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Negative interactions determine Clostridioides
difficile growth in synthetic human gut
communities
Susan Hromada1,2, Yili Qian1 , Tyler B Jacobson3 , Ryan L Clark1, Lauren Watson4,5, Nasia Safdar4,5,
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Abstract

Understanding the principles of colonization resistance of the gut
microbiome to the pathogen Clostridioides difficile will enable the
design of defined bacterial therapeutics. We investigate the ecologi-
cal principles of community resistance to C. difficile using a synthetic
human gut microbiome. Using a dynamic computational model, we
demonstrate that C. difficile receives the largest number and magni-
tude of incoming negative interactions. Our results show that C. dif-
ficile is in a unique class of species that display a strong negative
dependence between growth and species richness. We identify
molecular mechanisms of inhibition including acidification of the
environment and competition over resources. We demonstrate that
Clostridium hiranonis strongly inhibits C. difficile partially via
resource competition. Increasing the initial density of C. difficile can
increase its abundance in the assembled community, but community
context determines the maximum achievable C. difficile abundance.
Our work suggests that the C. difficile inhibitory potential of defined
bacterial therapeutics can be optimized by designing communities
featuring a combination of mechanisms including species richness,
environment acidification, and resource competition.
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Introduction

Interaction with native members of human gut microbiota inhibits

the ability of gastrointestinal pathogenic strains of Clostridioides

difficile, Salmonella enterica, and Escherichia coli to secure an

ecological niche and cause infection (Buffie & Pamer, 2013). The

importance of colonization resistance by gut microbiota has been

particularly highlighted in C. difficile infections, where treatment

with fecal microbiota transplants (FMT) from healthy donors has

proven astonishingly effective in eliminating the symptoms of

C. difficile (Dowle, 2016). Because FMT has notable risks includ-

ing the transfer of antibiotic-resistant organisms, potential associa-

tions with flares of inflammatory bowel disease, and in rare cases

death (Wang et al, 2016; Chen et al, 2018; DeFilipp et al, 2019),

defined bacterial therapeutics that have been well-characterized

and standardized are needed to improve the safety and repro-

ducibility of living bacterial therapeutic treatments. However, a

key challenge to the design of effective and safe bacterial thera-

peutics is the vast design space of presence and absence of

hundreds to thousands of potential organisms. Improving our

understanding of the ecological principles of community resistance

to C. difficile invasion could guide the design of maximally effec-

tive and safe therapeutics.
Multiple synthetic communities that inhibit C. difficile either

in vitro or in vivo using murine models have been identified (Tvede

& Rask-Madsen, 1989; Lawley et al, 2012; Petrof et al, 2013; Buffie

et al, 2014; Ghimire et al, 2020; Pereira et al, 2020). The majority of

the defined communities are found by screening reduced complexity

communities composed of isolates from a stool sample. The isolates

are combined either randomly or selected based on phylogenetic

diversity (Lawley et al, 2012; Petrof et al, 2013; Ghimire et al,

2020). Other C. difficile inhibiting communities have been more

rationally designed based on predicted mechanisms of resource

competition (Pereira et al, 2020) or statistical analyses of human

and murine gut microbiome data that identify taxa that correlate

with infection resistance (Buffie et al, 2014). However, the design

process for therapeutic synthetic microbial communities frequently

does not exploit information about interspecies interactions or

molecular mechanisms. A deeper understanding of the ecological
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and molecular principles of communities that inhibit C. difficile

could inform the rational design of therapeutic consortia.

In macroecology, there is a long history investigating principles

of invasion that has been more recently applied to microbial

systems (Mallon, van Elsas, et al, 2015). Invasion theory has identi-

fied four fundamental processes that determine the outcome of an

invasion: dispersal, selection, drift, and diversification (Kinnunen

et al, 2016). Biotic selection has been shown to be a key determi-

nant of the outcome of an invasion, wherein higher diversity

communities can competitively exclude an invader by reducing the

availability of ecological niches and efficiently utilizing resources

(Dillon et al, 2005; van Elsas et al, 2012; Ketola et al, 2017).

However, community biodiversity does not always correlate with

invasion outcome, as other biotic interactions (e.g., production of

antimicrobial molecules), abiotic selection factors (e.g., environ-

mental pH, resource availability) and dispersal, drift, and diversifi-

cation processes each contribute to the outcome of invasion. For

instance, in the case of a plant pathogen, the structure of the

resource competition network was a better predictor of invasion

outcome than biodiversity (Wei et al, 2015). In multiple invasions

of microbial communities, the dispersal factor of the initial invader

abundance (i.e., propagule pressure) was found to be the key deter-

minant of the outcome of invasion (Acosta et al, 2015; Ketola et al,

2017; Kinnunen et al, 2018).

Synthetic communities composed of known organisms can be

used to investigate the driving factors of invasion outcome (Wei

et al, 2015; Ketola et al, 2017). Synthetic communities enable

control of initial inoculum (i.e., organism presence/absence and

initial abundance), which can be manipulated to understand the

ecological and molecular mechanisms influencing invader growth.

Dynamic computational models informed by the experimental

measurements such as the generalized Lotka–Volterra (gLV) model

can be used to decipher microbial interactions and predict commu-

nity assembly (Mounier et al, 2008; Marino et al, 2014; Gonze et al,

2018). Previous modeling efforts with synthetic communities have

revealed that pairwise interactions are informative of community

assembly, making the characterization of lower-order assemblages a

powerful way to predict the behaviors of multispecies communities

(Venturelli et al, 2018).

In this work, we use a defined synthetic gut community that

represents the phylogenetic diversity of natural gut microbiota to

study the determinants of C. difficile invasion success. To decipher

microbial interactions and make predictions of community assembly

and invasion, we use our data to construct a gLV model of our

system and demonstrate that our model can accurately predict

community assembly. Based on the inferred gLV interaction

network, we demonstrate that negative interactions dominate the

growth of C. difficile, which is a unique feature compared with all

other species in our system. We identify multiple mechanisms that

contribute to the inhibition of C. difficile growth including resource

competition and external pH modification, highlighting that the

mechanisms of inhibition of C. difficile vary across community

contexts. Guided by our model, we identify a key closely related

species, Clostridium hiranonis, that inhibits C. difficile growth in dif-

ferent synthetic communities. To investigate the ecological factors

influencing invasion, we study the effect of propagule pressure and

species richness on C. difficile growth. Our results show that C. diffi-

cile abundance exhibits a strong inverse relationship with species

richness across a wide range of community contexts, and that this

relationship is not universal to all species in our community. While

increasing the propagule pressure of C. difficile can increase its

abundance in the community, the sensitivity of each community to

propagule pressure and the maximum saturating abundance of

C. difficile are dictated by the microbial interaction network. We

show that microbial communities feature a wide range of resistances

to C. difficile and multiple mechanisms of C. difficile inhibition.

Therefore, information about ecological and molecular mechanisms

could be exploited to design bacterial therapeutics to inhibit C. diffi-

cile.

Results

C. difficile coexists in coculture with a subset of gut microbes

We sought to understand the ecological principles of C. difficile

invasion using synthetic gut communities (Fig 1A). As a representa-

tive community, we chose a consortium of 13 prevalent gut

microbes spanning the major human gut phyla Bacteroidetes, Firmi-

cutes, Actinobacteria, and Proteobacteria (Forster et al, 2019). The

community features Clostridium scindens, a species previously

shown to inhibit growth of C. difficile in gnotobiotic mice (Buffie

et al, 2014), and a well-characterized set of 12 diverse species whose

interactions on community assembly have been previously studied

and computationally modeled (Venturelli et al, 2018) (Fig 1B).

We used this synthetic gut community to investigate interspecies

interactions influencing C. difficile growth. To decipher interspecies

interactions driving C. difficile growth, we assembled combinations

of species in microtiter plates in an anaerobic chamber and

measured cell density by absorbance at 600 nm (OD600) and

community composition by 16S rRNA gene sequencing at time

points of interest (Materials and Methods). The absolute abundance

of each species was calculated by multiplying its relative abundance

from 16S rRNA gene sequencing by OD600 (“calculated OD600”).

Time-series measurements of species absolute abundance were used

to infer the parameters of the gLV model (Fig 1C). The gLV model is

a system of coupled ordinary differential equations that captures the

growth rate and intra-species interactions of single-species and

interspecies interactions that modify the growth dynamics of each

species. The gLV model can be used to decipher interspecies interac-

tions and predict the dynamics of all possible subcommunities

within a larger system (Venturelli et al, 2018; Clark et al, 2021) and

thus can be used to study the interspecies interactions between

C. difficile and the resident gut community (i.e., all species exclud-

ing C. difficile).

We first characterized the temporal behavior of pairwise commu-

nities of C. difficile with each resident gut bacteria since we hypoth-

esized that these direct interactions would have the largest impact

on C. difficile growth compared with the interactions between resi-

dent gut bacteria. To this end, each resident species was grown

alone and in coculture with C. difficile, specifically the R20291 refer-

ence strain of the epidemic ribotype 027 (Exp1, Fig 1D and E). A

summary of all experiments throughout this work can be found in

Appendix Table S1. Since variation in initial species proportions

have been shown to influence community assembly (Wright &

Vetsigian, 2016; Venturelli et al, 2018), we inoculated the pairs at
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1:1 and 1:9 ratios of C. difficile to resident species based on OD600

values (Fig 1E, Appendix Fig S1). The communities were passaged

using a 1:20 dilution at 26 and 52 h to observe community assembly

over three batch culture growth cycles to understand the longer-

term behavior of the consortia.

