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Abstract

Background: Recent advances on high-throughput technologies have produced a vast amount of
protein sequences, while the number of high-resolution structures has seen a limited increase. This
has impelled the production of many strategies to built protein structures from its sequence,
generating a considerable amount of alternative models. The selection of the closest model to the
native conformation has thus become crucial for structure prediction. Several methods have been
developed to score protein models by energies, knowledge-based potentials and combination of
both.

Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in
scoring terms biologically meaningful and to combine them in new scores to predict near-native
structures. Our strategy allows circumventing the problem of defining the reference state. In this
approach we give the proof for a simple and linear application that can be further improved by
optimizing the combination of Zscores. Using the simplest composite score (ZEcﬂ ) we obtained

predictions similar to state-of-the-art methods. Besides, our approach has the advantage of
identifying the most relevant terms involved in the stability of the protein structure. Finally, we also
use the composite Zscores to assess the conformation of models and to detect local errors.
Conclusion: We have introduced a method to split knowledge-based potentials and to solve the
problem of defining a reference state. The new scores have detected near-native structures as
accurately as state-of-art methods and have been successful to identify wrongly modeled regions
of many near-native conformations.
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Background

The study of the conformational space explored by a pro-
tein has long been of interest to structural biologists. The
small region of this conformational space in which a pro-
tein is biologically active is known as its native state. The
native state generally has the lowest free energy of all
states under the native conditions [1], and the physical
mechanism by which a protein finds it is known as the
folding pathway. The vastness of the search space for a
folding protein was first appreciated by Levinthal [2] who
conceived the paradox of a long and non-biological time
scale needed for a folding mechanism based on random
pathways [3]. The solution of the protein folding problem
requires an accurate potential that describes the interac-
tions among different amino acid residues to enable the
prediction and assessment of protein structures [4,5].
However, the use of such physical-based potentials [6,7]
is computationally prohibitive and often it cannot ensure
the native and biologically active conformation. There-
fore, an alternative approach to the full atomistic descrip-
tion was to construct a scoring function whose global
minimum corresponded to the native structure [8,9]. This
scoring function is obtained by analysing the set of known
native high-resolution structures deposited in the Protein
Data Bank (PDB) [10] and it is termed as knowledge-
based or statistical potential.

State-of the art methods are often able to predict the three-
dimensional (3D) structure of protein domains with a
RMSD (root mean square deviation) from native confor-
mation ranging between 1A and 6A, where models with
RMSD smaller than 2A imply a resolution comparable to
many experimentally obtained structures[11]. Among
these methods, fold recognition and comparative mode-
ling belong to the category of template-based modelling
while de novo methods do not rely on any similarity on the
fold level to known 3D structures (template-free) [12].
State of the art of structure prediction procedures (e.g.
MODELLER [13], SWISS-MODEL[14], 3D-JIGSAW [15]
for comparative modelling 3D-PSSM/PHYRE [16,17],
TOPITS [18], GenTHREADER [19], LOOPP [20], FUGUE
[21] for fold recognition, or TASSER [22], ROSETTA [23],
PCONS [24], 3D-SHOTGUN [25], CABS [24] for de novo
prediction [26]) are able to assemble approximately cor-
rect structures when a weakly homologous structure is
available in the PDB [27]. However, the main problem
displayed by most methods is the impossibility to distin-
guish a correct (i.e. near-native) model from a plethora of
generated solutions. Selecting the closest model to the
native conformation of a given protein out of an ensem-
ble of models [28-30] is thus the crucial step for the pro-
tein structure prediction [12].

There are some common problems shared between tem-
plate-based de novo prediction methods related to the
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selection of templates, detection of errors, and refinement
of structures. For instance, one needs an energy function
whose global minimum is in the protein's native state and
which energy surface is funnel-like to drive the structure
toward native-like conformations (i.e. having a correla-
tion with native structure similarity [5,11]). These condi-
tions have led many authors to use specialized scoring
functions [12,31,32] and to combine knowledge-based
force-fields and physical force fields with different objec-
tives: 1) assessment of the correct fold [33]; 2) detection
of local errors after modelling [34]; 3) studying the stabil-
ity of mutant proteins [35,36]; discriminating between
native and near-native states [32,37,38]; and 4) selecting
near-native conformations in a set of decoys without the
native structure [31,39].

On the one hand, statistical potentials have been derived
for structural features such as torsion angles [12] and sol-
vent accessibility [40]. In addition, residue-residue and
all-atom based statistical potentials can be categorized
into distance-independent contact energies [41] and dis-
tance-dependent potentials [32,42,43]. Furthermore, sta-
tistical potentials for the all-atom representation are
generally more accurate than those that represent the
interaction with centroids of amino-acid residues [44-46].
A vast amount of statistical potentials have been described
and tested (see [32] for a detailed list). Many works have
focused on the combination of knowledge-based poten-
tials using artificial intelligence (i.e GA;,; score obtained
with a genetic algorithm [45], ProQ [47] and GenThreader
[19] scores derived with artificial neural networks, com-
posite score using support vector machines (SVM) regres-
sion[38]) and some have included physics-based energy
functions with atomic detailed description of the interac-
tions[46,48], like hydrophobic[36,49], hydrogen bond-
ing, electrostatic, van der Waals, backbone torsions and
binding harmonic terms (i.e. QMEAN [12], a funnel-like
shape for the Amber ff03-based potential [5,11,50], or
FoldX that uses a linear combination of energy compo-
nents[51]). These approaches have prompted the prob-
lem lying on the physics of knowledge-based potentials:
1) what is the origin of the Boltzmann-like distribution
for structural features in a sample of native structures [52];
2) what is the most appropriate reference state [53]?; 3) is
it possible the addition of individual terms of a statistical
potential [32]? 4) what is the offset between statistical
potential(s) and other energetic terms to define a scoring
function that predicts protein structure [54]? and 5)
what's the connection between statistic potentials and the
energy-landscape of the free energy of a protein?. On the
first two questions, the origin of the Boltzmann-like con-
tribution and the definition of the reference state are still
controversial. On the third and last question, Simons et al.
presented a detailed derivation of scoring functions with
particular attention to the interplay between solvation
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and residue pair interactions to split the terms involved in
the statistical potential[55,56]. They provided a recipe for
combining environment and residue pair specific effects
in a systematic and non-redundant manner in
ROSETTA|23]. Although the addition of the components
of the energy cannot be transformed in the addition of
free energy terms [57], it is still possible to split in differ-
ent features the knowledge-based potential and to include
additional terms on the core of a scoring function [55,56].
This permitted the evaluation of effectiveness in recogniz-
ing native-like structures among large decoy sets using dif-
ferent descriptions of sequence-dependent and sequence-
independent features of proteins (i.e. remarking the rele-
vance of including terms that describe the packing of 4
strands in fF-sheets) [56].

In this work we demonstrate the decomposition of knowl-
edge-based potentials in energy terms with different levels
of detail of residue-residue interactions. The new potential
is based on the sum of terms that describe sequence-
dependent/independent and distance-dependent/inde-
pendent features of proteins that show biological and
functional significance (i.e. remarking a specific environ-
ment for a particular residue). Our approach also circum-
vents the problem of a reference state of the statistical
potential by means of a spare function without relevance
on the assessment of native conformation. Finally, we
compare our composite scoring function to other knowl-
edge-based functions on: i) characterizing the relevance of
the potential terms involved in native and near-native
conformations; ii) finding the native conformation of sev-
eral target proteins among decoy structures; iii) detecting
near-native conformations; and iv) identifying local con-
formational errors.

Outline of the algorithm

Our goal is to develop a new scoring potential independ-
ent of a reference state, able to discriminate between
native and non-native conformations of proteins and able
to detect local errors of a protein structure. This was
obtained by: i) decomposing the score function in terms
where some of them were functions of the reference state;
ii) transforming the score into a sum of Zscores where the
Zscore of the functions containing the reference state
could be neglected; and iii) proving that the Zscore defini-
tion could still be applied to score the accommodation of
individual residues in the structure. Here we present an
outline of the algorithm. Details of the development of
the equations are in the additional files (see Additional
file 1: Supplemental of theory).

