escherichia coli (NEB) according to the 

manufacturer’s instructions. A total of 1.85 μg LentiCRISPRv2gRNA10 plasmid or 

LentiCRISPRv2gRNA10 plasmid, 0.42 μg pVSVg plasmid, and 1.3 μg psPAX2 plasmid 

were together transfected into the HEK923T cells using polyethyleneimine (Sigma), at a 

ratio of 1 μg DNA:3 μg polyethyleneimine. Supernatants containing lentiviral particles from 

transfected HEK293T cells were harvested at 48 h posttransfection. A total of 300 μl of 

lentiviral particle-containing supernatant was then added to the iBMDMs, and cells were 

incubated at 37° C for ~16 h after which fresh media were added to cells. Forty-eight 

hours after transduction, puromycin (6 μg/ml; Sigma) was added for 7–10 d to select cells 

that had been successfully transduced. Puromycin-resistant cells were then trypsinized and 

seeded into a 96-well plate at an approximate concentration of one cell per well to obtain 

a clonal cell population. Single-cell colonies were identified and expanded followed by 

Sanger sequencing to identify mutations in exons 10 or 11 of the Abcb1b gene. Two clones, 

Abcb1b–/– #1 and #2, were identified with deletions of 32 and 9 bp in exon 11, respectively 

(Supplemental Fig. 2).

Cell stimulations

Primary and immortalized macrophages were seeded into either 6-well plates at a 

concentration of 2.5 × 106, 12-well plates at a concentration of 1 × 106, or 24-well 

plates at a concentration of 0.5 × 106 cells/well. Where indicated, macrophages were 

treated with elacridar (1–10 μM, SML0486; Sigma) for 16 h. In experiments with other 

inhibitors, methyl-β-cyclodextrin (5–10 μM, C4555; Sigma) or MG132 (10 μM) was added 

30 min before the addition of LPS. In other experiments, cells were exposed to IL-1 (2 

ng/ml, 211-11B; PeproTech), cyclooxygenase 2 (COX2) inhibitor NS-398 (10 μM, 70590; 

Cayman), or protein kinase A (PKA) inhibitor H-89 (10 μM, 10010556; Cayman) overnight. 
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For fatty acid supplementation, distinct fatty acids were conjugated to albumin as previously 

described (27). Cells were continuously cultured with albumin-bound arachidonic acid (AA; 

5 μM), LA (20 μM), or a combination of AA (5 μM) and stearic acid (SA; 20 μM) for at 

least 2 wk before mass spectrometry (MS) analysis or any further experiments.

Inflammasome activation

To activate the NLRP3 inflammasome, we incubated cells with LPS (500 ng/ml; Invivogen) 

for 4–6 h to prime the macrophages, followed by ATP (0.5 μM; Sigma) or nigericin (20 μM; 

Tocris) for ~45 min. For NLRC4 inflammasome activation, the Salmonella Typhimurium 
strain SL1344 was cultured overnight in 5 ml Luria-Bertani broth at 37° C and on a shaker 

at 220 rpm. The bacteria were then added to the indicated cells, treated with or without 

elacridar (1–5 μM) or Abcb1b–/– cells, at a multiplicity of infection (MOI) of 2, and 

incubated for ~4 h. For AIM2 inflammasome activation, macrophages were transfected with 

1 μg of poly(deoxyadenylic-deoxythymidylic) acid sodium salt [poly(dA:dT)] (Invivogen) 

complexed with Lipofectamine 2000 at a 1:3 ratio according to the manufacturer’s 

instructions for ~4–5 h.

Cell signaling experiments

The indicated cells were seeded into six-well plates at a concentration of 2 × 106 cells/

well and incubated with elacridar (5 μM) overnight. The following morning, media were 

replaced, and cells were stimulated with LPS (500 ng/ml) for the following time points: 0 

(no LPS control), 0.5, 1, 2 and 4 h. Supernatants were discarded from each well, the cells 

were subsequently washed with PBS, and cells were collected in ra-dioimmunoprecipitation 

buffer. Samples were incubated on ice for ~30 min before being centrifuged at 15,000 

× g for 15 min at 4°C to remove nuclei. The supernatant was collected, and the 

protein concentration of each sample was measured using the BCA Protein Assay kit 

(23227; Thermo Scientific) according to the manufacturer’s instructions. Samples were all 

standardized to 1 μg/μl before immunoblot analysis.

Immunoblot analysis

For immunoblot of phospho-specific Abs, cells were collected in radioimmunoprecipitation 

lysis buffer containing both protease and phosphatase inhibitors (Roche) and standardized 

to 1 μg/μl as mentioned earlier. Samples were boiled at 95° C for 5 min before being 

resolved on 12% SDS-PAGE gels. For immunoblotting of caspase-1, NLRP3, IL-1β, ASC, 

GSDMD, and GAPDH, lysates were collected in cell lysis buffer containing Nonidet 

P-40, DTT, and protease inhibitors. Samples were boiled at 95°C for ~20–30 min before 

being resolved on 12% SDS-PAGE gels. SDS-PAGE gels were transferred to nitrocellulose 

membranes (GE Life Sciences) and subsequently blocked in a 5% milk solution in TBS-

Tween (0.05%). Membranes were then incubated with the primary Ab overnight at 4° C 

followed by incubation with the HRP-conjugated secondary Ab at room temperature for 1 

h. The primary Abs used were as follows: P-glycoprotein (1:1000, MA1-2652; Invitrogen), 

caspase-1 (1:2000, AG-20B-0042-C100; AdipoGen), NLRP3 (1:2000, AG-20B-0014-C100; 

AdipoGen), ASC (1:2000, AG-25B-0006, AL177; AdipoGen), GSDMD (1:1000, ab209845; 

Abcam), IL-1β (1:500, 12426; Cell Signaling Technology), GAPDH (1:2500, MA5-15738; 

Thermo Fisher), Ikba (1:1000, 9242; Cell Signaling Technology), p-IKba (1:1000, 2859S; 
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Cell Signaling Technology), p38 MAPK (1:1000, 9212; Cell Signaling Technology), p-p38 

MAPK (1:1000, 4511; Cell Signaling Technology), AKT (1:1,000; 4691; Cell Signaling 

Technology), p-AKT (1:1,000; 4060; Cell Signaling Technology), p70-S6K1 (1:1,000; 

2708; Cell Signaling Technology), p-p70-S6K1 (1:1,000; 9234; Cell Signaling Technology), 

TIRAP (1:1000; #PA5-88657; Thermo Fisher), and p-NLRP3 (1:1000, PA5-105071; 

Thermo Fisher). The HRP-conjugated secondary Abs (Thermo Fisher) were used at 1:5000. 

After secondary Ab incubation, proteins were visualized using either Bio-Rad Clarity ECL 

substrate (1705060; Bio-Rad) or the Pierce ECL Western blotting Substrate (32209; Thermo 

Scientific) and processed on a Bio-Rad imager. Images were obtained using the BioRad 

software, ImageJ.

ELISA

Cell culture supernatants were measured for IL-1β (88-7013-88; eBioscience), TNF-α 
(88-7324-88; eBioscience), and IL-18 (7625; MBL), using ELISA kits according to the 

manufacturer’s instructions.