Over this period of time, C. difficile and the resident species coex-

isted (both species present at greater than 0.05 OD600 after 78 h) in

19 of 33 (56%) conditions of 1:1 initial ratio, and 15 of 31 (48%)

conditions of 1:9 initial ratio (Fig 1E, Appendix Fig S1). Although

C. difficile and Bacteroides species coexisted in coculture over this

period, the abundance of C. difficile was reduced compared with its

abundance in monospecies. Bacteroides thetaiotaomicron and

Bacteroides ovatus strongly inhibited C. difficile, reducing C. diffi-

cile’s carrying capacity in the final growth passage to 17 and 42% of

its monospecies carrying capacity, while Bacteroides uniformis and

Bacteroides vulgatus moderately inhibited C. difficile’s carrying

capacity to 72 and 73% of its monospecies carrying capacity (Fig 1D

and E). Bacteroides species have been shown to inhibit C. difficile

growth (Mullish et al, 2019; Ghimire et al, 2020; Pereira et al, 2020)

via suggested mechanisms of competition for mucosal carbohy-

drates or toxicity due to secondary bile acids (Mullish et al, 2019;

Pereira et al, 2020). Because our media does not contain mucins or
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Figure 1. Investigating the ecological principles of C. difficile invasion using a diverse synthetic human gut community.

A C. difficile (CD) invasibility is hypothesized to depend on initial invader density, species richness, environmental pH, and resource availability.
B Phylogenetic tree of 13-member resident synthetic gut community and C. difficile based on concatenated alignment of 37 marker genes.
C Schematic of experimental and modeling workflow. Synthetic communities are cultured in microtiter plates in anaerobic conditions and incubated at 37°C. The

absolute abundance of each species is determined by measuring cell density at 600 nm (OD600) and community composition using multiplexed 16S rRNA
sequencing. Absolute abundance data are used to infer the parameters of a generalized Lotka–Volterra (gLV) model.

D Absolute abundance (OD600) of monospecies over time for three growth cycles. Datapoints indicate experimental biological replicates. Lines indicate simulations
using the generalized Lotka–Volterra Full Model (trained on monospecies, pairs, and multispecies data, see Materials and Methods). Thin horizontal gray line
indicates abundance threshold of 0.05 OD600.

E Absolute abundance (calculated OD600) of pairwise communities containing C. difficile over time for three growth cycles. Species were inoculated at an equal
abundance ratio of C. difficile to resident species based on OD600 measurements. Datapoints indicate experimental data replicates. Lines indicate simulations using
the generalized Lotka–Volterra Full Model (trained on monospecies, pairs, and multispecies data, see Materials and Methods). Thin horizontal gray line indicates
abundance threshold of 0.05 OD600. Thick horizontal gray line indicates C. difficile monospecies maximal OD600 of 0.36. Calculated OD600 is the product of 16S
relative abundance and community OD600.

Data information: In D and E, n = 1–3 biological replicates (See Appendix Table S4 for replicate information of each condition).
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bile acids, the observed inhibition indicates a separate inhibition

mechanism of C. difficile by Bacteroides species. We also identified

closely related species that inhibit C. difficile including Clostridium

hiranonis, the closest relative to C. difficile in the system (Fig 1B),

which reduced C. difficile carrying capacity in the first growth

passage to 59% of its monospecies carrying capacity (in the second

and third passages, C. hiranonis became extinct and the inhibition

was relieved). The next closest relative, Eubacterium rectale,

reduced C. difficile’s carrying capacity in the third growth passage

to 38% of its monospecies carrying capacity (Fig 1D and E). In sum,

these data show that C. difficile can coexist over multiple batch

culture cycles with a subset of species in our community.

Abundance of C. difficile in multispecies communities is inversely
related to species richness

We next sought to understand whether the growth inhibition of

C. difficile observed in a subset of pairwise communities persisted

in multispecies communities and to identify the ecological principles

governing C. difficile’s growth in multispecies communities. In order

to design multispecies communities to experimentally characterize,

we created a gLV model of our system trained on our monospecies

data (Fig 1D), pairs data (Fig 1E), and previously published data of

resident species pairs (Venturelli et al, 2018). We inferred an initial

set of parameters of the gLV model (“Preliminary Model”,

Appendix Fig S2A, Dataset EV1) based on these data (Table 1) and

used the model to predict the abundance of C. difficile at 48 h in all

possible 2–13 member resident communities (8,178 total communi-

ties, Appendix Fig S2B). Using the predictions from the Preliminary

Model, we selected a set of 94 2–13 member communities whose

C. difficile abundance spanned the full range of predicted C. difficile

abundances and featured approximately equal representation of

species at various initial species richness (number of species in the

resident community).

We experimentally assembled these communities with an equal

initial abundance of all species (including C. difficile) and measured

the composition of communities after 48 h (Exp2). We added C. dif-

ficile to communities at 0 h to investigate interspecies interactions

in a perturbed, low-density environment that could mimic a distur-

bance such as antibiotic treatment. We measured the community

composition at 48 h as the Preliminary Model predicted that the

majority of communities had reached stationary phase by this time.

It is possible that the measured community compositions after this

single batch culture cycle (short-term dynamics) could differ from

the composition of the communities after multiple dilution cycles

(long-term dynamics). However, measuring the community compo-

sition at the end of a single batch culture cycle allowed us to investi-

gate the ecological and molecular factors influencing C. difficile

growth in a wide range of community contexts that varied in the

presence/absence of species and species richness levels.

We first looked at the relationship between initial species rich-

ness and C. difficile abundance in this dataset. The biodiversity–
invasibility hypothesis holds that species-rich communities have a

higher fraction of ecological niches occupied, which reduces the

availability of niches for invader species and thus enhances resis-

tance to invasion relative to low-richness communities (Elton,

1958). In agreement with the ecological theory, the mean C. difficile

abundance across different communities decreased with species

richness (Fig 2A). The negative relationship between species rich-

ness and C. difficile abundance remained the same whether richness

was evaluated at the initial or final time point (Fig 2A, Appendix Fig

S3A). Notably, C. difficile did not establish in any communities with

richness greater than eight. The full community (13 resident

members) excluded C. difficile from the community by 48 h. This

resistance of the full community was observed not only with the

ribotype 027 strain, but also for three individual clinical isolates of

C. difficile that originated from patients within 72 h of their Clostrid-

ioides difficile Infection (CDI) diagnosis (Watson et al, 2019) (Exp6,

Appendix Fig S3B, Materials and Methods).

We wanted to understand whether the strong inverse relation-

ship between species richness and C. difficile abundance could be

explained by its interactions with the community. To investigate this

question, we inferred a new set of gLV model parameters (“Full

Model”, Fig 2B, Dataset EV2) using measurements of monospecies,

pairwise and multispecies consortia (Table 1) and found that the

Full Model had a high goodness of fit to the training data (Fig EV1A,

Pearson r = 0.89, P = 0.0). To validate the predictive capability of

the Full Model, we held out 24 randomly sampled communities

from the training data set that spanned a broad range of species

richness and C. difficile abundance (Fig EV1B) and found that the

model predicted the community composition of the held-out dataset

with high accuracy (Fig 2C, Pearson r = 0.84, P = 6*10−52). In

contrast, the Preliminary Model trained on monospecies and pairs

was substantially less predictive of these 24 multispecies communi-

ties, indicating that the model required information from the multi-

species experiments (Fig EV1C, Pearson r = 0.52, P = 1*10−14). We

performed parameter uncertainty analysis to determine whether the

parameters were sufficiently constrained by the data using

Metropolis–Hastings Markov chain Monte Carlo (MCMC) (Materials

and Methods). The coefficient of variation (CV) of 82% of the param-

eters was < 0.05 (CV ranged from 0.006 to 0.06), indicating that the

parameters were sufficiently constrained by the data (Fig EV1D).

Strikingly, in the interspecies interaction network (Fig 2B), all

species inhibited C. difficile. C. difficile positively impacted most

species in the community, which combines with the negative incom-

ing interactions to generate multiple negative feedback loops on the

growth of C. difficile. Increasing species richness increases the

number of negative feedback loops on C. difficile’s growth, provid-

ing insight into the negative relationship between C. difficile abun-

dance and species richness. C. difficile is unique in its large number

and magnitude of incoming negative interactions in the system

(Fig 2D). Because of this, we hypothesized that other species may

not display the same strong inverse relationship between abundance

Table 1. Data used for gLV models.

Model Data

Preliminary Model Exp1
Exp2
Pairwise communities from Venturelli et al (2018)

Full Model Exp1
Exp2
Exp3
Exp5
Exp6 (except for MS002, MS010, MS011 data)
Exp8
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in communities and richness. For example, a species with many

positive incoming interactions may have a growth benefit in high

richness communities containing growth-promoting species.

We analyzed the relationship between abundance and richness for

each species in multispecies communities with and without C. diffi-

cile (Exp2 and Exp3, Fig 2E). Additionally, we used the Full Model to

simulate the abundance of each species in all possible communities

(16,383 total communities) to supplement our experimental data

(Fig 2E, gray points). To quantify the relationship between abun-

dance and richness for each species, we fit an exponential decay

model (y = ae−bx) to the data (solid colored lines) and simulations

(dashed gray lines). The decay constant of the experimental data fits

reveals that C. difficile, C. hiranonis, and Prevotella copri have strong

negative relationships between abundance and species richness

(b > 0.2, Fig 2F). However, Blautia hydrogenotrophica, B. vulgatus,

Desulfovibrio piger, and Eggerthella lenta displayed no relationship

between abundance and richness (b < 0.05). The decay constants fit

to the simulated data (Fig EV2A) showed agreement with those fit to

the experimental data (Fig 2F). For example, in the model, C. difficile

and C. hiranonis were strongly dependent on richness (b > 0.2) and

E. lenta and B. hydrogenotrophica displayed no relationship

(b < 0.05). The decay constants did not correlate with species growth

rate, so the relationship between abundance and richness cannot be

explained by whether a species was fast- or slow-growing (Fig EV2B).