The interaction between two residues can be described by
means of a potential of mean force[58,59]. Energy can
usually be split in independent terms from which differ-
ent forces are derived. Therefore, we also wish to split the
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statistical potential in terms that would describe the dif-
ferent parts of the interaction. The disconnection of ener-
getic terms can be used not only to recognize the main
interactions, but also to improve its individual expecta-
tion-values compared with a random approach. Our
approach is similar to the scoring method in ROSETTA by
Simons et al. [55,56], where local and structural environ-
ment play an important role with the sequence.

A potential of mean force has usually been used to score
the interaction between two residues. The distance
between a pair of residues can be calculated as the mini-
mum distance between all atoms of both residues or as
the distance between the Cf atoms (Ce for Glycine resi-
dues). The maximum distance to calculate the potential of
mean force is different depending on this definition (i.e.
5A for the minimum distance and 12A for CACA dis-
tance). Force fields obtained with C4Cg distances are
named CS-CpS force-fields or CS-potentials, while those
obtained with minimum distances are named min force-
fields or min-potentials.

We have defined a new set of knowledge-based potential
terms converting the reference state function into a new
energy component. The new score is defined in equation
1 and derived by comparison with the standard definition
of knowledge-based potential (see Additional file 1: Sup-
plemental on theory)

score = Egspc + Esp — Espc = Ejpeal + Erer

Esp = Z 2 PMFstd_NR(d)

i h#i
Egsspc = ZZPMF(Ri'Rh'dIGiIGh)
i h#i
1
Elocal zzszMFres(Ri'Gi) ( )
i
Espc = ZZPMFstd(d/Qif@h)
i h#i
Exgr =k D Y 108(0(0;,0,))

i h#i

Where N is the total length of the sequence. Equation 1
cannot be applied straightforward to discriminate
between correct and incorrect conformations because the
magnitudes of each single term are very different: this is,
the average value of some energy-terms (i.e. Eg;pc and
E;pc) have values around the standard deviation of others
(i-e. Ejocar Ergrand E5p). Consequently, we have defined a
Zscore, named ZE (see equation 2). Zscores are obtained
for each energy-term using a random distribution of resi-
due-residue interactions per fold with the formulae:
Zscore = (energy-4)/ o, where "energy" is the energy-term
calculated with the interactions of original sequence, u is
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the average of this energy calculated with real and random
interactions and o its standard deviation. Random inter-
actions between amino-acids are obtained by reshuffling
the sequence of the protein. A total of 1000 random
sequences are used to calculate the Zscore. The Zscore of
an energy-term is identified with a Z prefix (i.e. Zscore of
"x" energy-term is "Zx"). Hence, we calculate ZEggp, ZE;,
Eiocar ZEgspcand ZE; . ZE is null because E,p is a con-
stant value that depends only on the fold conformation.
Also, the parameterization of Epg should not have any
compensatory effect to discriminate between correct and
incorrect folds. Therefore, we hypothesize that Epprshould
have similar distribution for real and random sequences
and consequently ZEgg should fluctuate around 0. This
also implies that the reference state function introduced in
equation 1 by two energy terms, E;; and Egg, can be
neglected by the use of Zscores (see results section for
proofs).

We reformulate the Zscore in equation 2 with a linear
combination and we define ZE by neglecting the term
ZEger and omitting the optimization of parameters (¢,
withi=1,2,3,4 in equation 2).

o . ~ N o
Zscore =[ IS3DC \zp 4| 93D \zp [ 93DC \yp [ Glocal \pp, | T g
O score O score O score O score O score

Zscore = a1 ZEg3pc + 0y ZE3pe + 03 ZE o) + 04 ZE jpp
ZE = ZEg3pc = ZE3pe = ZEjgcal

(2)
To distinguish between terms calculated with statistical
potentials obtained using the minimum distance (min-
potential) or with CS-Cf distances (C/-potential) we use
the sub-index min and Cp, respectively (i.e. for ZE we use
ZEpipand ZE¢ ).

‘min

In summary, we have two composite Zscores (ZE;, and

ZECﬂ) and six energy-terms (ZES3DC_Cﬁ , ZE3DC_CI3 ,

ZEZocal—CB ’ ZESSDC-min' ZESDC-min’ ZElocal-min)' ZES3DC terms
refer to the distance-dependent interaction between resi-
dues in specific local conditions. ZE;, terms explain the

distance-dependent interaction between local conditions,
with independence of the residues involved. Finally, ZE,,

a1 terms describe the cost to place one residue in a specific
local condition. Because of the definitions of ZE;,- and
ZE,,.; they tend to positive values in folded structures. It is
interesting to note that ZE,, ,; terms do not involve pairs of

residues at certain distance, but only the requisites to
accommodate a residue, buried or exposed, with a specific
secondary structure.
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Results and discussion

Development of an empirical scoring schema and
parameter optimization

We first develop a new set of empirical potentials based
on the theory formulated above. We split the database
(1764 structural domains with non-homologous
sequences from SCOP) in five groups and performed a 5-
fold analysis of the data to extract the ¢ parameters
required to calculate ZEy;zand to check the distribution of

the energy-terms of the potential

(ZEsspc—c, /
ZE 3DC-Cy ~ ZE local-C 5 # ZES3DC-min’ ZE3DC-min’ ZElocal-min)' A

total of 209 ¢ parameters are obtained for pairs with local-
conditions expressed as a triad of polar character, second-
ary structure and exposure degree with min and Cf poten-
tials. Although this amount of parameters might leave
some doubts of a possible overfitting, we have to note that
ZEggr is neglected on the evaluation of the scores for the

prediction of correct folds (see equation 2), thus being
irrelevant for the prediction and for the evaluation of the
new scores.

The distributions of Zscores of the energy-terms of the
potential are averaged using the results from the 5-fold
validation procedure. Average distributions and standard
errors of these Zscores calculated with CfA-potentials and
min-potentials are plotted in Figure 1. The comparison
with the random set shows that the distribution of ZEg;;
of real conformations mostly overlaps with the distribu-
tion of randomly shuffled sequences using min or C4-CS
force-fields. Consequently, we can neglect the contribu-
tion of ¢ parameters (yielding ZEg;;) on the selection of
the correct fold of a protein sequence, as stated previously
and in the Outline of the algorithm section. ZE, ., and
ZEp distributions accumulate positive scores (i.e. posi-
tive thresholds of both are required to identify near-native
conformations). Interestingly, the deviation of ZE,,,; with
respect to the random distribution shows a low overlap,
revealing the importance of the local conditions that
apply on the protein sequence. This effect is the conse-
quence that some residues are more comfortably accom-
modated on specific secondary structures, either exposed
or buried, than others.

We construct the new potential with the total database of
structures, formed by 1764 domains of SCOP with non-
homologous sequences. Still, we need to prove the rele-
vance and applicability of these new potentials. Therefore,
the next step is to check if some of the energy-terms are
more relevant than others to detect correctly folded struc-

tures or if the new composite scores (i.e. ZE,,;,, and ZE c, )
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5-fold average of the distribution of Zscores. Average of the distribution of Zscores using a 5-fold approach plus the
ranges of error. Zscores are calculated with min-potentials (a) and CS-potentials (b) for real conformations: ZEg;p in blue,
ZE;pcin green, ZE, , in orange, ZEgg; in yellow and ZE in cyan. In black are shown the distributions of the averages of all
Zscores of randomly shuffled sequences and their error ranges.

Table I: Correlation between RMSD and Zscores in MOULDER.

