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Abstract: Compact Al0.37In0.63N layers were grown by radiofrequency sputtering on bare and 15 nm-
thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied
by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both
techniques show an improvement of the structural properties when the AlInN layer is grown on a
15 nm-thick AlN buffer. The layer grown on bare silicon exhibits a thin amorphous interfacial layer
between the substrate and the AlInN, which is not present in the layer grown on the AlN buffer layer.
A reduction of the density of defects is also observed in the layer grown on the AlN buffer.

Keywords: III-nitrides; AlInN; AlN buffer; RF sputtering; TEM

1. Introduction

The ternary alloy, AlInN, has recently attracted the attention of researchers, because its
tunable wide-range bandgap allows for its use in electronic, optoelectronic, and photonic
applications [1–5]. However, it is difficult to grow single-phase AlInN due to its large im-
miscibility gap [6,7], which is caused by the different bonding energy [8], lattice parameter,
growth, and decomposition temperatures [9] of the binaries (AlN and InN).

Different techniques have been used to grow AlInN, such as metal-organic chemical
vapor deposition (MOCVD) [10–12], molecular beam epitaxy (MBE) [13–16], and the
sputtering technique [17–22]. Unlike MOCVD or MBE, the sputtering technique uses an
electrical discharge to extract the target species, where the generated ions and atoms are
provided with kinetic energy by the sputtering process itself, thus overcoming the phase
separation issues related to the heating procedures. The use of the sputtering technique
allows for the deposition of the desired material on large substrates at a wide range of
temperatures, resulting in polycrystalline layers.

Previous studies on the growth of AlInN on an AlN buffer using the sputtering
technique [22,23] have been conducted; however, as far as we know, none of them have
deeply studied the effect of an AlN buffer on the structural properties of AlInN or the
accommodation mechanism.

In this work, the effect of using an AlN buffer layer on Si (111) substrates in terms
of the structural properties of the subsequently sputtered AlInN layer are studied by
high-resolution X ray diffraction measurements (HRXRD) and transmission electron mi-
croscopy (TEM).
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2. Materials and Methods

The AlN and AlInN layers were grown on p-Si(111) substrates by radiofrequency
(RF) sputtering using an ATC ORION 3 HV AJA International system (AJA International,
Scituate, MA, USA). The system was equipped with separate 2” magnetron targets, one of
pure In (4N5) and another of pure Al (5N).

The growth process was as follows: first, the targets were pre-sputtered with Ar (6N);
meanwhile, the substrates were chemically cleaned in organic solvents and blown down
with nitrogen. Once a base pressure of 10−6 Pa was achieved, the substrates were loaded
into the growth chamber, and they were degassed for 30 min at 550 ◦C and pre-sputtered
with Ar. Then, the substrate was cooled down to the growth temperature (450 ◦C), film
deposition was conducted by introducing 6 sccm of pure N2 (6N), and the pressure was
increased to 0.47 Pa. The AlN layer was grown by applying an RF power of 225 W to the
Al target and the Al0.37In0.63N by co-sputtering the In (30 W) and Al (150 W) targets. The
AlN layer thickness varied from 0 to 15 nm, while the Al0.37In0.63N was fixed at 80 nm.
The substrate-target distance was fixed to 10.5 cm. The optimization of the growth of the
AlN and Al0.37In0.63N layers can be found elsewhere [19,22]. It should be pointed out
that the Al-content represents a suitable trade-off between electrical properties (the carrier
concentration) and band gap energy for solar cell development [24].

The structural properties of the layers were studied by high-resolution X ray diffraction
measurements using a PANalytical X’Pert Pro MRD system and by transmission electron
microscopy using a JEOL2100 TEM microscope (JEOL Ltd., Akishima, Tokyo, Japan),
equipped with a LaB6 gun operated at 200 kV. The chemical analyses performed by means
of electron energy-loss spectroscopy (EELS) were carried out in scanning mode (STEM)
at 200 kV using a JEOL2010F microscope (JEOL Ltd., Akishima, Tokyo, Japan), with a
field-emission gun and a GATAN GIF energy filter (GATAN Inc., Pleasanton, CA, USA).
The EELS experiments were conducted using a 0.3 eV energy dispersion at a camera
length of 10 mm. The acquired EELS spectra were denoised using Principal Component
Analysis (PCA) routines by choosing the suitable number of components in each case,
before extracting the signals.

3. Results and Discussion

Figure 1 shows 2θ/ω scans of the 80 nm-thick AlInN layers grown on bare Si (111)
and on a 15 nm AlN buffer layer on a Si (111) substrate. These scans are used to study the
role of the initial growth surface in the lattice mismatch accommodation between nitride
and silicon. They present a poly-crystalline wurtzite structure aligned along the c axis,
with no phase separation. Only the substrate diffraction peak ((111) Si), the (0002) AlN,
and the (0002) and (0004) AlInN diffraction peaks are shown. A reduction of the FWHM
of the (0002) AlInN rocking curve from 5.6 to 5.3◦ is observed for the 15 nm-thick AlN
buffer layer, indicating an improvement of the crystalline quality of the AlInN layer (see
inset Figure 1).