C. hiranonis also features a large number of negative incoming inter-

actions, suggesting that the mechanism of C. hiranonis’s dependence

on richness could be similar to that of C. difficile (Fig 2D). Overall,

our data and model analysis shows that the abundance of C. difficile

has a strong inverse relationship with species richness and this rela-

tionship is not universal to all species.

Increasing propagule pressure increases C. difficile abundance in
synthetic communities

The propagule–pressure hypothesis dictates that increasing propag-

ule pressure, or the amount of invader (a product of its dispersal

frequency and abundance), increases the chance of a successful

invasion (Lockwood et al, 2005). To characterize the effect of

propagule pressure in our system, we next looked at the relationship

between the propagule pressure of C. difficile and its abundance at

48 h. In our system, we add C. difficile to the system a single time-

point, so the propagule pressure of C. difficile is only affected by

initial abundance of C. difficile. In our experiments, we define

propagule pressure as the initial fraction of C. difficile. We analyzed

the relationship between initial fraction of C. difficile and final abun-

dance of C. difficile in the 2–13 member multispecies communities

(Exp2, gray data points in Fig 3A) in addition to measurements of

15 3–4 member resident communities (Exp4, Appendix Table S2).

We focused on 3–4 member communities because communities in

this narrow richness range featured a wide range of C. difficile abun-

dances at 48 h (Fig 2A). We chose 15 communities with a wide

range of predicted C. difficile abundances. We inoculated these

communities at multiple species ratios and measured the composi-

tion over time (colored data points in Figs 3A and EV3A). In agree-

ment with the theory, the final abundance of C. difficile correlated

with the initial fraction of C. difficile in the community (Fig 3A,

Pearson r = 0.75, P = 1*10−23). In all 15 3–4 member communities,

the abundance of C. difficile at 48 h was higher in communities

inoculated with a high initial fraction of C. difficile (approximately

65% of total community biomass) compared with a low initial frac-

tion of C. difficile (approximately 10% of total community biomass)

(Fig 3A, inset). This indicates that increasing propagule pressure of

C. difficile can increase its abundance in the community at 48 h.

For a set of 3–4 member communities, we performed a similar

experiment but increased the number of tested initial fractions to

better resolve the relationship between propagule pressure and

abundance at 48 h (Exp5, Fig 3B). Increasing the propagule pressure

of C. difficile yielded higher C. difficile abundance in the assembled

community within a given range. However, the abundance of C. dif-

ficile approached a similar maximum abundance for high initial frac-

tions beyond a threshold. The abundance of C. difficile at saturation

in the community varied in different subcommunities, suggesting

that the microbial interaction network determined the maximum

abundance of C. difficile. We defined the sensitivity to propagule

pressure as the initial invader fraction that resulted in the half-

maximal abundance of the invader at 48 h, analogous to the EC50

◀ Figure 2. Growth of C. difficile decreases with community richness.

A Swarmplot of C. difficile (CD) absolute abundance (calculated OD600) at 48 h in 94 subcommunities as a function of initial species richness. Datapoints indicate
mean of biological replicates. Line represents median, box edges represent first and third quartiles, and whiskers indicate the minimum and maximum. Outliers are
denoted by diamonds. Calculated OD600 is the product of 16S relative abundance and community OD600.

B Heatmap of interspecies interaction coefficients of the generalized Lotka–Volterra model (gLV) Full Model.
C Scatterplot of absolute abundance (calculated OD600) versus predicted absolute abundance by the gLV Full Model in 24 held-out communities (Pearson r = 0.84,

P = 6*10−52). Error bars represent one SD from the mean of biological replicates. Datapoint color indicates species identity. Gray line indicates y = x, or 100%
prediction accuracy. Calculated OD600 is the product of 16S relative abundance and community OD600.

D Box plot of incoming interspecies interactions for each species in gLV Full Model. Stars represent statistical significance between C. difficile and each resident species:
*P < 0.05, **P < 0.01, ***P < 0.001 according to an unpaired t-test. Line represents median, box edges represent first and third quartiles, and whiskers indicate the
minimum and maximum. Outliers are denoted by diamonds.

E Subplot of the absolute abundance of each species at 48 h as a function of initial species richness in all 16,370 possible subcommunities of 2–13 species simulated by
the gLV Full Model (gray data points) and in 204 experimentally measured subcommunities (mean value of biological replicates, colored data points). Circles
represent subcommunities included in Full Model training dataset. Triangles represent subcommunities not included in Full Model training dataset. Lines display
exponential decay model (y = ae−bx) fit to simulated data (gray dashed line) and experimental data (solid colored line). Calculated OD600 is the product of 16S
relative abundance and community OD600.

F Barplot of decay constants b from exponential decay fit to experimental data in E. Colored datapoints are best fit parameters from five models, where each model
was trained on a randomly sampled subset of the data consisting of 4/5 of the experimental datapoints. Gray bar indicates best fit parameter value from model
trained on all data.

Data information: In A, C, and E, n = 1–3 biological replicates.
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of a dose–response curve (Fig 3C). The communities displayed dif-

ferent sensitivities to the initial fraction of C. difficile, with the EC50

ranging between 0.1–0.2. Community R (Appendix Table S2) was

the most sensitive to invasion by C. difficile. Therefore, while

increasing propagule pressure of C. difficile can increase its abun-

dance to a maximum threshold, the sensitivity to propagule pres-

sure and maximum saturating abundance of C. difficile are dictated

by the microbial interaction network.

In the experiments and simulations, the total initial OD600 was

held constant, resulting in lower initial OD600 of each species with

increasing richness (Materials and Methods). Therefore, we consid-

ered the possibility that C. difficile’s low abundance in high richness

communities (Fig 2A) could be a result of lower initial abundance.

To test this possibility, we introduced C. difficile into the full commu-

nity (richness of 13) at a range of initial fractions. We observed that

C. difficile grew to a higher abundance in the full community when

propagule pressure was increased, although the maximum abun-

dance was lower than in the majority of 3–4 member communities

(Fig 3B). Therefore, while increasing propagule pressure can partially

overcome the inhibiting effect of species richness on C. difficile

growth in the linear regime of the dose response, high richness still

reduces the maximum saturating C. difficile abundance.

The variation in C. difficile abundance at 48 h with propagule

pressures in our experiments could be a transient effect as a conse-

quence of being further away from the long-term composition of the

assembled community or history-dependent behavior that persists

long term. Our time-series data of 3–4 member communities indi-

cated that the abundance of C. difficile approached saturation by 48 h

in most of the communities (Figs 3A and EV3A). This suggests that

inoculating communities with high or low density of C. difficile

yielded distinct long-term abundances in these communities. In

contrast, stability analysis of our model (Materials and Methods)

found that all subcommunities are monostable and therefore have no

long-term history dependence. For example, our model simulations

for the six communities in Fig 3B predict that the strong dependence

of C. difficile abundance on propagule pressure is transient, as the

dependence at early times (12 h) is reduced at longer timescales and

converges to a final abundance independent of propagule pressure

since these communities are monostable (Fig EV3B–D). Therefore,

the gLV model may be missing information about the long-term

history-dependent behaviors of these communities.

When increasing the propagule pressure of C. difficile in the six

resident communities in Fig 3B, the composition of the resident

communities at 48 h varied with initial C. difficile abundance. To
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Figure 3. Impact of initial density on the growth of C. difficile.

A Scatterplot of C. difficile (CD) absolute abundance (calculated OD600) at 48 h in communities as a function of the initial fraction of C. difficile. C. difficile was
introduced into the communities at 0 h. Gray data points are 2–13 member resident communities measured in Fig 2A. Colored data points are 3–4 member
communities measured at two initial conditions: low density (approximately 10% of total community OD600) or high density (approximately 65% total community
OD600). Gray line indicates a linear regression (y = 0.25x-0.01, Pearson r = 0.75, P = 1*10−23). Transparent data points indicate biological replicates and are
connected to the corresponding mean values by transparent lines. Inset: Abundance of C. difficile at 48 h in communities invaded with low density or high density.
Gray y = x line indicates no change in abundance. Calculated OD600 is the product of 16S relative abundance and community OD600.

B Absolute abundance (ODO600) of C. difficile at 48 h as a function of the initial fraction of C. difficile in different synthetic communities. C. difficile was added to
communities at 0 h. Datapoints indicate biological replicates. Lines indicate Hill function fits (Materials and Methods). Resident species richness (rh) at 0 h is
indicated in legend. Calculated OD600 is the product of 16S relative abundance and community OD600.

C Initial fraction of C. difficile corresponding to the half-maximum abundance (EC50) inferred based on the fitted Hill functions in B for a subset of communities with
sufficient measurements to constrain the function parameters. Red circles indicate the resident species richness at 0 h.

D Heatmap of the fold change of species absolute abundance (mean value of biological replicates, n = 3) in the full community with 5–60% initial C. difficile compared
to 0% initial C. difficile condition. Calculated OD600 is the product of 16S relative abundance and community OD600. Stars represent statistical significance:
*P < 0.05, **P < 0.01, ***P < 0.001 according to an unpaired t-test.