Target ZE C/; ZE Aa3DEnv—Cﬂ ZE 3DEnv—C/, ZE lOL‘al—Cﬂ ZEmin ZEAn3DEnv-min ZESDEnv-min ZElocnl-min
Ibbh 0.86 0.36 -0.83 -0.80 0.62 0.42 -0.02 -0.71
1c2r 0.71 0.45 -0.48 -0.67 0.69 0.68 -0.43 -0.27
lcau 0.83 0.56 -0.71 -0.72 0.69 0.38 -0.40 -0.74
lcew 0.70 031 -0.64 -0.58 0.6l 0.08 -0.18 -0.63
Icid 041 -0.12 -0.22 -0.59 0.45 0.43 0.10 -0.55
ldxt 0.87 0.75 -0.84 -0.76 0.78 0.76 -0.51 -0.51
leaf 0.79 0.57 -0.61 -0.64 0.72 0.66 -0.38 -0.55
lgk 0.88 0.54 -0.77 -0.78 0.73 0.6l -0.18 -0.63
llga 0.88 0.49 -0.68 -0.85 0.84 0.68 -0.40 -0.84
Imdc 0.78 0.50 -0.51 -0.64 0.68 0.40 -0.20 -0.60
Imup 0.85 0.66 -0.80 -0.83 0.80 0.79 0.24 -0.79
lonc 0.78 0.66 -0.58 -0.58 0.80 0.75 -0.29 -0.56
2afn 0.86 0.61 -0.60 -0.83 0.77 0.68 -0.27 -0.83
2cmd 0.81 0.68 -0.82 -0.78 0.63 0.58 -0.46 -0.65
2fbj 0.77 0.35 -0.32 -0.82 0.79 0.58 -0.13 -0.83
2mta 0.72 0.47 -0.16 -0.69 0.77 0.67 -0.02 -0.70
2pna 0.83 0.58 -0.79 -0.55 0.62 0.52 -0.29 -0.46
2sim 0.81 -0.12 -0.73 -0.81 0.66 0.20 -0.36 -0.76
4sbv 0.69 -0.10 -0.65 -0.60 0.54 0.46 -0.07 -0.45
8ilb 0.77 0.68 -0.36 -0.60 0.57 0.67 0.13 -0.43

Pearson product-correlation between Root Mean Square Deviation (RMSD) of MOULDER decoys of 20 target/model sets (in rows) and Zscores

(in columns): ZEC/, , ZE $3DC-Cj » ZE3DC—C5 , ZE local~C 5 » ZEmine ZEs30.mine ZE3pCmin 304 ZEjocapmin:
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require the information from each energy-term in equal
proportion. This analysis is performed on a set of model-
decoys derived from few target proteins with known struc-
ture. We used the set of decoys from MOULDER. This set
contains several near-native structures (models which
RMSD from its native structure is smaller than 3A) from
protein sequences that were not used on the generation of
statistical potentials. We compare the Pearson product-
correlation between the Zscores of energy-terms of the
potential and the RMSD of the models for 20 target/
model sets of decoys (Table 1). This shows a positive cor-

relation between ZE ZEc, and the RMSD for many of

‘min’
the 20 target/model sets. Also, we compare the distribu-
tion of probability of scores of all energy-terms and com-
posite Zscores of the model-decoys with the distribution
of their near-native structures (figure 2.a for Zscores with
min force-field and figure 2.b with C#-Cf force-field). The
distribution of probability is calculated as the ratio of the
number of structures with a specific score over the total of
decoys (for the distribution of scores of model-decoys) or
the total of near-native structures (for the distribution of
scores of near-native structures). The average of the distri-
bution of the 20 sets of target/model decoys is shown in
figures 2.a and 2.b. Because of averaging the distribution,
some scores show a non-Gaussian behavior, presenting
more than one maximum (in agreement with the correla-
tions found among decoy sets in table 1). Positive values
of ZE;,cand ZE,, , have higher occurrence in near-native
structures than in non-native decoy models, while ZE¢; -

of near-native structures are negative.

We also compare the min and CS-Cp force-fields for the
terms ZEg;po, ZEspe and ZE,,.,. First, we observe that

ZE;pc is a good descriptor to identify near-native struc-

tures when using the C4-Cp force-field, but not with the
min force-field. On the other hand, ZEg;,- is a good
descriptor to identify near-native structures with the min
force-field, but not with the CS-Cp force-field. This indi-
cates that the description of residues as hydrophobic or
hydrophilic, their location in secondary structure and
their degree of accessibility in the surface, are sufficient to
identify the interacting pairs of a near-native fold when
using a rough model of the backbone structure. Second, it
is remarkable that the conditional location of residues
produces a discriminative measure of the correct fold. This
is related with the tendency of certain residues to be
involved in specific secondary structures and with a partic-
ular degree of surface-accessibility. Besides, the definition
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of ZE,,,; is virtually independent of the force-field used
(min or CA-Cf). Finally, both composite functions, ZE_;,

and ZEc, . take advantage of ZE, ., while compensating

ZEg3pc and ZE; - into a single score. Still, we need to fur-
ther compare them with other scoring functions in order
to prove its utility to detect the native and near-native con-
formations among the sets of decoys.

Detection of native conformations

To test the ability of the derived potentials to find the
native conformation among different models we used
four decoy data sets (fisa_casp3, Imsd, 4state_reduced, and
MOULDER) and we compare ZE,; and ZECﬁ with

min
DOPE, DFIRE, Prosa2003 and GA;,; (see methods and
table 2). We find that most methods can successfully iden-
tify the native fold for over 15 targets. DOPE and DFIRE
scores obtain best results in fisa_casp3, Imsd, and
4state_reduced decoy sets, and ZE,,;, is also successful. In

summary, ZE, . and ZEC/} of the native conformations

min

rank similar to DOPE, DFIRE and Prosa2003 in most tar-
gets. Thus, the utility of ZE, ;, and ZECﬂ to detect the

native conformation on a set of decoys is evinced and sim-
ilar to DOPE, DFIRE and Prosa2003. Still, it would be

interesting to explore further if ZE,;, and ZEC/, help to

min
find near-native conformations (not necessarily the native
one) and to discard incorrect folds.

Detection of near-native conformations
To test whether the derived potentials are able to identify
near-native conformations among the set of decoy struc-
tures, we define the nearest-native conformation of a tar-
get as the model with the smallest RMSD to the target
native conformation different than zero. In a similar
design as for table 2, we calculate the RMSD difference
(ARMSD) between the RMSD of the best non-native can-
didate and the RMSD of the nearest-native conformation
(see table 3) [12,31,38]. The best candidates are chosen
using the scores of DOPE, DFIRE, Prosa2003, GA;,;, ZE

and ZE;  among the set of models excluding the native

min

conformation. Figure 3 shows the superposition of the
native structure with the best and the worst candidates
from the decoys of target "1ldxt" in MOULDER. As
expected, ARMSDs are large for most models of fisa_casp3
and Imsd decoys and small on sets of 4state_reduced and
MOULDER. The smallest values of the average of ARMSD
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Figure 2

Average of the distribution of probability of Zscores. Average of the distribution of probability of Zscores (ZEg;pc in
upper-left, ZE;p in upper-right, ZE, ., in bottom-left and composite ZE in bottom-right) with min-potentials (a) and C/-poten-
tials (b) in the set of MOULDER decoys. The distribution of probability is calculated as the ratio of the number of structures
with a specific Zscore over the total. The distribution of probability for near-native structures is in red and the distribution of
decoy models with non-native-like conformation is in black.
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Table 2: Ranking position of the native structure according to the scoring functions.