Real-time PCR

RNA was isolated using TRIzol (T9424; Sigma) according to the manufacturer’s 

instructions. A total of 250 μg of RNA from each sample was then reverse transcribed 

into cDNA using the High-capacity cDNA Reverse Transcription kit (4368814; Applied 

Biosystems) according to the manufacturer’s instructions. Real-time PCR was then 

performed using the specific primers detailed in Supplemental Fig. 1A. Real-time PCR 

was performed on an ABI7500 or ABI7900HT (Applied Biosystems) fast real-time PCR 

instrument.

Rhodamine-123 accumulation assay

BMDMs or Abcb1b–/– clones were seeded into 96-well plates at a concentration of 1 × 105 

cells per well. Where indicated, BMDMs were treated with elacridar overnight (2–10 μM). 

Rhodamine-123 (Rho123; 2 μM, Sigma) was added, and cells were incubated at 37° C for 

30 min. Cells were then washed with PBS three times to remove any extracellular Rho123, 

and DMEM were replaced, after which cells were incubated for a further 30 min at 37° C. 

Cells were then washed again with PBS and lysed in cell lysis buffer before being read at 

excitation and emission wavelengths of 485 and 535 nm, respectively, in a fluorescent plate 

reader.

Total cholesterol measurement

Total cholesterol was measured using the Cholesterol Amplex Assay kit according to the 

manufacturer’s recommendations.

Filipin staining

WT and Abcb1b–/– cells were seeded onto coverslips at a concentration of 4 × 105 cells/

well. After they had adhered, cells were fixed in 4% paraformaldehyde for 1 h at room 

temperature. Cells were then stained with 25 μg/ml filipin (F9765; Sigma) overnight and 

washed three times with PBS before mounting on glass slides. Images were visualized on 
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a Leica SP5 confocal microscope using 405 nm excitation and processed using the ImageJ 

program.

GM1 staining

Lipid rafts were assessed by specific labeling of endogenous GM1 ganglioside (a lipid raft 

marker) with the Vybrant Alexa Fluor 488 Lipid Raft labeling kit, which makes use of 

fluorescently conjugated cholera toxin subunit B (CTB). The procedure was carried out 

according to the manufacturer’s instructions (Thermo Fisher). Samples were imaged using a 

Leica SP5 confocal microscope. Flow cytometry was performed using the Attune NxT Flow 

Cytometer (Thermo Fisher), and mean fluorescence intensity was calculated using FlowJo 

v10.

Caspase-1 inflammasome assay

In some experiments, caspase-1 activity in the cell culture supernatants was measured using 

Caspase-Glo 1 inflammasome assay according to the manufacturer’s instructions (Promega). 

Luminescence was measured using an Omega plate reader.

Immunofluorescence

WT, Abcb1b–/–, and LA-supplemented cells were seeded onto coverslips at a concentration 

of 4 × 105 cells/well. After the ex-perimental conditions, cells were fixed in 4% 

paraformaldehyde for 1 h at room temperature and washed twice with PBS-glycine (50 

mM). The coverslips were blocked by incubating them for 20 min with PBS containing 

1% BSA. Cells were then labeled with either anti-ASC Ab (1:100; AG-25B-0006, AL177; 

AdipoGen) or anti-TIRAP Ab (1:100; #PA5-88657; Thermo Fisher) for 1 h at room 

temperature. Coverslips were then washed with PBS twice before incubating them with 

secondary Abs (Thermo Fisher). Actin staining was carried out by labeling samples with 

Alexa Fluor 647–conjugated phalloidin (A22287; Thermo Fisher) for 30 min. Coverslips 

were washed three times and mounted on slides using Fluoromount-G mounting medium 

with DAPI (00-4959-52; Thermo Fisher). Images were acquired on an SP5 confocal 

microscope and analyzed using ImageJ software.

MALDI-MS analysis

WT and Abcb1b–/– macrophages were cultured in DMEM before being trypsinized and 

analyzed via MS. Before analysis, the super-2,5-dihydroxybenzoic acid (catalog no. 50862; 

Sigma-Aldrich) matrix was added at a concentration of 10 mg/ml in a chloroform/methanol 

mixture at a 90:10 (v/v) ratio; 0.4 mlofa cell solution at a concentration of 2 × 105/ml to 

2 × 106/ml was preliminary washed three times with double-distilled water, corresponding 

to ~100–1000 cells/well of the MALDI target plate (384 Opti-TOF 123 mm × 84 mm AB 

Sciex NC0318050, 1016629); and 0.8 μl of the matrix solution was deposited on the MALDI 

target plate. These were then gently mixed with a micropipette and left to dry. MALDI-TOF 

MS analyses were performed on a 4800 Proteomics Analyzer (with TOF-TOF Optics; 

Applied Biosystems) using the reflectron mode. Samples were analyzed in the negative ion 

mode operating at 20 kV. A total of three independent experiments were performed. Data 
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obtained from MS were analyzed using Data Explorer version 4.9 (Applied Biosystems), 

and assignments were based on the MS/MS fragmentation profile.

Statistical analysis

GraphPad Prism 9.0 software was used for data analysis. Data are represented as mean ± SD 

and are representative of experiments done at least three times. Statistical significance was 

determined by unpaired Student t test; p < 0.05 was considered statistically significant.

Results

ABC transporter B family member 1 is required for caspase-1 activation and IL-1β 
secretion

Lipids are involved in diverse functions, including maintenance of membrane structure, 

cellular signaling, and immunity (11, 12). Consequently, altered lipid levels can lead to 

metabolic and inflammatory disorders or may result in lipotoxicity (20). Therefore, lipid 

homeostasis, and in particular, lipid efflux, is critical to normal cell function. Members 

of the ABC family function to export substrates, mainly lipids and related molecules, out 

of the cytosol (18). For example, ABCA1 is primarily associated with phospholipid and 

cholesterol transport to lipid-poor apolipoprotein A-I, while ABCG1 exports cholesterol to 

more mature high-density lipoprotein particles. Remarkably, deficiency in Abca1 and Abcg1 
results in elevated secretion of inflammatory mediators in response to pathogenic stimuli 

(19). To address the roles of lipid metabolism in immune signaling, we investigated the role 

of ABCB1 in inflammasome activation. ABCB1 alters lipid metabolism and has a broad 

substrate specificity in transporting a range of drugs (28). However, the transporter does not 

affect overall cellular lipid or cholesterol levels.

To test the role ABCB1 plays in inflammasome activation, we generated genetic knockout 

cell lines using the CRISPR-Cas9 approach in iBMDMs. In contrast with humans where a 

single isoform of ABCB1 is expressed, the mouse genome To test the activity of ABCB1 

in edited cells expresses two isoforms, Abcb1a and Abcb1b (29). We first examined 

the expression of the two isoforms in bone marrow-derived mouse macrophages. PCR 

amplification followed by gel electrophoresis revealed that both Abcb1a and Abcb1b 
are expressed in unstimulated and LPS-stimulated iBMDMs (Supplemental Fig. 1B, 1C). 