A deeper study of the structural properties was carried out using TEM measurements
(JEOL Ltd., Akishima, Tokyo, Japan). First, the samples were studied under diffraction
contrast conditions to show the structural defects over large areas (see Figure 2). The defect
contrast is enhanced so that the structural defects appear as dark areas across the AlInN and
AlN layers, propagating along the growth direction (Figure 2a,b). The density of defects
was estimated from phase-contrast TEM images affected by crystal distortions, allowing
for the quantification of the defects within the analyzed (known) layer area. This analysis
indicates a reduction of one order of magnitude (from 1011 cm−2 to 1010 cm−2) for the 15 nm
AlN buffer layer. The high lattice mismatch between the nitrides and Si (111) substrates,
with in-plane lattice constants of a = 3.112 Å, a = 3.548 Å, and a = 3.840 Å, for AlN, InN, and
Si (111), respectively, should also be noted [9]. High-resolution TEM (HRTEM) images show
that the structural defects are mainly the grain boundaries nucleated at the interface (see
Figure 2c), propagating through the film and associated dislocations. A similar reduction
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was obtained in the ternary nitrides (AlGaN) and GaN binary when introducing an AlN
buffer grown by MBE [25,26].
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Figure 1. 2θ/ω scans of the 80 nm-thick AlInN layers grown on bare silicon (111) (red) and on a
15 nm AlN buffer layer (blue). Inset: Rocking curves of the samples.
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Figure 2. Diffraction contrast TEM images of: (a) AlInN grown on bare Si and (b) AlInN grown on
15 nm AlN. HRTEM details of a grain boundary within the AlInN layer is shown in (c), along with
its fast Fourier transform (FFT), highlighting the misalignment between neighboring grains (blue
and orange lines in (c) and FFT).

The HRTEM measurements also show an amorphous layer of 2–3 nm-thick (see
Figure 3a) in the case of the AlInN grown directly on bare silicon. However, with the
inclusion of a 15 nm AlN buffer layer, this layer disappears, although small domains with
quasi-amorphous AlN are observed (see Figure 3b). One possible explanation is that a
higher RF power is applied to the Al target for the growth of AlN, compared to that applied
for the growth of AlInN (225 W and 150 W, respectively). The higher kinetic energy of the
incoming species when growing AlN facilitates the nucleation of the polycrystalline layer
in the first stages of the deposition process. This effect is in accordance with the suitability
of sputtering for growing AlN layers using a moderate substrate temperature (450 ◦C).
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Figure 3. HRTEM zoom of the layer/substrate interface of: (a) the AlInN grown on bare silicon, and
(b) the AlInN grown on 15 nm AlN.

We performed further chemical analyses by means of electron energy-loss spec-
troscopy (EELS) to elucidate the nature of this amorphous layer (see Figure 4a–c)). The
analysis reports the presence of nitrogen and oxygen at the interface between the substrate
and the AlInN layer, which is in agreement with the formation of an interfacial amorphous
SiOxNy layer. Importantly, oxygen is not only present in the amorphous layer, but also
in the AlInN growing material, when using bare silicon as the substrate. In contrast, the
oxygen content in the AlInN grown on AlN buffer layers shows a remarkable reduction,
while the AlN buffer is highly oxygenated (Figure 4d–f). Therefore, it is likely that the AlN
buffer traps the oxygen through the formation of Al-O bonds, thus hindering its diffusion
into the AlInN growing layer, which is also the case for the AlInN layers deposited directly
on Si (111). The O contamination may have come from the Si surface before growing, as
due to the system limitations, it was degassed at a temperature below that required to
remove the native oxide [27].

Materials 2021, 14, x FOR PEER REVIEW 5 of 9 
 

 

 

Figure 4. EELS analysis of the AlInN grown on (a–c) bare Si (d–f) using an AlN buffer. The figure displays the In, N, and 

O EELS signals mapped at the regions indicated in (a,d). The scale bar in (b,e) is 10 nm. 