Target set DOPE GA34| Prosa2003 DFIRE ZE¢, ZEmin
fisa_casp3
smd3 | 51 2 | 12 |
1bg8-A | 808 151 | 341 2
liwe | 135 4 | 514 |
leh2 8 826 93 | 577 159
1bl0 | 809 729 | 458 3
Total 4 0 0 5 0 2
Imds
smd3 | 15 | | | |
20vo 7 33 | 6l 115 7
1dtk | | | | 77 33
4pti 6 7 | 24 25 10
1b0n-B 293 35 | 418 99 180
1bba 501 395 458 501 389 63
1shf-A | 5 13 | 199 |
letf | | | | | |
1fc2 501 234 107 501 276 489
ligd | | | 18 10 |
2cro | 10 | | 43 16
Total 6 3 8 5 2 4
4state_reduced
4rxn | | 8 | 20 26
4pti | 6 | | | |
letf | | | | | |
3icb 3 5 | 5 10 9
1sn3 | | | | 25 3
cro | 5 | | | 2
1r69 | 4 | | | |
Total 6 3 6 6 4 3
MOULDER
lonc | | | | | |
ldxt | | | | 3 |
leaf | | | | | |
llga | | | | | |
lgky | | | | | |
lcau | | | | | |
4sbv | | | | | |
8ilb | | | | | |
2mta | | | | 4 4
2fbj | | | | | |
2cmd | | | | | |
lcew | | | | | |
2afn | | | | | |
2sim | | | | | |
Ibbh | | | | | |
Imdc | | | | | |
1mup | | | | 15 |
2pna 85 45 43 85 58 9
lcid | | | | | |
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Table 2: Ranking position of the native structure according to the scoring functions. (Continued)

1c2r | |

| | 6 |

Total 19 19

19 19 15 18

Ranking position of the native structure among the sets of model/target decoys for several scoring functions. In the first column it is shown the
code of the target protein used to generate the set of decoys. Next columns show the results for DOPE, GA;,,, Prosa2003, DFIRE, ZEc,, ZE, .

scoring functions. The set of decoys is split in groups: MOULDER, 4state_reduced, fisa_casp3, and Imds.

are obtained with DFIRE, ZE,;, and ZECﬂ in MOULDER

model/target sets while for the 4state_reduced set the
smallest averaged ARMSDs are obtained with Prosa2003
and ZE, ;. However, it has to be noted that ZE,;, uses

information of side-chain conformation, while classical
functions Prosa2003, DFIRE, DOPE and GAj;,; use only

information of C# atoms.

We use the same MOULDER decoy set to compare the
RMSD and the scores calculated with ZE¢ , ZE,;,, DOPE,

min’
DFIRE, GAs,; and Prosa2003 (Figure 4). ROC curves of
sensitivity/specificity and sensitivity/PPV are calculated
with all conformations from the sets of models from
MOULDER and 4state_reduced (Figure 5). They show the

ability of ZEClf and ZE_;, to identify wrong conforma-

min
tions without lost of coverage but less capacity to detect
near-native conformations. We use the program StaR [60]
to assess the statistical significance of the observed differ-
ence between these scoring functions when used as binary
classifiers (see Additional files 2 and 3: Supplemental
tables S2 and S3). With the set of MOULDER decoys (fig-

ures 5.a and 5.c) the scoring functions ZEC[f , ZE pins

DOPE and GA,,; show similar performance if we consider
that for p-values smaller than 0.05 the difference is signif-
icant. With the set of 4state_reduced decoys (figures 5.b
and 5.d) only the difference between ZEc, and GAy,

have significant p-value higher than 0.0005 and we can
assume that the differences among all scoring functions
are significant.

PPV and sensitivity curves with respect to scores and
Zscores are used to select a threshold to accept a putative
conformation. Figure 6 shows the plot of the average (plus
error deviations) of PPV and sensitivity of the 20 model/
target sets on MOULDER decoys versus the thresholds
used. Also the total PPV and sensitivity is calculated with
all models and plotted in Figure 6. The Zscore (or score)
at the cross points between the curves with the total PPV

and sensitivity produce high values of average PPV and
sensitivity for all methods. These cross-points obtain a
good balance between total PPV and sensitivity for each
method. Therefore, conformations with Zscores lower
than their thresholds were accepted as correct predictions
(positives). The distribution of RMSDs among positives of
the scoring-functions indicates that ZEC/j works as many

other methods (in agreement with the significances calcu-
lated with StaR). Also, most positives have RMSD smaller
than 5A (Figure 7). More than 50% of true positives in
MOULDER set were obtained either with Prosa2003 (occa-
sionally by some other method besides Prosa2003) or by
all methods except Prosa2003 (DFIRE, DOPE, GA;,;,

ZE. and ZE_;,). The remaining set of true-positives is
Cp

min
obtained by many scoring functions and often by more
than one (tables 4 and 5). Interestingly, all scoring func-
tions discriminate well among the set of true-negatives
(wrong conformations) in MOULDER. Moreover, almost
50% of false positives are found among those conforma-
tions accepted by DOPE, DFIRE and Prosa2003. The use of

ZE, ensuresa large amount of conformers which struc-

ture differed from the native conformation by less than
3.5A, while purging more than 80% of spurious confor-

mations. Therefore, ZEc, and ZE_;, are not redundant

min
with any of the classical scoring functions, while in com-
bination with them they may help to cover a larger set of

correct conformations.

In summary, the utility of ZE¢, to detect near-native

structures has been attested. Moreover, the global-statistic
results (PPV, sensitivity, RMSD distribution, etc.) are sim-
ilar to state-of-the-art methods like DOPE, DFIRE, GA;,;
and Prosa2003, but the individual results for each particu-
lar decoy conformer are different. This proves the conven-
ience of using ZE¢, in combination with other methods.

More in detail, most near-native conformations are found
by more than 50% of methods, but few of them are
detected by one or at most two methods. Thus, it is con-
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Table 3: ARMSD according to several scoring functions on the set of model/target decoys.

Target set DOPE GA34| Prosa2003 DFIRE ZE¢, ZEmin
fisa_casp3
leh2 6,06 4,64 1,64 4,93 4,13 4,93
I bg8-A 7,84 728 728 3,58 572 3,58
ljwe 6,30 10,62 9,75 8,10 9,52 8,10
1bl0 4,10 2,24 2,24 7,10 4,45 7,10
smd3 4,35 6,44 5,08 512 5,32 4,47
Average 573 6,25 5,20 5,76 5,83 5,63
Imds
Idtk 5,46 4,75 4,59 4,59 4,89 2,90
ligd 7,64 1,63 4,28 56l 4,50 561
2cro 8,68 8,95 6,14 10,01 593 9,48
smd3 4,35 4,52 2,68 5,52 2,50 5,52
letf 9,41 7,65 7,52 7,37 6,67 7,37
1fc2 0,26 051 1,00 0,07 1,51 0,07
1shf-A 5,83 5,16 3,06 6,91 5,24 6,91
4pti 5,64 572 9,91 4,61 9,54 4,61
2o0vo 6,92 3,49 6,45 5,70 7,26 5,70
1b0n-B 1,60 2,20 0,61 0,50 1,76 0,50
Ibba 1,89 0,87 0,59 3,29 2,00 1,92
Average 5,24 4,13 4,26 4,92 4,71 4,60

4state_reduced

Isn3 1,69 0,90 4,09 471 6,05 0,90
1r69 2,55 0,80 0,79 0,95 2,29 0,79
4pti 0,82 5,53 0,07 0,07 1,18 2,80
2cro 2,46 1,24 0,29 1,24 0,53 0,53
letf 0,33 0,60 0,50 2,93 1,02 1,02
3icb 1,86 1,51 0,93 0,11 0,05 0,11
4rxn 0,46 3,52 0,75 0,70 0,68 0,70
Average 1,45 2,01 1,06 1,53 1,69 0,98
MOULDER
lonc 1,16 0,72 0,60 0,40 0,40 0,40
ldxt 3,97 0,00 0,55 1,11 0,00 0,55
leaf 0,34 1,72 1,72 0,47 0,99 0,47
llga 0,82 5,89 5,89 0,80 0,00 0,80
lgky 0,57 0,34 0,57 0,57 0,62 0,57
lcau 3,89 1,95 0,42 0,42 0,07 0,42
4sbv 0,00 5,57 0,00 0,00 6,43 0,00
8ilb 0,38 0,42 0,39 0,50 0,36 1,04
2mta 0,31 0,57 0,21 0,63 0,32 0,63
2cmd 0,38 2,22 0,58 0,23 0,74 0,84
2fbj 0,26 2,80 0,32 091 0,51 091
lcew 2,06 2,73 2,73 3,47 3,73 3,47
2afn 0,71 0,75 0,68 0,12 0,50 0,12
2sim 1,21 0,42 0,46 0,16 1,13 0,16
Ibbh 0,88 0,11 0,16 0,00 0,31 0,00
Imdc 0,03 0,74 6,85 0,16 0,00 0,16
1mup 0,53 0,17 0,67 0,67 0,32 0,46
2pna 0,26 0,60 0,42 0,24 0,26 0,24
lcid 1,15 1,15 1,15 0,08 1,15 1,15
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Table 3: ARMSD according to several scoring functions on the set of model/target decoys. (Continued)