However, quantitative PCR revealed that Abcb1b is expressed at ~600-fold higher levels 

than that of Abcb1a, suggesting that this isoform predominates in mouse macrophages 

(Supplemental Fig. 1D). Similar results were obtained with primary mouse macrophages 

(Supplemental Fig. 1E; data not shown). In addition, the expression of Abcb1b was only 

marginally higher in LPS-stimulated macrophages compared with control cells at all time 

points tested, although there was a slight initial decrease in expression on LPS stimulation 

(Supplemental Fig. 1F). These studies therefore suggest a potential role for ABCB1 in 

immune cells.

Two cell lines, Abcb1b–/– #1 and #2, were established with deletions in exon 10 of the 

protein, as verified by Sanger sequencing (Supplemental Fig. 1G). The mRNA expression of 

Abcb1b in the two CRISPR cell lines was reduced significantly, although the PCR amplicon 
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was still synthesized to some extent (Supplemental Fig. 1H). However, compared with WT 

cells, the protein expression of ABCB1 was diminished by >70% and >90% in the two cell 

lines, potentially suggesting the presence of unstable mRNA in edited cell lines (Fig. 1A, 

1B).

To test the activity of ABCB1 in edited cells, we made use of Rho123 dye. Rho123 passively 

diffuses across biological membranes but is subsequently metabolized by intracellular 

esterases to yield a fluorescent compound that has reduced permeability (30). The efflux of 

the dye out of cells requires active transport by ABCB1 and certain other ABC transporters 

(30). Abcb1–/– cells exposed for 30 min to Rho123 showed increased sequestration of 

the dye compared with control cells, thereby confirming inhibition of ABCB1 transporter 

activity (Fig. 1C).

Unlike other ABC transporters that are involved in lipid efflux, ABCB1 is not known to 

alter cellular cholesterol levels (31). In agreement, WT and Abcb1–/– macrophages exhibited 

no qualitative differences in cholesterol distribution on staining with filipin, a compound 

that binds to free unesterified cholesterol (8). Excitation of filipin by UV fluorescence 

showed no obvious differences in either the levels or distribution of cholesterol between 

WT and Abcb1–/– cells (Fig. 1D). As a control, we exposed WT cells to U18666a, which 

specifically blocks the lysosomal cholesterol transporter, NPC1 (8), and this resulted in 

expected punctate filipin staining suggestive of lysosomal cholesterol accumulation (Fig. 

1D). In addition, quantitative analysis of total cellular cholesterol revealed similar levels in 

both WT and Abcb1–/– cells (Fig. 1E). These data agree with previous studies and indicate 

no major effect of ABCB1 deficiency on cholesterol esterification, distribution, and efflux.

As summarized earlier, the roles of ABCB1 in inflammasome activation and IL-1β secretion 

remain unknown. To address this, we next tested the activation of NLRP3 inflammasome 

in macrophages with genetic deletion of Abcb1b. WT and Abcb1–/– cells were exposed to 

LPS for 4 h followed by either ATP or nigericin. NLRP3 inflammasome activation results 

in the assembly of the inflammasome complex containing NLRP3, the adaptor ASC, and 

pro-caspase-1. Pro-caspase-1 is then cleaved into its active p20 form, which subsequently 

results in the maturation and secretion of proinflammatory cyto-kines, IL-1β and IL-18. 

Compared with WT cells, Abcb1–/– cells exhibited diminished caspase-1 cleavage and 

IL-1β secretion on exposure to both nigericin and ATP (Fig. 1F, 1G). Activation of the 

NLRP3 inflammasome also leads to an inflammatory form of cell death, termed pyroptosis, 

which is mediated by GSDMD. Cleavage of GSDMD by caspase-1 results in an N-terminal 

fragment, which subsequently polymerizes and forms pores in the cell membrane, ultimately 

leading to cell rupture. GSDMD cleavage in Abcb1b–/– macrophages was diminished in 

comparison with WT cells after NLRP3 inflammasome activation, further corroborating 

reduced caspase-1 in deficient cells (Fig. 1F).

We next used elacridar, a third-generation inhibitor that has been shown to inhibit ABCB1 

activity and overcome drug resistance in cancer models (32). Primary BMDMs treated 

overnight with increasing concentrations of elacridar and exposed for 30 min to Rho123 

exhibited increased sequestration of the dye compared with control cells (Fig. 1H). In 

agreement with deficient cells, treatment of WT macrophages with increasing concentrations 
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of elacridar followed by NLRP3 activation resulted in a dose-dependent decrease in the 

generation of cleaved caspase-1 p20 form (Fig. 1I) and reduction in IL-1β and IL-18 

secretion (Fig. 1J, 1K). Similar results were observed with the P2X7 receptor agonist 

and NLRP3 activator, ATP (Supplemental Fig. 2A, 2B, Fig. 1K). Together, these data 

demonstrate the functional requirement of ABCB1 for caspase-1 activation and IL-1β 
release.

ABCB1 regulates NF-κB-dependent signaling and priming of the NLRP3 inflammasome

NLRP3 inflammasome activation requires two distinct steps. The priming step results in the 

induction of TLR-dependent NF-κB activation, which in turn leads to the transcriptional 

and translational upregulation of NLRP3 and pro–IL-1β. The second signal activates the 

NLRP3 inflammasome complex, leading to caspase-1 activation (33, 34). We next studied 

the precise step at which ABCB1 is required for activation of the NLRP3 inflammasome by 

examining the expression of inflammasome components, including NLRP3 and pro-IL-1β. 

Stimulation with LPS and ATP upregulated the NLRP3 and pro-IL-1β protein in WT 

cells, which was found to be blunted in cells lacking Abcb1 (Fig. 2A). These results 

coincided with reduced upregulation of Nlrp3 and Illb at the mRNA level (Fig. 2B, 2C). By 

contrast, pro-caspase-1 and ASC are constitutively expressed, and their expression remained 

unaltered in Abcb1–/– macrophages (Figs. 1F, 2A, Supplemental Fig. 2C, 2D).

NF-κB is inactive within the cell before stimulation through binding to the inhibitory protein 

IκB. On TLR stimulation, signal transduction leads to the activation of the IκB kinase 

complex, which subsequently phosphorylates IκB, targeting it for degradation. This allows 

NF-κB to translocate to the nucleus and initiate gene transcription. In addition to NF-κB 

activation, TLR stimulation also leads to the activation of MAPKs, notably p38 (35). In 

agreement with the data shown in Fig. 2A-C, the phosphorylation of IkB and p38 MAPK 

was reduced in LPS-stimulated Abcb1–/– cells compared with WT cells (Fig. 2D). We also 

examined the expression of other NF-κB-dependent cytokines and chemokines in response 

to TLR4 activation, and their expressions were similarly decreased in cells lacking ABCB1 

(Fig. 2E-G). Moreover, the mRNA expression of IFN-β, which is dependent on adaptor 

TRIF on LPS stimulation, was also reduced in Abcb1–/– cells (Fig. 2H). Furthermore, 

this response was not specific to TLR4 ligation, because activation of TLR2 or TLR7 by 

Pam3CSK4 and imiquimod, respectively, also resulted in diminished upregulation of Nlrp3, 

Illb, Tnfα, and Cxcll (KC) mRNA expression (Fig. 2I, Supplemental Fig. 2E-G). These data 

suggested blunted TLR-dependent NF-kB signaling in the absence of ABCB1.