The structural characterization carried out through HRTEM analyses reveal the epi-

taxial relationship, which is understood as the alignment between the main planes and 

directions of the growing AlInN and the silicon substrate, in both cases (with and without 

the buffer layer). Figure 5 shows the interatomic plane alignment between the AlInN lay-

ers and the underlying Si substrate, evidencing the following epitaxial relationship: 

(0001)[112̅0] AlInN||(111̅)[112] Si. It is also shown that in the sample grown on the AlN 

buffer layer, the AlInN and the AlN layers share an orientation and growth direction, as 

expected. This epitaxial relationship implies a 90° in-plane rotation of the AlInN layer, 

compared to the most common epitaxial relationship reported for III-nitrides grown on 

Si(111) (see Figure 5c), where the materials are usually related as follows: (0001)[112̅0] 

AlInN||(111)[11̅0] Si [28]. Our observation of another epitaxial relationship may be re-

lated to the existence of an initial amorphous layer on top of the silicon substrate. In this 

sense, Serban et al. observed the random in-plane orientation of AlInN nanostructures 

deposited by RF sputtering, which evolves into the commonly obtained orientation when 

using the HF cleaning of Si substrates, before the deposition of the nitride layers [29].  

AlInN

Si

Amorphous layer

In

AlInN

Substrate

Amorphous

N O

AlInN

Substrate

AlN buffer
10 nm

In N O

Buffer

AlInN

Si

Buffer

5 nm

a) b) c)

d) e) f)

In

In

N

N

O

O

Figure 4. EELS analysis of the AlInN grown on (a–c) bare Si (d–f) using an AlN buffer. The figure displays the In, N, and O
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The structural characterization carried out through HRTEM analyses reveal the epi-
taxial relationship, which is understood as the alignment between the main planes and
directions of the growing AlInN and the silicon substrate, in both cases (with and without
the buffer layer). Figure 5 shows the interatomic plane alignment between the AlInN
layers and the underlying Si substrate, evidencing the following epitaxial relationship:
(0001)[1120] AlInN||(111)[112] Si. It is also shown that in the sample grown on the AlN
buffer layer, the AlInN and the AlN layers share an orientation and growth direction, as
expected. This epitaxial relationship implies a 90◦ in-plane rotation of the AlInN layer,
compared to the most common epitaxial relationship reported for III-nitrides grown on
Si(111) (see Figure 5c), where the materials are usually related as follows: (0001)[1120]
AlInN||(111)[110] Si [28]. Our observation of another epitaxial relationship may be related
to the existence of an initial amorphous layer on top of the silicon substrate. In this sense,
Serban et al. observed the random in-plane orientation of AlInN nanostructures deposited
by RF sputtering, which evolves into the commonly obtained orientation when using the
HF cleaning of Si substrates, before the deposition of the nitride layers [29].
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A study of the interface shows misaligned domains on the AlInN layer near the
interface when it was grown directly on the Si substrate (see the yellow lines in Figure 6a).
This effect can also be seen in the sample grown using the AlN buffer layer, but, in this
case, the effect is weaker in the AlInN layer grown on top, while it is stronger within
the AlN layer (see Figure 6b, where orange and green lines point to the growth plane
orientation of neighboring grains. The FFT, included in the inset, shows elongated Bragg
reflections for AlN (orange) and AlInN (green) as consequence of the misalignment). Thus,
the introduction of an AlN buffer layer reduces the grain misalignment on the AlInN layer
through the accommodation of misaligned crystal domains already in the AlN buffer, in
such way that the effect is attenuated through the interface with the AlInN. This mechanism
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allows for the improvement of the crystal quality of the AlInN layer through a reduction of
the misalignment of neighboring crystal domains and grain boundaries.
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4. Conclusions

In this work, it was demonstrated that the inclusion of a 15 nm-thick AlN buffer layer
improves the crystalline quality of the subsequent 80 nm-thick AlInN layer, when it is
grown on p-Si (111) by RF sputtering. This was confirmed by the reduction of the FWHM of
the (0002) AlInN rocking curve from 5.6 to 5.3◦. Additionally, the TEM studies performed
showed that the AlN buffer layer leads to a reduction of one order of magnitude of the
density of defects and to the elimination of the amorphous (SiOxNy) interface, thanks to
the high kinetic energy of the species during the buffer growth. Moreover, the AlN buffer
layer acts as a barrier against oxygen diffusion into the AlInN layer.

The analyses reveal an epitaxial relationship between the AlInN and AlN layers with
the silicon substrate, which is 90◦ in-plane rotated from the most reported layer in the
system, which is the following: (0001)[11–20] AlInN||(0001)[11–20] AlN||(11-1)[112] Si.

Author Contributions: A.N.-C. was involved in the growth of the samples, analysis of the HRXRD
results, and writing—original draft preparation and technical discussions. F.B.N. was involved in the
manuscript writing—review and editing, technical discussion of the results, and supervision. M.d.l.M.
was involved in the HRTEM measurements and analysis, technical discussions, and the manuscript
writing—review. S.I.M. was involved in the HRTEM measurements and analysis, discussions, and
the manuscript writing—review and supervision. All authors have read and agreed to the published
version of the manuscript.
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