1car 3,42 0,00

0,85 0,00 0,00 0,15

Average 1,12 1,44

1,26 0,55 0,89 0,63

In the first column it is shown the code of the target protein used to generate the set of decoys. Next columns show the ARMSD for DOPE, GA,,,,

Prosa2003, DFIRE, ZE Cp ZE,;, scoring functions. The set of decoys is split in groups: MOULDER, 4state_reduced, fisa_casp3, and Imds.

venient to use more than one method to confirm a predic-
tion and to increase the coverage of near-native structures.
Even though the best results are obtained with Prosa2003,

the combination with DFIRE, DOPE, GA;,;, ZEcﬁ and
ZE

number of non-native-like conformations is not largely
distended. The best strategy to detect near-native struc-
tures is to use a composite score (i.e. QMEAN[12] or a
SVM composite score[38]). Here we have proved that: 1)
ZEc, and ZE

min Can increase the coverage up to 50%, while the

min Can detect near-native structures unde-
tected by other methods, thus it is worth to use them with

other composite scores; 2) ZECﬂ and ZE,;, are already

‘min
composite functions that can itself be improved using
weights for each individual component; and 3) each com-

Figure 3

Ribbon plot of 1dxt native and decoy structures. Rib-
bon plot of the native structure (in green) superposed with
the model decoys (in cyan) of the target 1dxt in MOULDER.
The structure of the decoy with smallest ZE c, score (model

51) is shown in 3.a and the structure of the decoy with high-
est ZEcﬁ score (model 262) is shown in 3.b.

ponent term of ZE C and ZE_;, disclose the features of

residue-pair interactions and the local environment of res-
idues, thus they can be used to detect the main compo-
nents affecting the structure either to be considered near-
native (stabilizing) or non-native-like (destabilizing).
Still, besides characterizing the main components affect-

ing the Zscore it is usually interesting to identify the
region of the structure stabilizing or destabilizing the pro-
tein conformation, not only the energetic component
affected (i.e. residues with wrong secondary structure
assignment or with unfeasible interactions). This implies
to distribute the Zscore along the sequence. However,
only those methods scoring the energy in a sum of terms
per residue can split the score along the protein sequence.
This is possible only for few methods (e.g. Prosa2003 or
DOPE), but not for all and even more difficult for com-
posite functions. The use of Zscores instead of original

energies (i.e. Egspc-c, s Espc-c, s Eiocai-c, s Esspcmin
Espcmins a0d Ejimin) impedes its distribution along the
protein sequence because by definition it cannot produce
a sum of terms per residue. In the next section is presented
an approach to distribute the Zscore of a model structure

along its protein sequence and its applicability to detect
local errors in the structure.

Detection of local errors in the conformation of decoy
models

The RMSD between Ca atoms of the decoy-model confor-
mations in MOULDER and their corresponding target are
min’

compared to Sc ZEc, , ScZE ZaEc, and Z,E ., (see

methods). On the one hand we compare the RMSD and
the residue-position Zscores of the models. We expect that
the highest RMSD between Coa atoms (i.e. in regions
wrongly modeled) will have the highest scores (see exam-
ple in Figure 8.a). On the other hand, we compare the Cox
RMSDs' with the difference of residue-position Zscores
between each decoy-model and its target (see example in
Figure 8.b). Due to the different magnitudes of RMSDs
and Zscores, these curves have to be normalized for the
sake of comparison. The normalized values are defined as
(X; - <X>)/o where X; is either any of the Zscores on posi-
tion i or the Ca RMSD of residue i, <X> is the average
along the sequence and o the standard deviation (see Fig-
ure 8.c). The coincidence of picks in RMSD and Zscore
curves identifies the differences detected between the
near-native and decoy structures (Figure 8.d).
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Comparison of RMSD/score resulting from several scoring functions. Root Mean Square Deviations (RMSD) of

MOULDER decoys are plotted versus Zscores of ZECﬂ (a) and ZE,;, (b), and versus scores normalized by the length of the

sequence of Prosa2003 (c), DFIRE (d), GA;4, (e), and DOPE (f).

The Pearson product-correlation between the Ca RMSDs'
and the residue-position Zscores of the model decoys (or
its difference with respect to their targets) show the possi-
bilities to use the Zscores to detect the accuracy of the
models (see Table 6). In general, residue-position Zscores
of decoy structures work better than Zscore differences
with respect to the original target to validate local confor-
mation, and Zscores based on Cpf-potentials are better
than min-potentials. Nonetheless, the number of times
that the Pearson correlation is higher than 0.5 for models
with backbone RMSD smaller than 7A with respect to the
target is not large enough to guarantee its use for identify-
ing locally erroneous conformations. Potentials (and
Zscores) of a residue or a continuous fragment of residues
are affected by the rest of the protein-sequence. Therefore,
regions with near-native conformation may have peaks of
energy (and Zscore) due to other regions wrongly mod-
eled. This diminishes the correlation between Cax RMSDs
and local residue-position scores. Interestingly, there is a
remarkable correlation between Sc ZE c, and Z ,E C, and

between ScZE ;, and Z,E
of 2107 models with RMSD smaller than 7A have Pearson

(e.g. in figure 8.c): 1881 out

correlation higher than 0.5 between ScZE¢ - and Z,E¢

(averaging about 0.82 + 0.15), while 1778 out of 2107
had Pearson correlation between ScZE,;, and Z,E
higher than 0.5 (averaging about 0.77 + 0.15). This sup-
ports the use of just one of the methods for the assessment
of the local conformation.

min

In summary, we have introduced the equations to distrib-
ute the protein Zscore along its sequence. We have also
provided some evidence of their utility to identify regions
where the conformation deviates from the native struc-
ture. However, further analyses are needed to fully prove
the use of the local Zscores, by remodeling local fragments
of the structure and recalculating the Zscores, but this is
beyond the scope of the present work.

Conclusion

We have introduced a method to split knowledge-based
potentials and to solve the definition of the reference
state. We have defined two scoring functions as linear
combinations of energetic terms, transformed into a sum
of Zscores and proved that the functions containing the
reference state could be neglected on both. There is room
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ROC curves of scoring functions applied in MOULDER and 4state_reduced sets. Sensitivity is plotted versus specifi-
city and Positive Predictive Value (PPV) for all decoy conformations from MOULDER set (5.a and 5.c) and from 4state_reduced
set (5.b and 5.d). Scoring functions used are: Prosa2003 (red), DFIRE (green), DOPE (blue), GA;,, (yellow), ZEcﬁ (black) and

ZE,;, (cyan).

still for improvement using machine-learning approaches
or optimization rules, like support vector machines or
artificial neural networks, to assign the weights of the lin-
ear combination of energy-terms. With the simplest
approach we obtained predictions similar to the state-of-
the-art of other methods (i.e. Prosa2003, DOPE, GA;,;, or
DFIRE) for several testing decoy sets. This included find-
ing the native conformation or finding the closest set of
conformers to the native structure (i.e. RMSD smaller than
3A). It is remarkable that some predictions were not
obtained by some classical approaches (i.e. Prosa2003,
DOPE or DFIRE) but were obtained using ZEc, .

Finally, we defined four scoring approaches for local con-
formation in order to find errors on model structures. We
found a good correlation between the residue-position

Zscore (i.e. Z AEC/, and Z,E,;,) and the residue-scanning

Zscore (i.e. ScZE¢ = and ScZE,;,), which allow us to use

min
the less expensive computational approach (residue-posi-

tion Zscore) to analyze the local conformation. We com-
pared the residue-position Zscores with the local RMSD of

Ca atoms and proved that it can be used to identify
wrongly modeled regions.

Methods

Development of statistical potentials

We developed the statistical potentials used in this study
from an independent dataset of 1764 structural domains
extracted from SCOP[61]. These domains corresponded
to non-homologous sequences (with less than 40%
sequence similarity). Splitting the data in five equivalent
groups performed the 5-fold validation procedure. Fre-
quency-contacts, statistical potentials and Zscores of the
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Table 4: Statistical analysis of positives by scoring functions in MOULDER set.