Data information: In A, n = 1–3 biological replicates. In B, n = 1–3 biological replicates (see Appendix Table S4 for replication information of each condition). In D, n = 3
biological replicates.
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quantify this variation, we computed the normalized Euclidean

distance between the resident community composition in the pres-

ence and absence of C. difficile (Materials and Methods). The Eucli-

dean distance correlated with the abundance of C. difficile in the

community in our experimental data (Appendix Fig S4A, Pearson’s

r = 0.61, P = 6*10−13) as well as in simulations of all 1–13 member

resident communities invaded with C. difficile 6 h after inoculation

(Appendix Fig S4B, Pearson’s r = 0.58, P = 0.0). These data indicate

that in general, higher abundance of C. difficile results in a larger

impact on the composition of the resident community. However, the

unexplained variation in Euclidean distance for a fixed C. difficile

initial abundance suggests that interspecies interactions also impact

the extent to which the resident community is altered by the pres-

ence of C. difficile.

In the full community, we observed that the abundance of D. piger

and B. hydrogenotrophica significantly increased in communities with

higher C. difficile, while the abundance of B. vulgatus significantly

decreased (Fig 3D). These trends were observed in the full commu-

nity with the ribotype 027 strain of C. difficile as well as the full

community with individual clinical C. difficile isolates (Fig EV4A).

The interaction network from our model (Fig 2B) features a positive

interaction between C. difficile and B. hydrogenotrophica, suggesting

that increasing initial C. difficile abundance directly promotes the

growth of B. hydrogenotrophica. However, the interspecies interaction

coefficients impacting D. piger and B. vulgatus were not consistent

with the observed trends with these two species. These data suggest

that the gLV model may not capture the effects of high initial C. diffi-

cile density on the growth of all resident gut species. While at high

initial densities C. difficile significantly increased the abundance

of B. hydrogenotrophica in the full community (Fig 3D),

B. hydrogenotrophica abundance was not affected in the 3-member

communities F, G, and N (Fig EV4B), highlighting that C. difficile’s

impact on a given species depends on the community context in addi-

tion to its initial abundance. We note that B. hydrogenotrophica and

D. piger share a similar metabolic niche as hydrogen consumers (Ber-

nalier et al, 1996; Loubinoux et al, 2002), suggesting C. difficile could

enhance their growth through a shared mechanism.

A subset of synthetic communities inhibits C. difficile via
acidification of the environment

While the community experiments revealed the importance of

species richness and propagule pressure on the establishment of

C. difficile in multispecies communities, there remains unexplained

variation in the data. For example, communities with the same rich-

ness invaded with equal abundances of C. difficile showed a wide

range of C. difficile abundances at 48 h (Fig 2A). Since environmen-

tal pH has been shown to influence C. difficile’s growth in previous

studies (Wetzel & McBride, 2020; Yuille et al, 2020), we turned next

to investigate how biotic modification of the environment alters the

growth of C. difficile. To this end, we grew the set of 15 3–4 member

communities for 6 h before invading with low or high initial densi-

ties of C. difficile to give the communities time to modify the envi-

ronment. At the time of invasion, we measured the composition of

the resident community and the pH of the media (Exp6, Fig 4A). To

understand the role of invasion timing on the growth of C. difficile,

we compared the C. difficile abundance in these communities

invaded at 6 h with communities invaded at 0 h (Exp5) (Fig 4B).

C. difficile’s ability to establish in multiple communities significantly

depended on the timing of introduction (Fig 4B), indicating that

biotic modification of the environment during those 6 h altered

C. difficile’s ability to grow.

Communities that lowered the pH of the media during the first 6 h

featured lower C. difficile abundance (Fig 4D). However, communi-

ties with lower pH at the time of invasion also had higher total

biomass (Fig 4D, inset). Since these variables are related due to

growth-coupled production of acidic fermentation end products,

either pH or resource competition could be responsible for inhibition

of C. difficile. Because C. difficile abundance increased with environ-

mental pH (Fig 4C), we hypothesized that growth inhibition was due

to changes in media pH. To test our hypothesis, we grew a set of the

communities and harvested and sterilized the community super-

natants after 6 h. We grew C. difficile in either the sterile supernatant

(Fig 4E) or a modified sterile supernatant wherein the pH was

adjusted to the pH of the fresh media to eliminate the impact of pH

on growth (Fig 4F). We quantified the growth of C. difficile as the

area under the curve (AUC) of C. difficile OD600 over 20 h, which is

influenced by both growth rate and carrying capacity. In Communi-

ties H, I, and K, which strongly inhibit C. difficile in both coculture

and supernatant, increasing the supernatant pH to the pH value of

fresh media eliminated the inhibition of C. difficile (Fig 4F), indicat-

ing that pH was the driving factor of C. difficile inhibition in these

community supernatants. Each of these communities contained an

abundant Bacteroides species (Appendix Table S2) whose fermenta-

tion end products acidify the media, suggesting Bacteroides species

are responsible for the inhibition via pH modification. We observed

the pH-dependent inhibition of C. difficile by CommI in several other

medias with varying buffering capacity and available substrates, indi-

cating this result is not specific to our media (Appendix Fig S5).

In contrast to this pH-dependent inhibition, the sterile super-

natant of Community O (CommO) composed of C. hiranonis, Collin-

sella aerofaciens, and B. hydrogenotrophica, whose pH did not

significantly differ from the pH of fresh media, inhibited C. difficile

regardless of pH adjustment (Fig 4E and F). This implies that this

community inhibits C. difficile via a pH-independent mechanism.

C. difficile was not inhibited by the sterile supernatant of Community

E (CommE) composed of C. hiranonis, D. piger, and E. lenta, which

uniquely had a higher pH than fresh media (Fig 4E). However, C. dif-

ficile’s growth was inhibited when the pH of the CommE sterile

supernatant was reduced to the pH of fresh media (Fig 4F). This

suggests that the sterile supernatant promotes C. difficile’s growth by

enhancing environmental pH and the community inhibits C. difficile’s

growth by a separate pH-independent mechanism. The growth inhibi-

tion by CommE was only revealed when the pH increase of the media

was eliminated, demonstrating an interplay of different mechanisms

influencing C. difficile growth within the same community.

We explored if the sensitivity of a species to environmental

pH correlated with its dependence on species richness as deter-

mined in Fig 2E. We measured the AUC of each species as a

function of initial environmental pH in monospecies and deter-

mined the slope of the line fit to these data (Fig EV5A), repre-

senting the sensitivity of species growth to external pH. Our

results demonstrated that there is no significant correlation

between sensitivity to species richness and sensitivity to pH (Fig

EV5C). Therefore, while acidification of the media is one mecha-

nism by which communities can inhibit C. difficile in our system,
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our results suggest that there are also pH-independent mecha-

nisms that underlie C. difficile’s strong inverse relationship

between abundance and species richness.

C. hiranonis inhibits C. difficile through a pH-independent
mechanism

We noted that the two communities that displayed pH-independent

growth inhibition (CommE and CommO) contained C. hiranonis,

which has a strong bidirectional negative interaction with C. difficile

in our Full Model (Fig 2B). Our model predicts that the abundance

of C. difficile at 48 h decreases with increasing initial abundance of

C. hiranonis in CommE, CommO, and the C. difficile-C. hiranonis

pair (Fig 5A). We confirmed this prediction experimentally (Exp7,

Fig 5B). C. difficile was inhibited even by low initial amounts of

C. hiranonis, featuring a significant decrease in growth between 0

and 10% initial C. hiranonis in CommE (> 4-fold decrease) and

CommO (> 1.5-fold decrease) (Fig 5B). The strength of inhibition of

C. difficile as a function of the C. hiranonis abundance was substan-

tially higher in CommE and CommO than in the C. hiranonis-C. difficile
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pair (Fig 5B). This result indicates that the other species in the

communities enhanced the inhibitory effect of C. hiranonis on

C. difficile growth.

We next considered the mechanism of C. difficile inhibition by

C. hiranonis. C. hiranonis is known to convert primary bile acids

into secondary bile acids which are inhibitory to C. difficile (Kita-

hara et al, 2001). However, with no primary bile acids in our media

we turned to other possible inhibition mechanisms. C. difficile was

inhibited by the sterile supernatants of CommE and CommO (Fig 4

E, Appendix Fig S6), indicating the inhibition effect does not require

direct cell contact. These mechanisms could include production of

antibiotics or toxic metabolic byproducts, modification of pH, or

competition over resources. C. hiranonis has been shown to

consume a broad range of metabolites in our media conditions

(more than any of the other species in our system) (Venturelli et al,

2018) and is known to contain genes for Stickland amino acid

fermentations, a major process for energy generation in C. difficile

(Ridlon et al, 2020). Therefore, C. hiranonis could inhibit C. difficile

by utilizing multiple resources that C. difficile consumes. We

performed exo-metabolomics using liquid chromatography–mass

spectrometry (LC-MS) of C. hiranonis and C. difficile supernatants

harvested at 20 h and found that the two species utilize an overlap-

ping set of metabolites in our media (Fig 5C). We identified seven

metabolites that significantly decreased (> 2-fold) in both super-

natants: acetyl-ornithine, glucose, glutamine, proline, pyruvate,

serine, and threonine.

