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Effects of culture method on 
response to EGFR therapy in head 
and neck squamous cell carcinoma 
cells
Jose M. Ayuso1,2,3, Ross Vitek2,3, Adam D. Swick4, Melissa C. Skala   1,2,3, Kari B. Wisinski3, 
Randall J. Kimple   3,4, Paul F. Lambert6 & David J. Beebe2,3,5

The EGFR pathway plays a critical role in head and neck squamous cell carcinoma (HNSCC). Targeted 
therapies against the EGFR are utilized as a treatment for HNSCCC. However, patient response is 
heterogeneous and molecular biomarkers are lacking to predict patient response. Therefore, functional 
assays where drug response is directly evaluated in tumor cells are an interesting alternative. Previous 
studies have shown that experimental conditions modify the drug response observed in functional 
assays. Thus, in this work the influence of the culture environment on response to Cetuximab (EGFR 
monoclonal antibody) and AZD8055 (mTOR inhibitor) was evaluated. HNSCC UM-SCC-1 and UM-
SCC-47 cells were cultured in 2D monoculture and compared with: 2D co-culture with cancer-associated 
fibroblasts (CAF); 3D culture in collagen hydrogels; and 3D culture in tumor spheroids. The results 
showed UM-SCC-1 drug response significantly changed in the different culture environments; leading 
to an increase in drug resistance in the CAF co-culture and the 3D spheroids. Conversely, UM-SCC-47 
exhibited a more constant drug response across culture conditions. In conclusion, this work highlights 
the importance of culture conditions that modulate response to EGFR pathway inhibition.

Head and neck squamous cell carcinoma (HSCC) is responsible for more than 90% of the malignancies that 
arise in the mucosal areas in the head and neck1. According to the latest statistics, more than 50,000 patients are 
diagnosed every year with HNSCC; causing more than 10,000 deaths only in the United States (American Cancer 
Society, www.cancer.org). Epidermal growth factor receptor (EGFR) pathway plays a critical role in HNSCC. In 
fact, more than 90% of the HNSCC patients exhibit EGFR overexpression2. EGFR ligands include EGF, trans-
forming growth factor alpha (TGF-α) and amphiregulin3,4. Interestingly, both TFG-α and amphiregulin are also 
overexpressed in HNSCC; leading to an autocrine activation of the EGFR pathway. Overactivation of EGFR 
pathway leads to increased cell proliferation, migration, invasion and decreased patient survival1,3,5. Thus, the 
EGFR pathway has been targeted with multiple compounds including EGFR monoclonal antibodies and tyrosine 
kinase inhibitors3,5.

In this context, cetuximab (CTX) (i.e. monoclonal antibody targeting EGFR) was approved in 2006 by the 
FDA for HNSCC treatment in combination with radiotherapy6. Other experimental treatments targeting down-
stream components of the EGFR pathway have also been tested, including mTOR inhibitors like AZD80557. 
These targeted therapies against EGFR pathway, combined with chemotherapy/radiation, have become part of 
the standard approach for many patients with HNSCC8. However, patient response is highly heterogenous, in fact 
only 10–20% of the patients show a favorable response to CTX in monotherapy9. Additionally, EGFR expression 
alone is not a good predictor of patient response to anti-EGFR therapy2. Multiple studies have suggested different 
mechanisms that can explain this variability and the generation of tumor resistance: EGFR polymorphisms and 
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mutations(e.g., EGFR G465R)10,11; overexpression of activated receptor downstream tyrosine kinases involved 
in the EGFR pathway12; or downregulation of EGFR pathway inhibitory intermediates (e.g. DUSP5, DUSP6)13. 
Although human papillomavirus (HPV) leads to 25–60% of HNSCC worldwide, it does not have a clear effect on 
anti-EGFR therapy14. Therefore, instead of relying entirely on molecular biomarkers, recent reports are suggesting 
a more functional approach where drugs are directly evaluated in HNSCC cells15–17.