True Positives

False Positives

Combination of scores #tdecoys = Combination of scores #decoys
Prosa2003 34 DFIRE; DOPE 126
ZEC/; ; ZE, . DFIRE; GA,,; DOPE 23 Prosa2003; DFIRE; DOPE 8l
Pr0sa2003; ZE ., ; DFIRE; DOPE; 19 Prosa2003 2
Prosa2003; ZE C; + ZEmins DFIRE; GA;,4,; DOPE 14 ZEnin 48
Prosa2003; DFIRE; DOPE 12 Prosa2003; 7E, : DFIRE; Ghy: DOPE 35
Prosa2003; DFIRE 0 ZB(, i ZE,,; DFIRE Ay, ; DOPE 4
ZE.. 9 DFIRE 33
Prosa2003; ZE . 8 ZE. ; DFIRE; DOPE 3!
B B
DFIRE; DOPE 3 DOPE 31
Prosa2003; ZE,,,, 2 ZE:, 24
ZE(, s ZEy,; DFIRE; DOPE 2 ZE(, ; DFIRE; GA3; DOPE '8
Prosa2003; ZE,;.; DFIRE; GA;,,; DOPE 2 ZE, .., DFIRE; DOPE 17
ZEini CAsgy 2 Pr05a2003; ZEc, ; DFIRE; DOPE 16
Prosa2003; ZEqn; GAsey ! ZE, ; ZE,y,; DFIRE; DOPE 15
ZE,..; DFIRE; DOPE | GAsyy 13
ZE | Prosa2003; DFIRE; GA,,,; DOPE 13
! ! 10
ZE ., ; DFIRE; GAy,; DOPE ZEc, ; ZEmin
| ZE,.;.; DFIRE 7
ZEC,; 3 ZE iy GAsqg mn
Prosa2003; ZE c, + DOPE I Prosa2003; ZECﬂ 6
ZE, ,.: DFIRE; GA,,; DOPE | DFIRE; GA,,,; DOPE 5
CAsey ! Pr0sa2003; ZE . ; Ghs,, 3
Prosa2003; ZE Cy ZE,; DFIRE; DOPE ! ZE Cy ZE,.; DFIRE 3
ZECﬂ ; DFIRE; DOPE : Prosa2003; ZECﬁ ; ZE,.; DFIRE; GA;,;; DOPE 3
Prosa2003; DOPE 3
ZE,,; DOPE 3
Prosa2003; DFIRE; 3
ZE, : ZEqy DFIRE; GAy,, 3
ZE, ; DOPE 3
ZE 0> GAz4 3
|
ZEc I GAzy
ZE, ; DFIRE !

ZEC,j 3 ZE iy GAzq)

Distribution of true-positives and false-positives among decoys of MOULDER according to one or more scoring functions and their thresholds.
Columns show the number of decoys (#decoys) found by one or more scoring functions (combination of scores).
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Table 5: Statistical analysis of negatives by scoring functions in MOULDER set.

True Negatives

False Negatives

Combination of scores #tdecoys = Combination of scores #decoys
4708 8l
Prosa2003; ZE Cy ZE, s DFIRE; GA;4; DOPE Prosa2003; ZECﬁ ; ZE,.; DFIRE; GA;,;; DOPE
. . . 126 . . : . 34
Prosa2003; ZE s ZE,yyi GAsay ZEc, : ZE i DFIRE; GAsqy; DOPE
ZEC/; JZE_: GAsy, 8l Prosa2003 23
ZE, : ZEyyy; DFIRE: GA3y.; DOPE 72 ZByi GAyy 19
48 12
Prosa2003; ZE Cy DFIRE; GAs,,; DOPE ZE Cy ZE, i GAzy,
Prosa2003; DFIRE; GA,,; DOPE 46 ZECﬁ i ZE, . : GA,,; DOPE 10
ZEqin 35 Prosa2003; ZE . : DFIRE; GAs,; DOPE ?
B
Prosa2003 34 ZE,..; DFIRE; GA,,; DOPE 8
Pr05a2003; ZE, 3 ZEyy; GAsyis DOPE B prosa2003; ZE(, ; ZE i Ghas 3
Prosa2003; ZE C 5 ZEmins DFIRE; GAyy 31 ZECﬁ 2
Prosa2003; ZEyy; GAzq 31 ZE, ; DFIRE; GAy,j; DOPE 2
Prosa2003; ZE ,; DFIRE; GA3,,; DOPE 24 Prosa2003; GA,, 2
Prosa2003; ZE, '® Pr0sa2003; ZE ; DFIRE; DOPE 2
Prosa2003: ZECﬂ  GAsy, 17 Prosa2003; ZE ;s GAsy, |
ZEnins GAsa 16 Prosa2003; ZECﬁ ; GAsy, !
Prosa2003; GA3y, 15 Prosa2003; DFIRE; DOPE |
ZECﬁ JZE. 13 Prosa2003; ZE,;, |
Prosa2003; 7. : 76, DFRE; DOPE 13 Prosa2003; ZE, ; DFIRE; GA;,; DOPE |
Pr0sa2003; ZE, ; GAsys DOPE 7 CAzai !
ZEnin; DFIRE; GA3y;; DOPE 6 Prosa2003; ZE, ; ZE,; DFIRE; DOPE !
Pr0sa2003; ZE, s ZEy, 3 ZE i DFIRE; GAsy, !
ZE,.; DFIRE; DOPE 3 ZE.,  DFRE: DOPE |
Prosa2003; ZE (o DFIRE; GAszy, 3 Prosa2003; ZECﬁ !
ZE G, 5 ZE i Ghsyys DOPE 3
Prosa2003; DOPE 3
3
ZE, s ZEpyss DFIRE: Gy,
Prosa2003; ZE, . : DFIRE; GAs,, 3
Prosa2003; ZE ' DFIRE; DOPE 3
Prosa2003; GA3,,; DOPE

Prosa2003; DFIRE; DOPE
Prosa2003; ZE,; GAs4,;; DOPE
Prosa2003; ZE,,.; DFIRE; DOPE

'min’

—_— —w

Distribution of true-negatives and false-negatives among decoys of MOULDER according to one or more scoring functions and their thresholds.
Columns show the number of decoys (#decoys) found by one or more scoring functions (combination of scores).
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Figure 6

Sensitivity and PPV versus scoring functions applied in MOULDER decoy set. Average and standard error of sensi-
tivity (red) and PPV (black) are calculated with the predictions in 20 target/model groups and total sensitivity (purple) and PPV
(cyan) with the total of decoy models in MOULDER set. Score functions are: ZE c, (a), ZE,;, (b), Prosa2003 (c), DFIRE (d),

GA,,, (e), and DOPE (f).

energy-terms were calculated with four of them and the
Zscores of the remaining set were compared with random
distributions of their sequences (dividing the results of the
randomly shuffled sequences by 1000 in order to visual-
ize a 1/1 ratio for all distributions). The procedure was
repeated five times (5-fold) for the shake of robustness of
the results. Also the values of ¢ were obtained five times
by fitting the scores and its deviations were compared (see
Additional file 4: supplemental table S1).

Database of decoy structures

We have used decoy structures to test and compare several
scoring functions in order to reveal which one is the best
at identifying near-native conformations. Several sets of
decoys are used that include structures close to the native
X-ray structure and show native-like properties of the real
folded conformation[62]. Besides, these sets contain
numerous models showing many different arrangements
for statistical analysis purposes. Two main decoy data-
bases were used to test ZE scores: i) MOULDER decoy
set[63] contains 300 models from 20 target/template

pairs sharing low sequence identity (i.e. each of the mod-
els for a given target were of the same sequence and
length); and ii) Decoys'R'Us database[64] contains a vari-
ety of decoys generated by different methods with the aim
of fooling scoring functions. We have used three sets from
the second database of decoys: 4state_reduced (around 600
models for 7 target proteins[65]) contains several native-
like conformations built using a 4-state off-lattice model,
while most decoys in Imds (around 400 models for 11 tar-
get proteins|[50]) and fisa_casp3 (around 1400 models for
5 target proteins[55]) have models with large RMSD with
respect to the native conformation. Consequently, these
sets show different properties for the analysis: MOULDER
decoy set and 4state_reduced set are used to test the score
functions to identify the native and near-native conforma-
tions among models with close-to-native conformation
(most models deviate less than 6A from the native X-ray
structure), while fisa_casp3 and Imds sets are used to detect
a small set of close to native conformations among many
non-native conformers (most models deviate more than 5
A from the native X-ray structure). We also checked that
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Figure 7

Distribution of RMSD of decoy-models in MOULDER
set. Decoy structures predicted as positive for each scoring
function are compared with their targets. The plot accumu-
lates the predictions of the scoring methods: ZEcﬁ (black),

ZE, i, (cyan), Prosa2003 (red), DFIRE (green), GA3,, (yellow),

and DOPE (blue). Most positives are found within less than
5A from the original structure.

none of the sequences selected in these decoys were used
on the construction of the statistical potentials.