We designed an experiment to provide insight into potential

resource competition between C. difficile and C. hiranonis over

these metabolites in coculture. We first determined the concentra-

tion of these metabolites in fresh media and in the supernatant of

C. hiranonis at 20 h using LC-MS with a standard curve of known

concentrations of each of the seven metabolites (Fig 5D). We then

adjusted the concentration of each of the seven metabolites in

C. hiranonis sterile supernatant to match the concentration in fresh

media. We grew C. difficile in these modified supernatants, as well

as supernatants modified to adjust all combinations of six or seven

of the metabolites. We quantified the growth of C. difficile as the

AUC of C. difficile OD600 over 48 h (Fig 5E). The fold change

between C. difficile growth in C. hiranonis supernatant compared to

fresh media was 23%, displaying strong inhibition consistent with

the inhibition observed in coculture (Fig 5B) and our interaction

network (Fig 2B). C. difficile grew significantly better in glucose-

adjusted supernatant (41% of fresh media growth) compared to

unmodified supernatant (23% of fresh media growth), but there

was no significant difference for any of the other six individual

metabolite adjustments. Replenishing all seven metabolites in the

supernatant significantly increased C. difficile’s growth to a similar

level as the glucose addition (45% of fresh media growth). Interest-

ingly, there was no significant difference between C. difficile growth

in the seven-compound supernatant and the six-compound super-

natant excluding glucose. Therefore, the metabolites excluding

glucose did not significantly impact C. difficile growth when added

individually but they did as a set. The fact that C. difficile grew

equally in all of the six-compound supernatants suggests metabolic

redundancy among this set of compounds. In sum, these data show

that replenishing the seven metabolites can partially relieve the

observed C. hiranonis-C. difficile inhibition. This suggests that

C. difficile is inhibited in C. hiranonis supernatant due to low

concentration of some subset of these metabolites which were

consumed by C. hiranonis. This is supported by our data that

showed these metabolites are also consumed by C. difficile in mono-

species. However, we cannot rule out that the addition of these

metabolites could compensate for the effects of different compound

(s) that inhibits C. difficile.

Because restoration of these compounds only partially relieved

the inhibition by C. hiranonis, we were curious about the mecha-

nism of the remaining inhibition. We considered the possibility that

C. hiranonis and C. difficile compete over other resources in addi-

tion to the seven identified above. To test whether the restoration of

other compounds could further relieve the inhibition, we supple-

mented concentrated media to the C. hiranonis supernatant (10X

concentrated ABB spiked in a 1:10 dilution into C. hiranonis super-

natant). After concentrated media supplementation, compounds that

were completely consumed by C. hiranonis were at 1× of their origi-

nal media concentration, and compounds not utilized by C. hira-

nonis were at 2× of their original media concentration. Therefore, if

◀ Figure 4. Impact of environmental factors on C. difficile invasion.

A Barplot of composition of communities invaded with C. difficile (CD) at low density (“LD”) or high density (“HD”). Color indicates species identity. Hash indicates
invasion time. Error bars represent one SD from the mean of biological replicates. Calculated OD600 is the product of 16S relative abundance and community
OD600.

B Scatterplot of the absolute abundance (calculated OD600) of C. difficile at 48 h in communities when introduced at 0 h versus 6 h at low density (approximately
10% community OD600). Transparent data points indicate biological replicates and are connected to the corresponding mean values by transparent lines. Line
denotes the x = y line corresponding to no change in growth. Color indicates community, see legend in D. Calculated OD600 is the product of 16S relative
abundance and community OD600.

C Lineplot of C. difficile OD600 at 48 h as a function of the initial environmental pH. Datapoints indicate biological replicates and line indicates mean value.
D Scatterplot of the absolute abundance (calculated OD600) of C. difficile at 48 h in invaded communities as a function of the environmental pH at time of invasion.

Fifteen 3–4 member communities were invaded with (▲) high-density C. difficile (approximately 33% community OD600) or (●) low-density C. difficile
(approximately 10% community OD600) at 6 h. Color indicates community. Vertical gray line indicates pH of fresh media. Inset: Scatterplot of environmental pH
and total community OD600 at 6 h. Transparent data points indicate biological replicates and are connected to the corresponding mean values by transparent
lines. Vertical gray line indicates environmental pH of fresh media. Calculated OD600 is the product of 16S relative abundance and community OD600.

E, F Bar plot of fold change of C. difficile growth in sterilized supernatants (E) or supernatants where the pH was adjusted to the pH of fresh media (F) compared to the
growth of C. difficile in fresh media. Growth was quantified as area under the curve (AUC) of OD600 from 0 to 20 h. Datapoints indicate biological replicates, bars
indicate mean value, and error bars represent one SD from the mean of biological replicates. Red line shows pH of community supernatants collected at 6 h (top)
and pH adjusted supernatants (bottom). Horizontal gray line indicates no change in growth compared to fresh media.

Data information: In A, B, and D, n = 1–3 biological replicates (see Appendix Table S4 for replication information of each condition). In C, n = 2 biological replicates. In E
and F, n = 3 biological replicates.
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resource competition alone was responsible for the inhibition, the

growth of C. difficile would be fully rescued in the supplemented

condition to the level of growth in fresh media. However, in the

supplemented supernatant, C. difficile exhibited 36% of its growth

in fresh media (Fig 5E). Therefore, these data suggest that the inhi-

bitory effect of C. hiranonis conditioned media is due to a
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Figure 5. C. hiranonis inhibits the growth of C. difficile.

A Lineplot of simulated C. difficile (CD) absolute abundance (OD600) at 48 h using the generalized Lotka–Volterra (gLV) Full Model as a function of the initial fraction of
C. hiranonis (CH) in different communities. Inset: Lineplot of simulated C. hiranonis absolute abundance (OD600) at 48 h in the gLV Full Model as a function of initial
fraction of C. hiranonis in the community.

B Lineplot of C. difficile absolute abundance (calculated OD600) at 48 h as a function of the initial fraction of C. hiranonis in the community. Inset: Lineplot of
C. hiranonis absolute abundance (calculated OD600) at 48 h in community as a function of initial fraction of C. hiranonis in the community. Datapoints indicate
biological replicates, and lines indicate mean values. Calculated OD600 is the product of 16S relative abundance and community OD600.

C Bipartite network of metabolite utilization and secretion by C. difficile and C. hiranonis monospecies after 20 h of growth. Metabolites that changed by at least
twofold compared to media control are shown. Edge width is proportional to the metabolite fold change.

D Scatterplot of concentration of seven metabolites in fresh media compared to C. hiranonis sterile supernatant.
E Bar plot of fold change of C. difficile growth in sterilized supernatants compared to the growth of C. difficile in fresh media. Growth was quantified as the area under

the curve (AUC) of OD600 from 0 to 20 h. Datapoints indicate biological replicates, and bars indicate mean value. Media spike condition is the addition of 1X fresh
media concentrated in a small volume. Stars represent statistical significance between condition and unmodified C. hiranonis supernatant: *P < 0.05, **P < 0.01,
***P < 0.001, and ns= not significant, according to an unpaired t-test. Bars of all significant conditions are shaded purple.

Data information: In C and D, n = 3 biological replicates. In B, n = 1–3 and in E, n = 3–5 biological replicates (see Appendix Table S4 for replication information of each
condition).
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combination of resource competition and a separate unknown inhi-

bitory mechanism. Further, the pH of C. hiranonis supernatant was

not significantly different from fresh media, eliminating pH as a

potential mechanism. To test whether a protein was responsible for

C. difficile inhibition, we inactivated proteins in the C. hiranonis

supernatant by either denaturing with heat (95°C for 1 h) or digest-

ing with the broad-spectrum protease Proteinase K. Our results

showed no significant difference in C. difficile growth in these two

treatments compared to no-treatment control, suggesting the inhibi-

tion by C. hiranonis is not due to proteinaceous antibiotics or

toxins. In sum, our results suggest that C. hiranonis partially inhib-

ited C. difficile via resource competition, but also inhibits C. difficile

via a protein-independent mechanism.

Discussion

We combined bottom-up construction of microbial communities

with dynamic computational modeling to investigate microbial

interactions impacting the growth of C. difficile. Our work demon-

strates that microbial communities feature a wide range of resis-

tances to C. difficile invasion. This variability in invasion outcome

as a function of community context indicates that the choice of

organisms is a major design factor that can be optimized to treat

C. difficile infections and motivates exploiting information about

ecological and molecular interactions in the design process. Previ-

ous efforts to design defined consortia for C. difficile inhibition used

top-down selections by reducing the complexity of cultured fecal

samples alone or combined with screening of antibiotic resistance

phenotypes (Lawley et al, 2012; Petrof et al, 2013). These methods

rely on a trial-and-error approach to discover inhibitory consortia

instead of testing consortia rationally designed to be inhibitory.

Some consortia have been rationally designed by combining

selected species in a bottom-up approach, but we note that these

selections use a single design criterion (Buffie et al, 2014; Pereira

et al, 2020). We identified principles of C. difficile invasion that

could be used as multiple criteria for designing inhibitory consortia

in future studies. Previous work has demonstrated mechanisms of

C. difficile inhibition by bile acid transformations (Buffie et al, 2014)

and mucosal sugar competition (Pereira et al, 2020). Our results

demonstrate that communities with high richness, communities that

acidify the environment, and communities that compete over limit-

ing resources utilized by C. difficile are promising candidates for

inhibiting C. difficile. In sum, these results suggest multiple target

phenotypes that could be combined to design an optimal defined

bacterial therapeutic to inhibit C. difficile.

To collect data on many multispecies communities to train our

model, we cultured communities for a single batch culture cycle.

This experimental design is informative for deciphering microbial

interactions since the system is farthest away from steady state in

the first batch culture cycle and thus has rich dynamic behaviors.

Although we did not characterize the long-term dynamics of multi-

species communities using multiple dilution cycles, we are able to

draw many insights into C. difficile’s interactions with synthetic gut

communities on the shorter timescale. Notably, C. difficile was the

only species that was inhibited by all other community members.

Infection by C. difficile disrupts the environment of gut bacteria by

causing diarrhea (i.e., reduces residence time for gut bacteria),

inducing intestinal inflammation, and altering the resource land-

scape (Fletcher et al, 2021), suggesting the possibility that gut bacte-

ria have evolved to negatively impact the growth of C. difficile in

order to promote their fitness in the gut.