ABCB1 does not affect the activation of NLRC4 and AIM2 inflammasomes

We next tested the requirement of ABCB1 during NLRC4 and AIM2 inflammasome 

activation. Unlike NLRP3, the expressions of NLRC4 and AIM2 are constitutively 

expressed at significantly higher levels in mouse macrophages. However, the expression and 

therefore the secretion of downstream effector cytokine IL-1β still require upregulation by 

TLR signaling. Activation of NLRC4 inflammasome by Salmonella infection and AIM2 

inflammasome by exposure to poly(dA:dT) resulted in comparable caspase-1 cleavage 

between WT and Abcb1b–/– cells (Fig. 3A; data not shown). However, the levels of IL-1β 
secretion, as expected, were found diminished in both Abcb1–/– cells and WT cells, where 
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ABCB1 was pharmacologically blocked during NLRC4 and AIM2 inflammasome activation 

(Fig. 3B, 3C). In contrast with pro-IL-1β, pro-IL-18 is constitutively expressed and does 

not require TLR signaling for upregulation. In agreement, no difference in IL-18 production 

was observed after NLRC4 or AIM2 inflammasome activation in cells lacking ABCB1 (Fig. 

3D). Secretion of IL-18, however, after NLRP3 activation showed complete abolishment 

in Abcb1b–/– macrophages (Fig. 3D). These data suggest that the function of ABCB1 is 

specific to the NLRP3 inflammasome, and that the diminished IL-1β production is due to 

dampened NF-kB signaling in Abcb1b–/– cells (Fig. 2C, 2D).

ABCB1 deficiency is associated with a shift in PI lipid chains

A notable feature of the plasma membrane is the distinct lipid composition in the two 

leaflets of the bilayer (36). Sphingolipids are mostly present in the outer leaflet, while 

glycerophospholipids, such as phosphatidylethanolamine, phosphatidylserine, and PI, are 

mostly restricted to the inner leaflet, thereby imparting distinct functions to the membranes 

(36).

To further investigate the mechanism by which Abcb1 deficiency dampens NLRP3 

inflammasome, we performed wholecell lipidomics by MALTI-TOF MS. Our experiments 

revealed ions in the 800–1700 mass to charge ratio (m/z) range. The most striking change 

was observed in the 800–920 m/z range, which represents the total PI complement present 

in cells with distinct signals corresponding to anticipated PI masses. In mammalian cells, 

a large fraction of the PIP molecules have saturated SA (18:0) at the sn-1 position and 

unsaturated AA (20:4) at the sn-2 position (Fig. 4A). Consequently, both the WT and 

Abcb1–/– cells exhibited a peak at m/z 885.4, described together as PI (38:4) (Fig. 4B, 

4C). In addition, another PI peak at m/z 861.4, corresponding to PI (36:2), was observed 

in WT and Abcb1–/– cells (Fig. 4B, 4C). MS/MS fragmentation of the peaks at m/z 861 

and m/z 885 revealed the presence of SA, AA, and oleic acid (Supplemental Fig. 3A, 3B). 

Besides the presence of PIs with distinct acyl chain lengths, other closely related PI siblings 

were also represented, although at much lower levels (Fig. 4B, 4C, Supplemental Fig. 3C). 

Notably, the WT cells exhibited almost equal levels of the two PI-lipid masses at 861 and 

885. By contrast, Abcb1-deficient cells favored higher levels of PI (38:4) compared with PI 

(36:2), which was expressed at significantly lower levels. As a result, the ratio of the two PI-

lipid masses consistently demonstrated a significant difference between WT and Abcb1–/– 

cells (Fig. 4D). These studies therefore suggest that the deficiency in Abcb1 modifies the PI 

fatty acyl configuration, resulting in a reduced ratio of short-chain to long-chain fatty acids 

(Fig. 4D).

Further analysis of the MS data also unveiled several ganglioside peaks that were distinct 

between WT and Abcb1b–/– macrophages. In particular, the percentage of GM1 ganglioside 

was significantly reduced in Abcb1b-/- cells (Supplemental Fig. 4A), which was further 

confirmed qualitatively and quantitatively by labeling WT and Abcb1–/– cells with CTB or 

by flow cytometry (Supplemental Fig. 4B-F).

The de novo synthesis of PI occurs at the endoplasmic reticulum through the conversion 

of phosphatidic acid (PA) via two enzymatic reactions (Fig. 4E). PA is first converted 

into an intermediate, cytidine diphosphate-diacylglycerol (CDP-DAG), by CDP-DAG 
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synthase. CDP-DAG is then converted to PI by PI-synthase (37, 38). Cleavage 

of the fatty acid by phospholipases A, followed by acylation by acyl-CoA-specific 

lysophospholipid acyltransferase enzymes, is needed to incorporate a new fatty acid 

molecule (39). Lysophosphatidylinositol acyltransferase has been shown to reacylate PI 

with polyunsaturated substrates such as AA, while lysocardiolipin acyltransferase 1 has been 

demonstrated to reacylate with SA (39) (Fig. 4E). Because Abcb1b-deficient macrophages 

displayed altered PI lipid chains, we investigated whether this was due to a defect in PI 

synthesis and/or acyl chain remodeling. However, the mRNA expression of Cds2 (Cds1 
was expressed with cycle threshold value > 30) and Cdipt revealed no significant difference 

between WT and Abcb1b–/– cells (Fig. 4F, 4G). Similarly, the mRNA expression of Lclat1 
and Lpiat remained unchanged in deficient cells (Fig. 4H, 4I). These data indicate that 

ablation of Abcb1 in macrophages alters PI lipid chain configuration independently of the 

synthesis of PI or remodeling of its acyl chain composition.

Exogenous supplementation with LA alters PI acyl chain configuration

To further understand the mechanistic underpinnings of the shift in PI lipid chains in 

Abcb1-deficient cells, we next sought to identify the fatty acids, which may similarly 

alter PI acyl chains and subsequently modify inflammasome activity. In agreement with 

previous studies (27), we hypothesized that exogenous supplementation with distinct fatty 

acids will alter cellular PI acyl chain conformation. To achieve this, we grew cells for 

at least 2 wk in growth media supplemented with different fatty acids before validating 

the samples by MS (Fig. 5A). These assays revealed that prolonged supplementation with 

LA, but not AA, favored long-chain fatty acids (Fig. 5A, Supplemental Fig. 3). This was 

predominantly reflected in the increased concentration of unsaturated acyl chains at the sn-2 

position. This demonstrates that cells supplemented with LA and those lacking ABCB1 both 

favor long-chain fatty acids, particularly the 885 species (Fig. 5A, Supplemental Fig. 3). 