Scoring Functions
Several scoring functions (all of them based on statistical

potentials) have been compared with ZE_;, and ZECﬂ .

The main difference between them lays on the definition
of the reference state and in the composite of several scor-
ing terms accounting for residue pair interactions and sur-
face interactions.

Prosa2003 is a classical knowledge-based pair potential
scoring function[66]. We have used Prosa2003 with
default parameters. This implies the use of distance- and
surface-dependent statistical potentials for Cf atoms (Ca
for Gly) to calculate two different scores: a distance-
dependent pair score and an accessible surface score. Both
scores are combined into a score that has been used to test
each model. The reference state is calculated with the total
of observed pairs of residues.

GA;,; is an optimized discriminator function[45] evolved
by a genetic algorithm from a nonlinear combination of
three model features and it includes a Zscore for the com-
bined (distance and accessibility) residue-level statistical
potential (obtained with the mean and standard devia-
tion of the statistical potential score of 200 random

http://www.biomedcentral.com/1472-6807/9/71

sequences with the same amino acid residue-type compo-
sition and structure as the model).

Distance-scaled, Finite Ideal-gas REference (DFIRE) state
is a scoring function[43] used to construct a residue spe-
cific all-atom potential of mean force from a database of
protein structures with resolution less than 2 A and less
than 30% similarity between them. In this function, the
equations from liquid-state statistical mechanics are mod-
ified for finite systems, like proteins, assuming that the
expected number of contacts would not increase with r2
but r#, where « is a tunable parameter optimized on the
set of non-homologous proteins. The DFIRE program was
used with default parameters (« = 1.57) to calculate the
score for each model in the test set.

Similarly to DFIRE, another scoring function is defined as
the Discrete Optimized Protein Energy (DOPE)
approach[32]. This is a distance-dependant statistical
potential based on an improved reference state that corre-
sponds to non-interacting atoms in a homogeneous
sphere that has to account for the finite size and spherical
shape of proteins. A sample of many native structures of
varying size is used to avoid the dependence of the scores
between residues on the size of the protein.

Statistical Analyses

We analyzed the use of scoring functions to predict the
correct fold. On the one hand we used the scores to rank
the conformations for each particular target within four
decoy sets. This allowed us to test the ability on finding
the right conformation within a set of putative models
(i.e. the model with the first rank did coincide with the
native structure of the target). On the other hand, thresh-
olds were used to define positive/negative predictions:
protein models with scores smaller than the threshold
were predicted as positives and the remaining models
were negatives. On the set of positives and negatives we
defined the true predictions depending on the RMSD with
respect to the native structure[64,65]. Among positives,
true predictions (TP) were defined as those with RMSD
smaller than 3A with respect to the native structure and
false predictions (FP) otherwise. Among negatives the
inverted criterion was used, being false negatives (FN)
those with RMSD smaller than 3A and true negatives (TN)
otherwise. Sensitivity or coverage was defined as the ratio
of TP versus the total of true models (TP+FN). Specificity
was defined as the ratio of TN/(TN+FP) and positive pre-
dictive value (PPV) as the ratio of TP/(TP+FP). Sensitivity,
specificity and PPV were calculated for the 300 models of
each target protein in MOULDER database.

First, the average and standard error of sensitivity, specifi-
city and PPV calculated with the predictions of each 20
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Comparison of RMSD and residue-position Zscores for target Idxt in MOULDER. Comparison of RMSD of the Cor

trace of a decoy conformer (model |13) of target 1dxt in MOULDER and its residue-position Zscores Sc ZEcﬁ , ScZE

min*

ZAEC,, and Z,E

'min?

8.a) RMSD is compared with residue-position Zscores. 9.b) RMSD is compared with the difference of res-

idue-position Zscores between the model and the native structure (ldxt). 8.c) Residue-position Zscores and RMSD values of

the Ca trace are normalized along the sequence and compared. Feature colors are: RMSD in blue, Sc ZE -

green, ZAECﬁ in black and Z,E

5 in red, ScZE, . in

min IN €yan. 8.d) The native structure of 1dxt is shown in ribbons (green) superposed with the

structure of the near-native decoy (model | 13, in cyan), showing the fragments with higher residue-position Zscores and

RMSD in orange (native) and yellow (model | I3).

targets of MOULDER (i.e. <x >= 0.0522% x; with x equal
i=1
to sensitivity, specificity or PPV) were plotted versus the
thresholds applied on the scores of several scoring meth-
ods. Second, all models from the 20 targets were used to
calculate sensitivity, specificity and PPV versus these
thresholds. While the first set of plots showed the ability
of the score to detect the best conformation(s) (i.e. near-
native conformations) among a pull of models generated
with the same sequence, the second set of plots showed

the ability to detect native and near-native folds among a
pull of conformations with independence of its sequence.
The threshold where sensitivity coincides with positive
predictive value in the second set of plots is considered to
be the best offset between coverage and PPV for each scor-
ing method. These thresholds are used to calculate the dis-
tribution of RMSD, TP, FP, TN and FN for each scoring
method in the set of MOULDER decoys. Finally, we plot-
ted ROC curves of sensitivity/specificity and sensitivity/
PPV calculated on MOULDER and 4state_reduced decoy
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Table 6: Correlation between RMSD and residue-position Zscores

Target C(AZAE,,n) CLU(ZAEmn) C(AScZE,,;,) Cu(ScZE,;,)
Set
© C(AZ \Eg,) CiL(Z4Ec,) C(ASCZE ) CL(ScZE¢,)

Page 19 of 22

Average P/N Average P/N Average P/N Average P/N Average P/N Average P/N Average P/N Average P/N