Several reports have shown that in vitro drug sensitivity can dramatically differ from in vivo observations17. 
In fact, the in vitro culture conditions significantly alter drug response compared to in vivo conditions18. 
Specifically, CTX sensitivity in colorectal cancer changes when cultured in 2D, 3D hydrogel, and 3D organoid18,19. 
Therefore, to evaluate the possibility of using functional assays in HNSCC, we evaluated the influence of the cul-
ture environment on CTX and AZD8055 sensitivity. HNSCC UM-SCC-1 and UM-SCC-47 cells, HPV-negative 
and HPV-positive respectively, were cultured in different environments: 2D monoculture, 2D co-culture with 
cancer-associated fibroblasts (CAFs); 3D hydrogels; and 3D spheroids. The cells were exposed to CTX and 
AZD8055 and cell viability was evaluated; showing the deep impact of the culture environment in CTX and 
AZD8055 response in HNSCC cell lines.

Materials and Methods
Cell culture.  UM-SCC-1 and UM-SCC-47 were routinely cultured in DMEM high glucose (Gibco, 11964-
092) supplemented with 10% FBS (Thermo Fisher) and Penicillin/Streptomycin (Gibco, 15140). AZD8055 and 
CTX (Erbitux®) were purchased from LC-Labs and Lilly®. The identity of all cell lines was confirmed within 6 
months of use by short tandem repeat testing.

Patient-derived fibroblast isolation.  The research protocol to obtain tumor tissue and isolate fibroblasts 
following surgery at the University of Wisconsin Hospital (Madison, WI) was approved by the Institutional 
Review Board. Informed consent was obtained prior to surgery from patients to use residual tissue. All experi-
ments were carried out in accordance with relevant guidelines and regulations. Collagenase Type 1 (Worthington 
Biochemical) at 5 mg/mL, Dispase (Worthington Biochemical) at 1 mg/mL, and DNase 1 (Worthington 
Biochemical) at 1000 U/mL were dissolved into Hepatocyte Wash Buffer (ThermoFisher Scientific). This mixture 
was then sterile filtered using a 0.2 µm syringe filter. Next, head and neck tumor tissue (collected in accordance 
of the UW-Madison Institutional Review Board) was minced with a handheld razor to 500 µm3 pieces. Minced 
tissue was placed in 1 mL pre-sterilized collagenase digestion buffer in a 5 mL round-bottom polystyrene tube 
and incubated in a rotating hybridization oven at 37 °C for 4 hours. After digestion was completed, the digestion 
reaction was neutralized by adding equal volume (1 mL) of hepatocyte wash buffer supplemented with 10% fetal 
bovine serum (VWR, Radnor, PA USA). Samples were then strained through a 100 uM tube top filter (Corning) 
and washed with 500 uL 1X PBS. Cell suspensions were centrifuged at 1000RPM for 3 minutes and re-suspended 
in FM Fibroblast Media (Sciencell). Cultures were maintained at 37 C with 5% CO2.

Co-culture well-plate fabrication and drug response.  1500 UM-SCC-1 or UM-SCC-47 cells were 
seeded in the co-culture well-plate. For co-culture experiments, 1500 CAFs were seeded in adjacent wells and 
culture media connected both wells; allowing paracrine signaling. After 24 hours, culture media with/without 
drug was added, and cell viability was measured after 3 days.

Culture in 3D collagen hydrogels and drug response.  In order to embed UM-SCC-1 and UM-SCC-47 
cells in the 3D hydrogel, a 4.0 mg/ml collagen hydrogel was prepared as follows: 25 µl of 10X PBS, 5.62 µl of 1 N 
NaOH; 224 µl of 8.90 mg/ml collagen type I; and 245 µl of cell suspension at 500 cells/µl. 3 µl droplets were placed 
in a 96 well-plate and collagen was polymerized at room temperature for 20 min. Culture media was added on top 
and the well-plate was left in the incubator. After 24 hours, culture media with/without the drug was added and 
cell viability was evaluated after 3 days.