Strikingly, supplementation with AA did not result in any noticeable difference compared 

with control cells (Supplemental Fig. 3C). Notably, we also observed a narrower range over 

which macrophages tolerated AA (data not shown). Accordingly, compared with control 

cells, WT cells grown in the presence of LA behaved similarly to cells lacking ABCB1 

and demonstrated reduced Nlrp3 and Il1b mRNA expression (Fig. 5B, 5C). Again, these 

results were specific for LA because supplementation with AA, alone or in combination 

with SA, neither altered the m/z 861/ 885 ratio nor the mRNA expression of Nlrp3 and Il1b 
(Fig. 5A, 5D, 5E, Supplemental Fig. 3C). Furthermore, like Abcb1–/– cells, exogenous LA 

resulted in the disruption of GM1 presence in WT cells (Fig. 5F, 5G). These results therefore 

demonstrate that LA supplementation alters the PI acyl chain profile.

PI acyl chain profile regulates TIRAP expression

TLRs are transmembrane receptors that can sense microbial products at distinct subcellular 

sites. Ligation of TLRs at both the plasma membrane and endosomes triggers a signal 

transduction pathway involving the adaptor protein MyD88, which is recruited to the 

conserved TIR domain present in the cytosolic tails of these receptors. Most TLRs 

recruit MyD88 by using the intermediate sorting adaptor TIRAP, which is bound to 

either phosphatidylinositol (4,5)-bisphosphate (PIP2) or phosphatidylinositol 4-phosphate 

for precise localization and is prepositioned on the membranes before TLR activation. 
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The phosphorylation by Bruton’s tyrosine kinase activates TIRAP, but this is immediately 

followed by suppressor of cytokine signaling 1–mediated TIRAP polyubiquitination and 

degradation to avoid sustained signaling (40). The rapid turnover of TIRAP is similarly 

regulated by serine/threonine kinases and IRAKs IRAK1 and IRAK4, which directly 

phosphorylate TIRAP, triggering Lys48-linked ubiquitination and proteasomal degradation 

(41).

A previous study demonstrated a critical role for PIPs in binding to TIRAP, and therefore 

maintaining its localization and stability (42). In the absence of PIP binding, TIRAP 

was found ubiquitinated followed by its degradation, thereby ablating the downstream 

TLR signaling. Therefore, we next evaluated whether the shift observed in PI-acyl chain 

composition affected TLR signaling by regulating TIRAP expression. As reported in 

previous studies, we mostly found TIRAP at the cell periphery with additional punctate 

staining in the cytoplasm (Fig. 6A). Stimulation of WT cells with LPS resulted in increased 

proximity of TIRAP to the plasma membrane (Fig. 6A). LPS stimulation resulted in a 

modest increase in TIRAP expression as observed by Western blot (WB) at 15 min followed 

by sustained TIRAP expression up to 60 min, the last time point that we tested (Fig. 

6B, 6C). By contrast, cells lacking Abcb1 or those exposed to LA exhibited significant 

depletion in TIRAP expression (Fig. 6B, 6C). After phosphorylation, TIRAP is degraded by 

the 26S proteasome. Accordingly, pretreatment of WT cells with the proteasomal inhibitor 

MG132 resulted in elevated TIRAP expression (Fig. 6D). In agreement, exposure of LA-

supplemented cells to MG132 restored TIRAP expression (Fig. 6E). Having established the 

depletion of TIRAP in Abcb1–/– and LA-enriched cells, we next examined signaling from 

non-TLR stimuli, which function independently of TIRAP to activate the NF-κB pathway. 

Exposure to IL-1 overnight resulted in an increase in NLRP3 and TNF-α expression in WT 

cells (Fig. 6F, 6G). However, Abcb1–/– and LA-enriched cells showed comparable increase 

in expression on IL-1 stimulation (Fig. 6F, 6G). Notably, the increase in expression was 

several folds less compared with induction by LPS (data not shown). These studies therefore 

suggest that change in PI fatty acid configuration modifies TLR signaling by regulating the 

degradation of adaptor protein TIRAP.

Altered PI acyl chain profile blunts inflammasome activity by increasing NLRP3 
phosphorylation

The NLRP3 inflammasome is regulated both at the transcriptional and the posttranslational 

levels. In particular, NLRP3 phosphorylation at distinct sites regulates both the priming and 

activation steps. Notably, the LA derivative, PGE2, has been shown to facilitate NLRP3 

phosphorylation in the NACHT domain at Ser291 position (Ser295 in humans) by inducing 

PKA and thus abolishing NLRP3 activation (43). Therefore, we next tested the status 

of NLRP3 Ser291 phosphorylation in control and LA-supplemented cells. We noted in 

preliminary experiments that cells exposed to LA exhibit, on average, 1.5 times less NLRP3 

expression because of defective priming under these conditions (Supplemental Fig. 4G). To 

ensure that we examined phosphorylation on equal NLRP3 protein levels, we increased the 

amount of protein loaded onto gels in LA-supplemented cell lysates. Accordingly, increasing 

the protein concentration by the earlier fraction resulted in similar total NLRP3 expression 

in both control and LA-supplemented samples (Fig. 7A). By contrast, compared with 
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control cells, LA-exposed cells demonstrated increased phosphorylation as examined using 

a p-NLRP3-specific Ab (Fig. 7A, 7B). We next sought to investigate how LA enrichment 

influenced NLRP3 phosphorylation. To address this, we examined the role of PGE2, an 

LA derivate, by impeding its production through inhibition of the upstream COX2, the rate-

limiting enzyme in PGE2 biosynthesis. Exposure of LA-supplemented cells to the highly 

selective COX2 inhibitor, NS-398, ablated NLRP3 phosphorylation (Fig. 7C). Previous 

studies have shown that NLRP3 Ser291 phosphorylation is mediated by PGE2-induced PKA 

(43). In agreement, exposure of LA-supplemented cells to H-89, a potent PKA inhibitor, 

similarly ablated NLRP3 phosphorylation (Fig. 7D). These data demonstrate that altered 

PI acyl chain configuration results in elevated PGE2/PKA signaling, which phosphorylates 

NLRP3 and blunts inflammasome activation.

We next assessed caspase-1 activation in LA-supplemented cells and found that they 

phenotypically mimic Abcb1–/– cells. Cells supplemented with LA and exposed to NLRP3 

stimuli demonstrated reduced caspase-1 activity, which remained similar in cells exposed 

to AA (Fig. 7E). However, in agreement with data in Abcb1–/– cells (Fig. 3), LA 

supplementation did not alter caspase-1 activity on AIM2 inflammasome activation (Fig. 

7F). Moreover, LA supplementation diminished the secretion of IL-18 from LPS-primed 

cells in response to both ATP and nigericin (Fig. 7G). To further validate our results, 

we next examined inflammasome assembly by examining ASC speck formation. NLRP3 

inflammasome activation by LPS + ATP resulted in a comparable percentage of ASC specks 

in both control WT and cells exposed to AA (Fig. 7H, 7I). By comparison, cells lacking 

Abcb1 exhibited significantly reduced ASC specks. Similarly, cells grown in LA-rich media 

displayed reduced ASC speck formation (Fig. 7H, 7I). Because LA supplementation also 

affected NLRP3 expression, the contribution of priming to caspase-1 activation and ASC 

speck formation cannot be excluded in these experiments. Nevertheless, together with the 

elevated NLRP3 phosphorylation observed on LA sup-plementation, these data demonstrate 

that altered PI acyl chain configuration affects both the priming and activation steps of the 

NLRP3 inflammasome.