Studies have shown that gut microbiomes of patients with CDI

have significantly lower richness than healthy controls (Chang et al,

2008; Antharam et al, 2013), but this association does not distin-

guish whether CDI reduces the richness of gut microbiomes or low-

richness microbiomes are more susceptible to CDI. The striking

trend between richness and C. difficile abundance in our data (Fig 2

A) suggests that low-richness microbiomes are more susceptible to

CDI. Supporting this hypothesis, the susceptibility of low-richness

communities to invasion has been demonstrated in other microbial

systems (van Elsas et al, 2012; Mallon, Poly, et al, 2015). This

suggests that the reduction in gut microbiota richness by antibiotic

treatment (Dethlefsen & Relman, 2011) could underlie the increased

CDI risk that occurs after antibiotic use (Eze et al, 2017). Addition-

ally, the efficacy of FMTs may be due in part to the high richness of

stool samples which are estimated to have greater than one hundred

species (Qin et al, 2010).

Based on our work, high richness communities would be the

most effective bacterial therapeutics to inhibit C. difficile coloniza-

tion. The scalable manufacturing of high richness bacterial thera-

peutics is challenging, indicating the need for new manufacturing

techniques to reliably culture communities that maintain all species

as opposed to standard culturing of single species. Nevertheless, if

manufacturing of high richness communities remains a challenge,

our work suggests it is possible to design low-richness inhibitory

communities. While all high richness communities (eight species or

more) excluded C. difficile in our system, we found low-richness

communities that excluded C. difficile. For example, the 3–member

Community I excluded C. difficile as effectively as the full commu-

nity (Fig 3B). Corroborating these results, low-richness communities

as small as 5–7 members have been shown to inhibit C. difficile

in vitro and in murine models (Lawley et al, 2012; Buffie et al, 2014;

Pereira et al, 2020).

We demonstrated significant variation in the relationship

between species abundance and richness across species in our

community (Fig 2E and F). These trends are not explained by

species growth rate (Fig EV2B) or sensitivity to pH (Fig EV5C). In

addition, this variation in sensitivity to richness is not fully

explained by patterns in the inferred interspecies interaction

network. In our system, the abundance of B. hydrogenotrophica and

E. lenta did not vary with richness. Notably, these species are

unique in their ability as an acetogen to utilize hydrogen and carbon

dioxide (Bernalier et al, 1996) and utilize arginine (Sperry &

Wilkins, 1976), respectively. Therefore, orthogonal ecological

niches may represent one mechanism of low sensitivity in abun-

dance to richness. Further, the plasticity of a species’ ecological

niche in response to competition may influence its relationship

between abundance and richness. Future work will investigate these

potential mechanisms determining the relationship between abun-

dance and richness in larger communities and in vivo.

Bacteroides have been found to both inhibit and promote C. diffi-

cile growth in different environments (Ferreyra et al, 2014; Ghimire

et al, 2020; Pereira et al, 2020; Hassall et al, 2021), but in our

system all Bacteroides species inhibited C. difficile. We did not

observe a strong inhibition of C. difficile by C. scindens which has
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been previously shown to occur via production of secondary bile

acids that inhibit C. difficile germination (Buffie et al, 2014) presum-

ably due to the absence of bile acids in our media. Instead, in our

system the closest relative of C. difficile, C. hiranonis, was the stron-

gest inhibitor of C. difficile abundance. Addition of one of the

metabolites utilized by both C. difficile and C. hiranonis, glucose,

partially rescued C. difficile growth in C. hiranonis spent media (Fig 5

E), indicating glucose competition could be one mechanism of C. dif-

ficile inhibition. Inhibitory consortia could be designed to maximize

resource competition over carbohydrates such as glucose between

resident members and C. difficile. Because an estimated 20% of

carbohydrates such as glucose escape absorption by the host and are

present in the colon (Stephen et al, 1983; Anderwald et al, 2011),

carbohydrate competition is likely relevant in the colon environment.

We note that three of the co-utilized metabolites (proline, serine,

and threonine, Fig 5C) are amino acids used in Stickland fermenta-

tion, a major energy generation process found in C. difficile and many

other Clostridia (Mead, 1971). Recent work shows that the Stickland

fermenting Clostridium bifermentans suppressed C. difficile abun-

dance and prevented mortality in gnotobiotic mice while the non-

Stickland fermenter Clostridium sardiniense did not suppress abun-

dance or prevent mortality (preprint: Girinathan et al, 2020). The

study indicates that introducing competition over Stickland metabo-

lites is a relevant mechanism for C. difficile inhibition in vivo. Our data

suggest introduction of the gut microbe C. hiranonis into a community

could potentially intensify competition over the utilized amino acids.

Our data also indicate that C. hiranonis has an additional unknown

mechanism of C. difficile inhibition beyond resource competition. The

additional mechanism is not due to pH change and does not involve

an extracellular protein (Fig 5E). This leads us to speculate that the

inhibition could be due to a non-protein antibiotic produced by

C. hiranonis that is similar to the tryptophan-derived antibiotics

produced by C. scindens and Clostridium sordellii (Kang et al, 2019).

We showed that communities that reduce the external pH below

6.2 inhibit C. difficile in a pH-dependent manner, consistent with

studies showing that C. difficile has lower viability and rates of sporu-

lation in acidic environments (Wetzel & McBride, 2020; Yuille et al,

2020). We note that our in vitro system differs from the human gut,

lacking the pH-buffering secretion of bicarbonate by host intestinal

epithelial cells. However, the amount of bicarbonate buffer in our

media (4.8 mM) is within the estimated range in the gastrointestinal

tract (2–20 mM) (Litou et al, 2020). Additionally, the changes in pH

that we observe in our in vitro measurements are within the variation

seen in the colon, which has been shown to fluctuate between pH 5

and pH 8 (Koziolek et al, 2015). This suggests the observed pH

changes in our experiments could be physiologically relevant. We

also note an intriguing human cohort study that found a strong asso-

ciation between alkaline fecal pH and CDI (Gupta et al, 2016).

Although it is not known whether alkaline pH is a cause of conse-

quence of CDI, this study together with our data suggests that strate-

gies for pH-based inhibition of C. difficile in the colon are worth

further investigation. If reduced pH can inhibit C. difficile in the

colon, manipulation of the pH of the gut environment is a potential

microbiome intervention strategy to inhibit C. difficile. The pH could

be manipulated by bacterial therapeutics containing strong fermenters

or dietary substrates that increase fermentation (Chung et al, 2007).

While propagule pressure has been shown to determine invasion

success in microbial invasions (Acosta et al, 2015; Ketola et al,

2017; Kinnunen et al, 2018), we demonstrate that this applies to C. dif-

ficile in synthetic gut communities. Propagule pressure is known to be

important in murine C. difficile infections, where mice cohoused with

supershedders containing 108 CFU/g C. difficile in their feces became

colonized with C. difficile, whereas mice cohoused with low shedders

containing 102 CFU/g C. difficile did not become colonized (Lawley

et al, 2009). However, the relationship between C. difficile dosage and

incidence of CDI in humans is unknown. Our results suggest that the

density of C. difficile could be an important variable in the outcome of

C. difficile invasions in a clinical setting. While our data suggest the

variation in C. difficile abundance with propagule pressure can result

in long-term history dependence (Fig EV3A), the effects of propagule

pressure are transient in the model due to the absence of multistability

(Fig EV3B). Our model is not informed by long-term multispecies

community measurements and therefore may not accurately capture

the long-term dynamics of the system. Future work will determine the

long-term effects of propagule pressure on C. difficile abundance using

passaging or continuous culture and develop computational models

that can accurately predict these history-dependent behaviors.

Our absolute abundance method combines OD600 measurements

and 16S rRNA gene sequencing to determine the absolute abun-

dance of each species in multispecies communities. Biases in

genome extraction efficiency, 16S rRNA gene copy number, and

PCR amplification can impact measurements based on 16S rRNA

gene sequencing (Crosby & Criddle, 2003; Laursen et al, 2017; Lim

et al, 2018). We tested for potential bias in our workflow by measur-

ing the relative abundance of mixed cultures containing 10% C. dif-

ficile based on OD600 measurements (Appendix Fig S7). These

results indicate there was no significant bias in our method for these

communities. Previous work using this absolute abundance method

found that 75% of interactions were in qualitative agreement with

sterile supernatant experiments (Venturelli et al, 2018). Further,

85% of our inferred interspecies interactions in the Full Model were

in qualitative agreement with this previous study that studied a 12-

member subset of this community (Appendix Fig S8). Taken

together, these results indicate that our absolute abundance method

is reproducible across multiple studies and can decipher biologically

meaningful interspecies interactions despite any potential biases.

In sum, we identified ecological and molecular mechanisms of

resistance to invasion by C. difficile using a synthetic gut microbiome.