Spheroid generation and drug response.  Tumor spheroids were generated by the hanging drop method 
described in20–22. Briefly, UM-SCC-1 and UM-SCC-47 cells were trypsinized, counted and resuspended at 
60 cells/µl in media supplemented with 20% 12 g/l methylcellulose. 25 µl were placed µl droplets were placed on 
top of a Petri dish lid and distilled water was added to the bottom of the dish to reduce evaporation during the 
spheroid formation. After 24 hours in the incubator, one single spheroid per droplet was formed. 25 µl of media 
with/without AZD8055 or CTX were added and the samples were incubated for another 3 days before measuring 
cell viability.

Luminescence-based cell viability assay and statistical analysis.  Cell viability was evaluated in all 
the different cell environments using the CellTiter-Glo® 2.0 Assay (Promega, G9241). Briefly, after exposing the 
cells to CTX or AZD8055 CellTiter-Glo® reagent was added directly to the cells in a 1:1 ratio. This reagent lysed 
the cells and generated light based on the amount of ATP released by the cells. Samples were incubated for 45 min 
in the dark and cell-induced luminescence was evaluated in a plate reader. Luminescence intensity linearly cor-
related with the number of cells in the well-plate. Background intensity (i.e., no cells) was subtracted from the 
experimental conditions and values were then normalized to DMSO controls. Dose-response curves were plotted 
with GraphPad Prism v7 using the inhibitor concentration vs response (three parameter) function. A line of fit 
was created using a non-linear least squares regression. An extra-sum-of-squares F-test was used to analyze the 
maximum and minimum cell viability as well as curve slope across dose-response curves and calculate p-values.

Confocal microscopy.  AZD8055 and CTX effect on spheroid viability was also evaluated by confocal 
microscopy. UM-SCC-1 and UM-SCC-47 cells were stained with cell tracker green CMFDA (Thermo Fisher, 
C2925) prior generating the hanging drops. Briefly, cell tracker green was diluted 1:1000 in the cell suspension 
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and cells were stained for 15 min in the incubator. The cells were centrifuged and resuspended in 15 ml of PBS to 
wash the excess of cell tracker; this step was repeated twice. Finally, cells were resuspended in growth media with 
methylcellulose and cultured in the hanging drops. Spheroids were exposed to CTX or AZD8055 and 24 hours 
before assessing spheroid viability, propidium iodide (PI) (Sigma, P4170) was added to the media to label dead 
cells in red. Spheroid viability was evaluated using a Leica SP8 STED confocal microscope.

Image and statistical analysis.  Confocal images were analyzed using Fiji (https://fiji.sc/). Drug penetra-
tion into the spheroid was calculated by plotting the fluorescence profile across the middle section of the spheroid 
(yellow rectangle in the images). All the experiments were repeated at least three times independent times. The 
normal distribution was tested using the Kolmogorov-Smirnov test in GraphPad Prism 7. For parametric com-
parisons one-way ANOVA test was used.