Discussion

Our studies described in this article demonstrate that lipid metabolism is intricately linked 

to immune signaling and inflammasome activation. Genetic or pharmacological depletion of 

ABCB1 abolished caspase-1 cleavage and IL-1β secretion. Remarkably, this was restricted 

to the NLRP3 inflammasome be-cause Abcb1–/– cells displayed comparable activation of 

the NLRC4 and AIM2 inflammasomes. Further mechanistic studies based on whole-cell 

lipidomics revealed an altered PI lipid chain profile in deficient cells. Remarkably, modified 

PI lipid chain configuration accompanied reduced TIRAP expression and altered NLRP3 

phosphorylation; together they contributed both to NLRP3 inflammasome priming and 

activation steps (Fig. 7J). Notably, prolonged growth in media supplemented with LA 

reconfigured the PI acyl chain profile in WT cells, thereby mimicking the phenotypic 

features observed in deficient cells, including aberrant inflammasome activation. Our results 

therefore demonstrate the metabolic regulation of inflammasome activation by PI acyl 

chains.
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PIPs, which take key roles in membrane trafficking and signal transduction, are defined by 

the phosphorylation of their inositol head group (44, 45). By contrast, the significance of the 

attached fatty acids has remained unappreciated (39, 46). In mammalian cells, ~40-80% of 

the PIP molecules contain stearoyl/arachidonyl in the sn-1 and sn-2 positions, respectively, 

designated as C18:0/C20:4 or 38:4 for the complete molecule (45). A previous study 

revealed that mutations in the p53 gene expand PIs containing short-length acyl chains, 

corresponding to 36-carbon PIs (47). Remarkably, the shift in PI-lipids was not reflected 

in the lipid spectra of phosphatidylcholine (PC), asserting that the modification is not 

distinctive of all phospholipids (47). Notably, both PC and PI share a common precursor, 

PA. However, the latter steps in the pathway involve distinct enzymes to generate either PI 

or PC. Our studies revealed that Abcb1-deficient cells expressed comparable levels of PI 

synthase, as well as the enzymes involved in PI acyl chain remodeling, thus excluding these 

as a probable reason. As a result, it remains unclear as to how Abcb1-deficient cells acquire 

a distinct composition of PI-lipid chains. It is tempting to speculate that the precursor 

PA possessing a different lipid content gets accumulated in distinct membranes, which is 

spatially only accessible to PI enzymes in deficient cells. Alternatively, it is also possible 

that the mature PIs are able to remodel their lipid chains once they have formed. If true, it 

will be interesting to decipher the mechanisms that prompt this variation.

Our study suggests that ABCB1 is critical in retaining immune equilibrium, and the loss 

of ABCB1 dampens inflammasome activation. Keeping in view that aberrant PI signaling 

(including by the PI3K/AKT pathway) is associated with malignancies, it is plausible that 

ABCB1 does not exclusively regulate the PI-lipid profile, and there exists redundancy in this 

pathway acting as a fail-safe mechanism. Accordingly, supplementation with LA similarly 

altered the PI profile incorporating elevated AA levels. Notably, this phenomenon did not 

occur in cells directly exposed to AA. AA has been shown to exhibit potent proapoptotic 

effects on macrophages by causing cell-cycle arrest (48). In agreement, we observed a 

limited range in which macrophages tolerated AA (data not shown). LA is the most highly 

consumed polyunsaturated fatty acid found in the human diet. It is also the parent compound 

for the family of v6 polyunsaturated fatty acids, including AA, which is further converted to 

a range of bioactive compounds such as leukotrienes, PGs, and eicosanoids. Together, this 

suggests that LA is the preferred pathway for AA expansion at the PI sn-2 position.

The activation of effector responses on TLR ligation relies on signaling cascades 

involving TIRAP/MyD88 or TRAM/TRIF adaptor molecules, which activate NF-κB or IFN-

dependent signaling. Our data revealed that modified PI-lipid chains elicit rapid degradation 

of the adaptor protein TIRAP. Bound to phosphatidylinositol 4,5-bisphosphate–enriched 

plasma membrane regions or phosphatidylinositol 3-phosphate at the endosomes, TIRAP 

surveys these compartments for activated TLRs. Notably, interaction with PIPs at its N-

terminal PIP-binding domain is critical for TIRAP membrane recruitment and retention. A 

recent study demonstrated the participation of basic and nonpolar residues in the TIRAP 

PIP-binding domain. Significantly, the authors found both the inositol head group and acyl 

chains as critical in binding to TIRAP (42). Under conditions of reduced PIP binding, 

IRAK1/4 phosphorylated Thr28 residue within the PIP-binding motif leading to TIRAP 

ubiquitination and degradation (42). Independently, another study demonstrated that the 

ratio of PIP2 to PIP3 at the plasma membrane influenced TLR signaling (49). A decrease 
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in PIP2 abundance at the plasma membrane concurrently resulted in TLR4 internalization 

and TIRAP redistribution to cytoplasmic compartments, where it was degraded by the 

proteasome and calpain. Altogether, it is tempting to speculate that the modified PI is either 

incompetent in TIRAP binding and/or fails to localize to the plasma membrane, resulting in 

TIRAP ubiquitination and degradation.

NLRP3 inflammasome is regulated both at the transcriptional and the posttranslational 

levels. In particular, NLRP3 phosphorylation at distinct sites may either activate or inhibit 

the inflammasome. We observed that the increased incorporation of long-chain AA by PI in 

WT cells through LA supplementation resulted in Ser291 phosphorylation in the NACHT 

domain. Previous studies have shown increased phosphorylation at this site (Ser295) in 

THP-1 cells as a result of PKA activation by PGE2, resulting in dampened inflammasome 

activation (43). Considering that linoleic and AA are both precursors to PGs, it may be 

interesting to test the overall basal levels of PGs in these cells. Nevertheless, our studies 

reveal the regulation of NLRP3 inflammasome by PI synthesis and metabolism.