While our system lacks the full diversity of the human gut micro-

biome and a host–interaction component, many of our results support

principles of invasion theory based on a broad range of systems,

suggesting that some of these principles could be generalized to the

mammalian gut environment. Future work could create panels of gut

microbial communities that feature different weightings of the inhibi-

tory mechanisms identified in this work. These panels could be tested

in vitro for inhibition of C. difficile growth and promising candidates

could be introduced into germ-free mouse models to evaluate their

C. difficile inhibitory potential as bacterial therapeutics.

Materials and Methods

Strain and media information

The strains used in this work were obtained from the sources listed

in Appendix Table S3. The three clinical C. difficile isolates (MS002,
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MS010, and MS011) were C. difficile NAAT (GeneXpert) positive via

admission stool sample and toxin A (tcdA) and toxin B (tcdB) posi-

tive via in-house research PCR. Each patient was diagnosed with

and treated for CDI. Single-use glycerol stocks were prepared as

described previously (Clark et al, 2021). The media used in this

work are anaerobic basal broth (ABB, Oxoid), clostridial reinforced

medium (CRM, Difco), YP broth (Geva-Zatorsky et al, 2015), and

YBHI. YBHI broth recipe: BHI broth (Accumedia), 5 g/l yeast extract

(BD Bacto), 1 g/l D-cellobiose (Chem-Impex), 1 g/l D-maltose mono-

hydrate (Sigma-Aldrich), and 0.5 g/l L-cysteine (Sigma-Aldrich).

Starter cultures

Cells were cultured in an anaerobic chamber (Coy Lab products)

with an atmosphere of 2.5 � 0.5% H2, 15 � 1% CO2, and balance

N2. Single-species starter cultures were inoculated by adding 100 µl
of a single-use 25% glycerol stock to 5 ml of anaerobic basal broth

media (ABB). E. rectale starter cultures were supplemented with

33 mM sodium acetate (Sigma-Aldrich) and D. piger starter cultures

were supplemented with 28 mM sodium lactate (Sigma-Aldrich)

and 2.7 mM magnesium sulfate (Sigma-Aldrich). To begin experi-

ments with organisms in similar growth phases, starter cultures

were inoculated either 16 or 41 h prior to experimental setup,

depending on the growth rate of the organism (Appendix Table S3).

Inoculation of monospecies and pairs experiments

Starter cultures were diluted to 0.0022 OD600 in ABB (Tecan Infinite

Pro F200). For monospecies in Exp1, diluted cultures were added

directly to 96 deep well plates for final OD600 of 0.0022. For pairs in

Exp2, diluted cultures were combined into pairs in 96 deep well

plates at 1:1 or 1:10 volume ratios for final OD600 of 0.0011 or

0.00022 and 0.00198. Cultures were combined using a liquid hand-

ling robot (Tecan Evo 100). Plates were covered with gas-permeable

seal (BreatheEasy) and incubated at 37°C with no shaking.

Inoculation of multispecies community experiments

Starter cultures were diluted to 0.0066 OD600. Diluted cultures were

combined into communities in 96 deep well plates using a liquid

handling robot (Tecan Evo). The communities in Exp3 and Exp4

were created by combining equal volumes of each diluted starter

culture, so the initial OD600 of each species in the community was

0.0066 divided by the number of species. The communities in Exp5

and Exp7 were combined so that all non-C. difficile species had an

initial OD600 of 0.00165, and C. difficile had an initial OD600 of

0.00055 (10% of community) in the low-density condition of Exp5

and 0.009 (65% of community) in the high-density condition of

Exp5. In Exp7, the community OD600 was measured after 6 h of

incubation and C. difficile was added so that its OD600 was 10%

(low-density condition) or 33% (high-density condition) of the

community. The 3–4 member communities in Exp6 were combined

such that all non-C. difficile species had an initial OD600 of 0.00165,

and C. difficile had an initial OD600 of 0, 0.00026, 0.00055, 0.0012,

0.0021, 0.0033, 0.00495, and 0.0074 in the 3 member communities

and 0, 0.00035, 0.00073, 0.00165, 0.0028, 0.0044, 0.0066, and

0.0099 in the 4 member communities for initial fractions 0, 0.1, 0.2,

0.3, 0.4, 0.5, and 0.6, respectively. The full community in Exp6 was

combined so that all non-C. difficile species had an initial OD600 of

0.00047, and C. difficile had an initial OD600 of 0, 0.00032, 0.0015,

0.0026, 0.0041, 0.0061, 0.0092 for initial fractions 0, 0.1, 0.2, 0.3,

0.4, 0.5, and 0.6, respectively. The C. hiranonis titration communi-

ties in Exp8 were combined so that all non-C. hiranonis species had

an initial OD600 of 0.00165, and C. hiranonis had an initial OD600

of 0, 0.00055, 0.00012, 0.0021, 0.0033, 0.0050, 0.012, and 0.045 for

initial fractions 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9, respectively.

Plates were covered with gas-permeable seals (BreatheEasy) and

incubated at 37°C with no shaking.

Culture sample collection

At each timepoint, samples were mixed and aliquots were removed

for sequencing and for measuring OD600. We measured OD600 of

two dilutions of each sample and selected the value that was within

the linear range of the instrument (Tecan Infinite Pro F200).

Sequencing aliquots were spun down aerobically at 1,739 g for

15 min and stored at −80°C. For timepoints with dilutions, samples

were mixed and aliquots were collected for sequencing and OD600

measurements before the samples were diluted 1:20 into fresh

media. Abundance of the diluted sample was calculated by dividing

the undiluted measurements by the dilution factor of 20.

pH measurements and adjustments

The pH of each community in Fig 4D was measured using a phenol

red assay as described previously (Clark et al, 2021). The pH of each

supernatant in Fig 4E was measured using a pH probe (Mettler

Toledo). The pH of each supernatant was adjusted to the pH of fresh

media by adding small volumes of sterile 5 M NaOH and 5 M HCl.

Supernatant experiments

Starter cultures were diluted to 0.0066 OD600. Diluted cultures were

combined into communities in 96 deep well plates using a liquid

handling robot (Tecan Evo). Communities were created by combining

equal volumes of each species, so the final OD600 of each species in

the community was 0.0066 divided by the number of species. Plates

were covered with gas-permeable seal (BreatheEasy) and incubated

at 37°C with no shaking. After incubation time of 6 h (Fig 4E and F)

or 20 h (Fig 5C), cultures were spun down aerobically at 3,500 rpm

for 15 min and sterile filtered using Steriflip 0.2-µM filters (Millipore-

Sigma) before returning to anaerobic chamber. Media controls were

spun down and filtered aerobically in parallel with samples. C. diffi-

cile was inoculated in the sterilized supernatants to a final OD600 of

0.0022 in 96-well microplates that were covered with gas-permeable

seals (BreatheEasy), incubated at 37°C with shaking, and OD600 was

measured every 2 h (Tecan Infinite Pro F200).

Quantification of metabolites in C. difficile and C. hiranonis
supernatants

Clostridioides difficile and C. hiranonis starter cultures were diluted

to 0.0022 OD600 in ABB in triplicate. After 20 h of incubation, an

aliquot of each culture and an aliquot of a media control were spun

down aerobically at 3,500 rpm for 15 min and sterile filtered using

Steriflip 0.2-µM filters. The samples were stored at 4C overnight.
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The supernatants were then diluted 1:50 into water and analyzed by

LC-MS. For Fig 5D and E, a five-point standard curve of mixed

metabolite standard containing acetyl-ornithine, glucose, glutamine,

proline serine, sodium pyruvate, and threonine was prepared in

water day-of and analyzed alongside samples.

LC-MS analysis was conducted as described previously (27, 80)

using a Vanquish UPLC system (Thermo Scientific) coupled to a Q

Exactive Orbitrap high-resolution mass spectrometer (Thermo Scien-

tific) using an electrospray ionization source operating in negative

mode. Separation was achieved using a 2.1- by 100-mm Acquity

UHPLC BEH C18 column with 1.7-µm particle size (Waters) at 25°C.
Solvent A was 97:3 H2O-methanol with 10 mM tributylamine

adjusted to pH 8.2 by the addition of acetic acid to ~10 mM final

concentration. Solvent B was 100% methanol. The following gradient

was used for separation: 0 to 2.5 min, 5% B; 2.5–17 min, linear gradi-

ent from 5% B to 95% B; 17–19.5 min, 95% B; 19.5–20 min, linear

gradient from 95% B to 5% B; 20–25 min, 5% B. Mass spectrometry

parameters were full MS-SIM (single-ion monitoring) scanning

between 70 and 1,000 m/z, automatic control gain (ACG) target of

1e6, maximum injection time (IT) of 40 ms, and resolution of 70,000

full width at half-maximum (FWHM). MAVEN software suite was

used to analyze the data (81, 82). Compounds were identified by

retention time matching to pure standards and monoisotopic mass.

For Fig 5C, secreted metabolites were defined as metabolites

whose average signal in the three supernatant replicates was at least

twofold greater than the signal of the media control. Utilized

metabolites were defined as metabolites whose average signal in the

three supernatant replicates was at least twofold less than the signal

of the media control.

For Fig 5D, metabolite concentrations were calculated using the

linear region of the standard curve. The difference in concentration

between the supernatant and media control was used to calculate

the amount of metabolite needed to add to the supernatant to adjust

to media level. The supernatants in Fig 5E were adjusted by adding

20 µl of additive solution to 180 µl supernatant. The additive solu-

tions contained between 1 and 7 metabolites diluted to the neces-

sary concentrations in water. For the no-treatment control, 20 µl of
water was added to 180 µl supernatant. For the "1× media” condi-

tion, 20 µl of 10× media was added to 180 µl supernatant.