Ibbh 0.7 £ 0.1 124/34 0.7 £0.1 82/76 0.7 £0.1 135/23 0.7 0.1 109/49 0.7 0.1 112/46 0.6 £ 0.1 37/121 0.6 0.1 92/66 0.7 +0.1 56/102
1c2r 0.7 0.1 87/22 0.6 +0.2 25/84 0.7 +0.1 62/47 0.6+0.2 23/36 05+02 10/99 0.6+0.2 13/96 05+0.2 6/103 05+02 5/104
lcau 0.6+0.2 22/16 0.7+0.2 28/10 05+0.2 4/34 07+02 28/10 0.6+0.2 11727 07+02 26/12 05+02 7/31 0.6+0.2 19/19
lcew 0.8+0.0 I/11 05+03 39 0.6 £0.0 111 0.8+0.0 /11 06+0 /11 0504 2/10 0.0 £0.0 0/12 0.8+0.0 111
lcid 0.7 0.1 56/27 08+0.2 52/31 0.7 +0.1 60/23 0.7+0.1 59/24 08 +0.1 7716 07+02 28/55 0.8 +0.1 80/3 07+02 28/55
ldxt 0.6 £ 0.1 44/106 0.7 £0.1 89/61 0.6 £ 0.1 79171 0.7 0.1 111/39 05%02 6/144 07+02 46/104 0502 8/142 0.7 0.1 56/94
leaf 05+%02 10/50 0.6 £0.2 18/42 0.6+0.2 15/45 0.5+0.1 22/38 0402 3/57 0.6+02 17/43 04+02 3/57 0.6 0.1 28/32
lgky 0.6+0.2 12/17 07+0.2 14/5 05+02 5/14 0.6+0.2 14/5 0.6 +0.2 13/6 0.6+0.2 10/9 0.6 +0.2 13/6 07+0.2 12/7
llga 05%02 12/95 0502 10/97 05%02 9/98 0502 5/102 0.6 0.0 1/106 05+02 8/99 04+03 2/105 0403 3/104
Imdc 0.7 £0.1 59/56 07+02 42/73 0.7 +0.1 68/47 07+0.2 47/68 0.6 +0.1 39/76 0.6 £0.1 28/87 0.6 +0.2 16/99 0.6+0.2 18/97
Imup 0.7 +0.1 60/74 0.7 £0.1 73/61 0.7 +0.1 68/66 0.7 +0.1 77157 0.7 £0.1 99/35 07 +0.1 59/75 0.7 +0.1 112/22 0.7 £0.1 53/81
lonc 0702 53/69 0.6 £0.2 29/93 07+02 59/63 07+02 38/84 0.7 0.1 102/20  0.7+0.2 43/79 0.7 £0.1 86/36 0.7 +0.1 40/82
2afn 0.6 +0.1 80/39 0.6 £0.1 73/46 0.6 +0.1 22/97 0.6 +0.1 71/48 05+0.1 25/94 05+02 18/103 05+0.2 9/110 05+0.l1 17/102
2cmd 0.7 £0.1 1017128 0.6 £ 0.1 112/117 0.6 0.1 93/136 0.6 +0.1 103/126 0.6 0.1 102/127 0.6 £ 0.1 50/179 0.6 0.1 42/187 0.6 £0.1 58/171
2fbj 0.6+02 12/89 0.6 0.1 2477 0.6+0.2 7/94 0.6+0.2 13/88 0.6 0.1 32/69 0.6+0.2 11/90 0.6 £0.1 40/61 0.6 0.1 19/82
2mta 0.6 + 0.1 47/111 0.7+0.1 48/110 0.7 0.1 75/83 07+02 32/126 0.7=%0.1 104/54 0.7 £0.1 73/85 07 +0.1 13028 0.6+0.2  40/118
2pna 0.7 +0.1 41/97 0.7 0.1 73/65 07+02 37/101 0.7 0.1 71167 0.0+0.0 0/138 07+02 67/71 0.6 £0.2 12/126 0.7 £0.2 59179
2sim 05+0.2 4/90 04+03 3/91 0.0+ 0.0 0/94 0.6 £0.0 1/93 04+03 2/92 0.6 +0.0 1/93 04+03 2/92 0.0+ 0.0 0/94
4sbv 0.5+ 04 212 0403 2/2 04+03 2/2 0403 212 0.0+0.0 0/4 0.0+0.0 0/4 0.0+ 0.0 0/4 0.0+0.0 0/4
8ilb 0403 2/135 0.6 £0.2 117126 ~ 0.5+0.2 5/132 0.6+0.2 13/124 0.6 +0.1 43/94 05=%0.1 18/119  05+0.1 23/114  06+0.2 13/124
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Pearson correlation between RMSD of Ca atoms and residue-position Zscores of structure-models in MOULDER decoy set. In the first column is shown the code of the native protein used to generate the
decoys of a model/target set. Next columns show: i) the average of Pearson correlation (Average) of those models with RMSD from the native structure smaller than 7A and using only correlations higher
than 0.5; and ii) the ratio P/N, being P the number of models with correlation larger than 0.5 and N those with correlation smaller than or equal to 0.5 among models with RMSD larger than 7A. Residue-

position Zscores are: Sc ZEC[f L SCZE i Z AEC/; , ZE,in and the differences of Sc ZE Cy and ScZE,,;, of the decoy conformers with respect to their native structure (ASc ZE c, and AScZE,;). Pearson

correlations between Cor RMSDs and Zscores are denoted as C(Zscore) - in even columns -, while correlation of Cae RMSDs and Zscores normalized by length are indicated as C, (Zscore) - in odd columns


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1bbh
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1c2r
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1cau
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1cew
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1cid
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1dxt
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1eaf
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1gky
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1lga
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1mdc
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1mup
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1onc
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2afn
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2cmd
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2fbj
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2mta
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2pna
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2sim
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=4sbv
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=8i1b

BMC Structural Biology 2009, 9:71

sets, because for fisa_casp3 and Imds sets the number of
near-native conformations is small.

Local conformation assessment

ZE C, and ZE_;, scores were used to check the local con-

formation. First, each residue was substituted by the
remaining 19 possibilities (assuming that there are only
20 possible types of amino-acids) and the Zscores ( ZEC/j

and ZE ;) were recalculated. This produced 20 Zscores
(one for the original amino-acid of the protein-sequence
and 19 mutations for each position in the sequence) for
ZEc, and ZE;,. They were normalized with the 20

Zscores and they were transformed into single scores per
residue-position named scanning-Zscores Sc ZEc, and

ScZE,in, Tespectively. The normalization is obtained with
the formulae: ScZE = (ZE-u)/o; where ZE is the corre-
sponding Zscore with the original sequence (ZEC[j and

ZE,.in); 1 is the average of the scores with the 19 substitu-

tions plus the original sequence and o the standard devi-
ation. Second, a Zscore was calculated for each residue-
position "i" by summing only the terms of equation 5 in
which residue "i" participates (set I'; in equation 5) and
normalizing it into a Zscore with the energy terms of 1000
randomly shuffled sequences (see above). We obtained
two Zscores for each residue-position from this second
method (using CACp or min force-fields) that were

named residue-position Zscores Z,Ec ~—and Z,E,

respectively.
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Supplemental table S2: Differences of AUC and p-value of signifi-
cance for scoring functions applied on MOULDER decoy sets. Results
obtained with the program StAR to assess the statistical significance of the

observed difference between the scoring functions ZE Cp ZE,;,y DOPE,

DFIRE, GA,,, and Prosa2003 when used as binary classifiers of the set
of decoys of MOULDER. The upper right triangular part of the matrix
shows the difference of the area under the curve of the ROC curves of true
positive rate versus false positive rate. The lower left triangular part of the
matrix shows the significant p-values of each pairwise comparison of clas-
sifiers (we assume that p-values smaller than 0.01 imply that the differ-
ences are significant). P-values higher than 0.01 are shown in red, and
p-values between 0.01 and 0.001 in blue.
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sifiers of the set of decoys of 4state_reduced. The upper right triangular
part of the matrix shows the difference of the area under the curve of the
ROC curves of true positive rate versus false positive rate. The lower left
triangular part of the matrix shows the significant p-values of each pair-
wise comparison of classifiers (p-values smaller than 0.001 imply that the
differences are significant). P-values higher than 0.01 are shown in red,

and p-values between 0.01 and 0.001 in blue.
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Additional file 4

Supplemental table S1. Averages and deviations of the ¢ parameters
obtained with the CB-Cp and min potentials. Results obtained for each
subset on the 5-fold test are indicated in columns 1-fold, 2-fold, 3-fold, 4-
fold and 5-fold. Parameter optimization: A total of 209 ¢ parameters
are obtained for environment pairs expressed as a triad of polar character,
secondary structure and exposure degree with min and Cp potentials.
Using a 5-fold procedure we obtain the average and standard deviation
for each of them. About 15% of the parameters show less than 50% devi-
ation, while around 50% show deviations larger than 100%. The largest
percentages of deviation for Cp potentials are obtained for [n-H-E:n-H-E]
and [n-H-E:p-H-E], with more than 1000% deviation with respect to the
average, while the largest deviation with the min potentials are for [p-C-
E:p-E-B], [n-C-E:n-E-B] and [n-H-E:n-E-B], also with more than
1000% deviation. Among the most stable parameters, the minimum aver-
age values of CP potential and min potential are for [p-E-E:p-E-E| (-210
+ 66 kJ) and [n-E-E:n-E-E] (-210 + 74 kJ), respectively. These large devi-
ations imply that these parameters cannot be significant on the prediction
of correct folds. This is in agreement with equation 2 (main text), where
the term ZECMP was neglected (see text). Besides, the values cannot be
used to further biological explanations, as they dramatically depend on the
size and variability of data.
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