Immune signaling triggers an adjusted inflammatory response, and any overt activation 

of these pathways may result in collateral damage. Therefore, it needs to be calibrated 

by mechanisms that offer a variable degree of responses and are infallible. Although the 

phosphorylation of the inositol head group may at most result in seven distinct PIP species, 

the possibility to add an array of fatty acids, with different carbon lengths and saturation 

statuses, at the two positions on the PI glycerol linker offers far greater flexibility in terms 

of functions the cellular PIs can serve. In conclusion, our study provides insights as to how 

changes in PI lipid profile modify inflamma-some activity and advance our understanding of 

the cross-talk between lipid metabolism and immune signaling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations used in this article

AA arachidonic acid

ABCB1 ATP Binding Cassette Subfamily B Member 1

ASC apoptosis-associated speck-like protein containing a CARD

BMDM bone marrow–derived macrophage

CDP-DAG cytidine diphosphate-diacylglycerol

COX2 cyclooxygenase 2

CTB cholera toxin subunit B

gRNA guide RNA

GSDMD gasdermin-D
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iBMDM immortalized bone marrow-derived macrophage

IRAK IL-1R–associated kinase

LA linoleic acid

MOI multiplicity of infection

MS mass spectrometry

m/z mass to charge ratio

NACHT NAIP, CIITA, HET-E, and TP-1

NLRP3 NOD-like receptor family pyrin domain–containing 3

PA phosphatidic acid

PC phosphatidylcholine

PI phosphatidylinositol

PIP phosphoinositide

PIP2 phosphatidylinositol (4,5)-bisphosphate

PKA protein kinase A

poly(dA:dT) poly(deoxyadenylic-deoxythymidylic) acid sodium salt

Rho123 rhodamine-123

SA stearic acid

TIRAP Toll/IL-1R domain–containing adaptor protein

WB Western blot

WT wild-type
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Figure 1. ABC transporter B family member 1 is required for caspase-1 activation and IL-1β 
secretion.
(A) Cell lysates from WT and Abcb1b–/– #1 and #2 cells were treated with or without LPS 

(500 ng/ml) for 4 h and immunoblotted for ABCB1 and GAPDH. (B) Relative ABCB1 

protein levels in WT and Abcb1b–/– #1 and #2 cells measured with ImageJ on blots shown in 

(A). (C) WT and Abcb1b–/– #1 and #2 cells were incubated with Rho123 (1 μM) for 30 min 

before measuring Rho123 accumulation on a fluorescent plate reader. (D) WT cells without 

and with overnight exposure to U18666a (5 μg/ml) and control Abcb1b–/– cells grown on 
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coverslips were fixed in paraformaldehyde for 1 h followed by overnight staining with filipin 

(25 μg/ml) at 4°C. Images were taken by confocal microscopy. (E) Total cholesterol content 

in WT and Abcb1b–/– #1 and #2 cells measured by Amplex red assay. (F) WT, Abcb1b–/– 

#1, and Abcb1b–/– #2 cells were primed with LPS (500 ng/ml) for 4 h followed by treatment 

with either ATP (5 mM) or nigericin (20 μM) for ~45 min. Cell lysates were collected and 

immunoblotted for caspase-1, GSDMD, and GAPDH. (G) Supernatants from macrophages 

treated as in (F) were analyzed for IL-1β secretion by ELISA. (H) Primary mouse BMDMs 

were exposed to elacridar overnight (10 μM) and incubated with Rho123 (1 μM) for 30 

min to evaluate Rh123 accumulation as in (C). (I) BMDMs were treated with increasing 

amounts of elacridar overnight (1, 2, 5, and 10 μM), followed by LPS priming (500 ng/ml) 

for 4 h and nigericin (20 μM) for ~45 min. Cell lysates were immunoblotted for caspase-1 

and GAPDH. (J) Supernatants from cells treated as in (I) were analyzed for IL-1β secretion 

by ELISA. (K) iBMDMs were treated with elacridar overnight (10 μM) followed by LPS 

priming (500 ng/ml) for 4 h and ATP (5 mM) for ~45 min. Cell supernatants were analyzed 

for IL-18 secretion by ELISA. Data shown are mean ± SD, and the experiments shown are 

representative of at least three independent experiments with three to five replicates each. *p 
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by Student t test.
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Figure 2. ABCB1 regulates NF-κB–dependent signaling and priming of the NLRP3 
inflammasome.
(A) WT and Abcb1b–/– #1 and #2 cells primed with LPS (500 ng/ml) for 4 h followed 

by treatment with either ATP (5 mM) or nigericin (20 μM) for ~45 min. Cell lysates 

were collected and immunoblotted for NLRP3, ASC, pro-IL-1β, and GAPDH. (B) WT 

and Abcb1b–/– #2 cells were stimulated with LPS (500 ng/ml) for the indicated time 

points. RNA was extracted and converted into cDNA. Gene expression of Nlrp3 and (C) 

Il1b was determined by real-time PCR. (D) WT and Abcb1b–/– #2 cells were stimulated 
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with LPS (500 ng/ml) for the indicated time points. Protein samples were collected and 

immunoblotted for p-IκB, total IκB, p-p38 MAPK, total p38 MAPK, and GAPDH. (E) 

Cells treated as in (B) were examined for Cxcll (KC) and (F) Tnfα gene expression by 

real-time PCR. (G) Supernatants from WT and Abcb1b–/– #2 macrophages treated as in 

(B) were analyzed for TNF-α cytokine secretion by ELISA. (H) WT and Abcb1b–/– #2 

cells were stimulated with LPS (500 ng/ml) for 4 h and analyzed for mRNA expression of 

Ifnβ. mRNA expression is shown relative to Gapdh. (I) WT and Abcb1b–/– #2 cells were 

stimulated with either LPS (500 ng/ml), Pam3 (1 μg/ml), or Imiquimod (1 μg/ml) for 4 h and 

analyzed for Nlrp3 mRNA expression. Gene expression is shown relative to Gapdh. Data 

shown are mean ± SD, and the experiments shown are representative of three independent 

experiments with three replicates each. **p < 0.01, ***p < 0.001, ****p < 0.0001, by 

Student t test.
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Figure 3. ABCB1 does not affect the activation of NLRC4 and AIM2 inflammasomes.
(A) WT cells with or without exposure to elacridar (2, 5, 10 μM; 16 h) and Abcb1b–/– 

#1 cells were infected with Salmonella typhimurium at an MOI of 2 for ~4–5 h. Cell 

lysates were collected and immunoblotted for caspase-1, GSDMD, and GAPDH. (B) WT, 

Abcb1b–/– #1, and Abcb1b–/– #2 macrophages were infected with Salmonella typhimurium 
at an MOI of 2 for ~4-5 h, and supernatants were analyzed for IL-1β by ELISA. (C) 

Cells were treated with LPS (500 ng/ml) for 4 h followed by transfection with 1 μg of 

DNA complexed to Lipofectamine 2000 (ratio DNA:Li-pofectamine 2000, 1:3) for ~4 h to 

activate the AIM2 inflammasome. Supernatants were analyzed for IL-1β by ELISA. (D) 

Supernatants from cells treated as in (B) and (C) or treated with LPS (500 ng/ml, 4 h) and 

ATP (5 mM, 45 min) were analyzed for IL-18 production by ELISA. Data shown are mean 
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± SD and are representative of at least three independent experiments with three replicates 

each. ***p < 0.001, ****p < 0.0001, by Student t test.
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Figure 4. ABCB1 deficiency is associated with a shift in PI lipid chains.
(A) PI structure consists of an inositol headgroup, a glycerol backbone, and two acyl 

chains R1 and R2 at the sn-1 and sn-2 positions. Representative spectra of (B) WT and (C) 

Abcb1b–/– cells. Peaks of interest are indicated. The peaks at m/z 835.4, 861.4, 885.4, and 

911.5 are assigned to PI 34:1, 36:2, 38:4, and 40:4, respectively. In this range are also found 

peaks at m/z 1,354.7, m/z 1,438.8, and m/z 1,466.8, which are assigned to GM-2 d18:1/16:0, 

GM-2 d18:1/22:0, and GM-2 d18:1/C24:0, respectively. In the range m/z 1,500-1,650 are 

found GM-1 at m/z 1,516.8, m/z 1,544.8, m/z 1,572.8, m/z 1,600.9, m/z 1,626.9, and 

Hamilton et al. Page 27

Immunohorizons. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



m/z 1,628.9 assigned to GM-1 18:1/16:0, 18:1/18:0, 18:1/20:0, 18:1/22:0, 18:1/24:1, and 

18:1/24:0, respectively. (D) Ratio m/z of peaks 861/885 in WT and Abcb1b–/– macrophages. 