Genome extractions

Genomic DNA was extracted using a method adapted from previous

work (Clark et al, 2021). Briefly, cell pellets were resuspended in

180-µl enzymatic lysis buffer containing 20 mg/ml lysozyme

(Sigma-Aldrich), 20 mM Tris–HCl pH 8 (Invitrogen), 2 mM EDTA

(Sigma-Aldrich), and 1.2% Triton X-100 (Sigma-Aldrich). Samples

were incubated at 37°C at 600 RPM for 30 min. Samples were

treated with 25 µl 20 mg/ml Proteinase K (VWR) and 200 µl buffer
AL (Qiagen), mixed by pipette and incubated at 56°C at 600 RPM for

30 min. Samples were treated with 200 µl 200 proof ethanol

(Koptec), mixed by pipette, and transferred to 96-well nucleic acid

binding plates (Pall). After washing with 500 µl buffer AW1 and

AW2 (Qiagen), a vacuum was applied for 10 min to dry excess

ethanol. Genomic DNA was eluted with 110 µl buffer AE (Qiagen)

preheated to 56°C and then stored at −20°C.
Genomic DNA was quantified using Sybr Green fluorescence

assay with a 6-point DNA standard curve (0, 0.5, 1, 2, 4, 6 ng/µl

biotium). 1 µl of samples and 5 µl of standards were diluted into

95 µl of 1× SYBR green (Invitrogen) in TE buffer and mixed by

pipette. Fluorescence was measured with an excitation/emission of

485/535 nm (Tecan Spark). Genomic DNA was normalized to 1 ng/

µl in molecular grade water using a liquid handling robot (Tecan

Evo 100). Samples < 1 ng/µl were not diluted. Diluted genomic

DNA was stored at −20°C.

Primer design, library preparation, and sequencing

Dual-indexed primers for multiplexed amplicon sequencing of the

16S v3-v4 region were designed as described previously (Venturelli

et al, 2018; Clark et al, 2021). Briefly, oligonucleotides (Integrated

DNA Technology) were arrayed into 96-well plates using an acoustic

liquid handling robot (Echo LabCyte) and stored at −20°C. Genomic

DNA was PCR-amplified using Phusion High-Fidelity DNA Poly-

merase (Thermo Fisher) for 25 cycles with 0.05 µM of each primer.

Samples were pooled by plate, purified (Zymo Research), quantified

by NanoDrop, and combined in equal proportions into a library.

The library was quantified using Qubit 1× HS Assay (Invitrogen),

diluted to 4.2 nM, and loaded at 21 pM onto Illumina MiSeq plat-

form for 300-bp paired end sequencing.

Data analysis

Sequencing data were analyzed using a method adapted from

previous work (Venturelli et al, 2018). Basespace Sequencing

Hub’s FastQ Generation demultiplexed the indices and generated

FastQ files. FastQ files were analyzed using custom python scripts.

Paired reads were merged using PEAR (Paired-End reAd mergeR)

v0.9.0 (Zhang et al, 2014). A reference database containing 16S

v3-v4 region of each species in the study was created by assem-

bling consensus sequence based on sequencing results of each

monospecies. Reads were mapped to the reference database using

the mothur v1.40.5 command classify.seqs using the Wang method

with bootstrap cutoff value of 60% (Wang et al, 2007; Schloss

et al, 2009). Relative abundance was calculated by dividing the

read counts mapped to each organism by the total reads in the

sample. Absolute abundance was calculated by multiplying the

relative abundance of an organism by the OD600 of the sample.

Samples were excluded from further analysis if > 1% of the reads

were assigned to a species not expected to be in the community

(indicating contamination).

Generalized Lotka–Volterra Model

The gLV model is a set of N coupled first-order ordinary differential

equations:

1

Xi

dXi

dt
¼ ri þ ∑

N

j¼1

aijX j

where N is the number of species, the parameter Xi is the abun-

dance of species i, the parameter ri is the basal growth rate of

species i, the parameter αij, called the interaction parameter, is the

growth modification of species i by species j and the parameter Xj

is the abundance of species j. The parameter αij is constrained to

be negative when i = j, representing intra-species competition.
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Parameter estimation

The gLV model parameters were estimated from time-series

measurements of single-species and multispecies cultures using the

nonlinear programming solver FMINCON in MATLAB, which finds

the optimal set of parameters that minimizes a given cost function.

The estimation was implemented using previously developed custom

MATLAB scripts (Clark et al, 2021). The cost (C) of the optimization

algorithm was computed by (i) simulating each species m in each

community k with an ODE solver and summing the mean-squared

error between the abundance of each species in the simulation Xmodel

and data Xexp at each timepoint n (ii) adding the sum each parameter

θ squared multiplied by a regularization coefficient λ:

C ¼ ∑
k

∑
m
∑
n

X̂exp;m;n � X model;m;n

� �2 þ λ∑
j

θ2j

The second step is a L2 regularization, which penalizes the magni-

tude of the parameter vector to prevent overfitting the data. The opti-

mization was repeated with a range of regularization coefficients. The

regularization coefficient that resulted in a parameter set with a mean-

squared error of 110% of the non-regularized parameter set was

selected, which was λ = 0.5 for the Preliminary model and λ = 0.1 for

the Full Model. The data used for parameter estimation for the Prelimi-

nary model and Full Model are given in Table 1. To validate the predic-

tive ability of the model, 24 2–13 member resident communities

(Appendix Fig S4A) were left out from the training data set and a set of

parameters was inferred from this reduced data set using λ = 0.1 for

the regularization coefficient. The community compositions of the 24

held-out communities were simulated with this parameter set to evalu-

ate the predictive capability of the model on held-out data (Fig 2C).

Analysis of gLV model

To quantify the uncertainties in gLV parameters, an adaptive

Markov chain Monte Carlo (MCMC) method was used to sample

from the posterior gLV parameter (θ) distribution P(θ|y) given a

sequence of m abundance measurements y = (y1,. . .,ym). In particu-

lar, for the k-th measurement, yk is a vector that concatenates all

abundance measurements collected from all sub-community experi-

ments. Uncertainty for the k-th measurement was modeled by an

additive and independent noise, which is distributed according to N

(0, σ2k), where σ2k is the diagonal covariance matrix for experimental

data collected in the k-th measurement. Given a fixed parameter θ,
the gLV model was simulated to obtain the model predicted abun-

dance ̄ykðθÞ at every instant k. The likelihood to observe a sequence

of abundance measurements y was then computed as:

PðyjθÞ ¼
Ym

k¼1

fðyk � ̄ykðθÞ;σkÞ,

where fð� ;σkÞ is the probability density function for the normal

distribution Nð0, σ2kÞ. The posterior distribution was then

described according to Bayes rule as PðθjyÞ / PðyjθÞPðθÞ, where P

(θ) is the prior parameter distribution. Normal priors were used for

the parameters. The means of the normal distributions were set to

the parameters estimated by the FMINCON method and the coeffi-

cients of variation were set to 5%.

An adaptive, symmetric, random-walk Metropolis MCMC algo-

rithm (Haario et al, 2001) was then used to draw samples from this

posterior distribution. Specifically, given the current sample θ(n) at
step n of the Markov chain, the proposed sample for step (n + 1) is

θ(n+1) = θ(n)+δ(n), where δ(n) is drawn from a normal distribution.

The algorithm is adaptive in the sense that the covariance of this

normal distribution is given by α � γ2n, where γ2n is the covariance of

θ(1),. . ., θ(n) and α is a positive parameter. The proposed sample is

accepted with probability 1 if P(θ(n+1)|y)/P(θ(n)|y) > 1, and it is

accepted with probability β if P(θ(n+1)|y)/P(θ(n)|y) = β ≤ 1.

The algorithm described above was implemented using MATLAB

R2020a, where the gLV models were solved using variable step

solver ode23s. 120,000 MCMC samples were collected after a burn-

in period of 10,000 samples. The Gelman–Rubin potential scale

reduction factor (PSRF) was used to evaluate convergence of the

posterior distribution estimates, where a PSRF closer to 1 indicates

better convergence. The average PSRF is 1.31 and 80% of the

parameters have a PSRF < 1.5. The medians of the marginal distri-

butions of all parameters correlated strongly with parameters esti-

mated by the FMINCON method (Pearson r = 0.99).

To evaluate multistability in our gLV model, we enumerated all

non-negative equilibria of the subcommunities and then evaluated

their local stability by checking the eigenvalues of the Jacobian at

the respective equilibria.

Hill equation and exponential decay model fits

The community sensitivity to C. difficile initial abundance was

quantified by fitting the data to the Hill equation:

E

Emax
¼ An

ECn
50 þ An

where E is 48-h abundance of C. difficile, Emax is the maximum 48-

h abundance of C. difficile across all initial fractions, A is the initial

fraction of C. difficile, EC50 is the initial fraction that produces 50%

of Emax value, and n is a measure of ultrasensitivity. The data were

fit using custom python scripts implementing the curve_fit function

of the scipy package optimization module.

The relationship between OD600 and species richness was quan-

tified by fitting the experimental data or simulated data to an expo-

nential decay function:

y ¼ ae�bx

where y is calculated OD600, a is initial calculated OD600, b is the

exponential decay constant, and x is species richness. The OD600

data were normalized to be between 0 and 1 for all species. The

data were fit using custom python scripts implementing the curve_-

fit function of the scipy package optimization module.

Normalized Euclidean distances

The normalized Euclidean distance (D) between uninvaded resident

community R and C. difficile-invaded community V is calculated using.

DðR,VÞ ¼ ∑
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRi � ViÞ2

q
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here R is the 48-h timepoint of the uninvaded resident community

and V is the 48-h timepoint of the resident community invaded

with C. difficile. Ri is the relative abundance of species i in the

uninvaded resident community, equal to reads of species i divided

by the total community reads. Vi is the normalized relative abun-

dance of species i in the invaded community, equal to reads of

species i divided by the resident community reads (total commu-

nity reads minus C. difficile reads).

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Community composition data: Dataset EV4 in this manuscript.

• Metabolomics data: Dataset EV3 in this manuscript.

• Modeling computer scripts: https://github.com/SusanHromada/

NegativeInteractionsDetermineCdifficileGrowth.

Expanded View for this article is available online.
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