(E) Model showing PI synthesis and subsequent remodeling to acquire typical fatty acid 

configuration. WT and Abcb1b–/– #2 cells were treated with LPS (500 ng/ml) for the 

indicated time points, and the mRNA expressions of (F) Cds2, (G) Cdipt, (H) Lclat1, and (I) 

Il1b were analyzed. Gene expression is shown relative to Gapdh. Data shown are mean ± SD 

and are representative of at least three independent experiments with three replicates each. 

****p < 0.0001, by Student t test.
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Figure 5. Exogenous supplementation with LA alters PI acyl chain configuration.
WT cells were cultured in the presence of either AA (5 μM) or AA (5 μM) and SA (20 μM) 

or LA (20 μM) for at least 2 wk with the regular splitting of cell cultures every 2–3 d before 

subjecting the samples to whole-cell lipidomics. (A) Ratio m/z of peaks 861/885 in cells 

grown in the presence of indicated fatty acids. (B–E) WT cells cultured with either (B and 

C) LA or (D and E) AA and SA were treated with LPS (500 ng/ml) for the indicated time 

points, and the mRNA expressions of (B and D) Nlrp3 and (C and E) Il1b were analyzed. 

Gene expression is shown relative to Gapdh. (F and G) WT and Abcb1 cells either untreated 
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or treated with methyl-β-cyclodex-trin (10 μm, 30 min) or the indicated fatty acids were 

stained with CTB (1 μg/ml) for 10 min at 4°C followed by incubation with Alexa Fluor 

488–conjugated anti-CTB Ab for 15 min at 4°C to reveal GM1 presence. (F) Fluorescence 

was analyzed by flow cytometry, and representative spectra are shown. (G) MFI (mean 

fluorescence intensity) quantification of cells treated as above. Data shown are mean ± SD 

and are representative of at least three independent experiments with three to five replicates 

each. *p ≤ 0.05, ***p < 0.001, ****p < 0.0001, by Student t test.
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Figure 6. PI acyl chain profile regulates TIRAP expression.
(A) Control and LPS-primed WT cells grown on coverslips were labeled with anti-TIRAP 

Ab, and nuclei were stained with DAPI. The plasma membrane was stained by adding 

Alexa Fluor 647–conjugated phalloidin for the last 15 min. (B) WT, Abcb1–/–, and LA-

supplemented cells were stimulated with LPS for different times. Cell lysates were collected 

and immunoblotted for TIRAP and GAPDH. (C) Quantitation of the WB shown in (B) 

by ImageJ. (D and E) WT (D) and LA-grown (E) cells were pretreated or not with the 

proteasomal inhibitor MG132 (10 μM) for 30 min before stimulating the cells with LPS 
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for different time points. Cell lysates were collected and immunoblotted for TIRAP and 

GAPDH. (F and G) WT, Abcb1b–/–, and LA-supplemented cells were exposed to IL-1 

(2 ng/ml) overnight. RNA was extracted and converted into cDNA. Gene expression of 

Nlrp3 and TNF-α was determined by real-time PCR. The data shown are representative of 

at least three independent experiments with three to five replicates each. Asterisk (*) on 

immunoblots denotes a nonspecific band. Scale bars, 5 μm.
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Figure 7. Altered PI acyl chain profile blunts inflammasome activity by increasing NLRP3 
phosphorylation.
(A) WT and LA-supplemented cells were either left untreated or primed with LPS (500 

ng/ml) for 4 h followed by treatment with either ATP (5 mM) or nigericin (20 μM) for 

~45 min. Cell lysates were collected, and protein was quantified. The amount of protein 

loaded for LA-supplemented cells was increased to normalize total NLRP3 levels. Cell 

lysates were immunoblotted for p-NLRP3, total NLRP3, and ASC. (B) Quantitative analysis 

of the WB shown in (A) by ImageJ. (C and D) Cells were treated with LPS and ATP 

Hamilton et al. Page 33

Immunohorizons. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and loaded as in (A). In addition, LA-supplemented cells were either exposed to COX2 

inhibitor, NS-398 (10 μM), or PKA inhibitor, H-89 (10 μM), for overnight. Cell lysates were 

immunoblotted for p-NLRP3, total NLRP3, and ASC. (E and F) Control WT, AA-grown 

cells, and LA-grown cells were either primed with LPS (500 ng/ml) for 4 h followed by 

treatment with ATP (5 mM) for ~45 min or primed with LPS followed by transfection 

with AIM2 agonist, poly(dA:dT). Caspase-Glo 1 activity was measured in the culture 

supernatants. (G) Cell supernatants collected as in (A) were assayed for IL-18 secretion 

by ELISA. (H) WT, Abcb1–/–, AA-grown, or LA-grown cells cells were exposed to LPS 

+ ATP followed by labeling with anti-ASC Ab and DAPI staining. Scale bars, 5 μm. (I) 

Quantitative analysis of the percentage of cells with ASC specks in samples treated as 

earlier. Each dot represents an individual field with at least n = 40 cells. Data shown are 

mean ± SEM, and the experiments shown are representative of at least three independent 

experiments with three replicates each. Arrowheads show ASC specks. *p < 0.05, **p ≤ 

0.01, ***p < 0.001, ****p < 0.0001, by Student t test. (J) Schematic for ABCB1- and 

PI-mediated regulation of the NLRP3 inflammasome. ABCB1 is important in maintaining 

lipid metabolism. In the absence of ABCB1, the PI lipid chain configuration is altered, 

resulting in the reduced ratio of short-chain to long-chain fatty acids. The activation of the 

TLR4-dependent pathway relies on the adaptor protein TIRAP binding to PIP2 for precise 

positioning at the plasma membrane. However, alteration in PI-lipid profile results in at least 

two distinct outcomes, which affect both the priming and activation steps of the NLRP3 

inflammasome. First, either due to inability to bind to PIP2 or reduced PIP2 abundance at 

the PM, TIRAP is ubiquitinated and degraded in the cytoplasm. Inflammasome assembly 

requires NLRP3, ASC, and pro-caspase-1 in a complex wherein caspase-1 activation leads 

to the maturation of pro-IL-1β into the activation form. Altered PI profile most likely 

increases PGE2 secretion because of increased PI incorporation of precursor AA. As a 

result, NLRP3 is phosphorylated at the Ser291 residue, which is mediated by PKA signaling 

leading to NLRP3 inactivation. Consequently, assembly of the inflammasome is abrogated 

resulting in blunted caspase-1 activation and IL-1β secretion.
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