Figure 1.  2D mono-culture vs co-culture. (A) UM-SCC-1 and UM-SCC-47 were cultured alone or co-cultured 
with CAFs in a custom 96 well-plate. In the co-culture well-plate, tumor cells and fibroblasts were seeded in 
adjacent wells that were connected by a liquid bridge; allowing paracrine signaling between the different cell 
types. AZD8055 or CTX effect was evaluated after 3 days in mono and co-culture conditions. (B) Graph shows 
UM-SCC-1 response to AZD8055 in mono- and co-culture. (C) UM-SCC-1 response to CTX in mono- and 
co-culture. (D) UM-SCC-47 response to AZD8055 in mono- and co-culture. (E) Graph shows UM-SCC-47 
response to AZD8055 in mono- and co-culture. Graphs show mean value ± standard deviation.
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Results
Effect of fibroblasts in CTX and AZD8055 response.  The effect of CAFs in drug response was evalu-
ated using a custom co-culture 96 well-plate. This plate allowed the formation of a liquid bridge between adja-
cent wells; connecting the two cell populations cultured in each well (Fig. 1A). Thus, CAFs and UM-SCC-1 
(HPV-negative) or UM-SCC-47 (HPV-positive) cells were seeded, and after 24 hours AZD8055 or CTX were 
added to the media. The results showed the presence of CAFs significantly changed UM-SCC-1 cell sensitivity to 
AZD8055. CAFs reduced the cytotoxicity of AZD8055 by nearly 3 orders of magnitude at the highest drug con-
centration and the cell viability was significantly higher across the dose-response curve slope in the presence of 
CAFs (p-value < 0.001) (Fig. 1B). Similarly, the presence of CAFs also significantly decreased the cytotoxicity of 
CTX across the drug concentration range (p-value < 0.001) (Fig. 1C). Next, we evaluated the influence of CAFs in 
UM-SCC-47 cells. The results showed that the presence of CAFs significantly modified the dose-response curve 
slope showing increased UM-SCC-47 cell resistance to both AZD and CTX across the drug concentration range 
(p-value = 0.01) (Fig. 1D,E).

Figure 2.  2D vs 3D. (A) UM-SCC-1 or UM-SCC-47 were cultured in 2D on a plastic 96 well-plate or embedded 
in a 3D collagen hydrogel. The cell number and media volume were kept constant between the 2D and 3D 
experiments. Response to AZD8055 and CTX was evaluated after 3 days. (B) Graph shows UM-SCC-1 response 
to AZD8055 in 2D and 3D conditions. (C) UM-SCC-47 response to AZD8055 in 2D and 3D. (D) UM-SCC-1 
response to CTX in 2D and 3D. (E) Graph shows UM-SCC-47 response to AZD8055 in 2D and 3D. Graphs 
show mean value ± standard deviation.
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Influence of 2D vs 3D environment.  Next, we set out to evaluate the influence of the 2D vs 3D environ-
ment in drug response. UM-SCC-1 and UM-SCC-47 cells were embedded in a collagen hydrogel and cultured 
for 3 days in the presence of AZD8055 or CTX. Then, cell viability was analyzed and compared with cells cul-
tured in 2D (Fig. 2A). The results showed that UM-SCC-1 cell sensitivity to AZD8055 in 2D and 3D was similar, 
exhibiting no statistical difference in the cell viability at the highest drug concentration or in the curve profile 
(p-value = 0.38) (Fig. 2B). Interestingly, UM-SCC-1 cells were more sensitive to CTX in 3D compared with 2D 
conditions. CTX displayed 1.4 times greater cytotoxicity in 3D than in 2D at highest drug concentration and 
cell viability was significantly lower across the dose-response curve slope, p-value < 0.0001 (Fig. 2C). On the 
other hand, UM-SCC-47 cells showed a different pattern. AZD8055 response in 3D was different compared with 
2D, showing less cytotoxicity and a significantly different dose-response slope in 3D (p-value < 0.001) (Fig. 2D). 
Finally, UM-SCC-47 cells showed no change in CTX sensitivity in 3D compared with 2D (p-value = 0.12) 
(Fig. 2E).

Spheroid drug response.  Finally, we studied the effect of culturing HNSCC cells as tumor spheroids in 
drug response. Spheroids provide a more complex model since they mimic the nutrient, hypoxia and waste 

Figure 3.  Spheroid drug response. (A) UM-SCC-1 or UM-SCC-47 were cultured in 2D on a plastic 96 well-
plate or grown as a multicellular spheroid. The cell number and media volume were kept constant between 
the 2D and 3D experiments. (B) Graph shows UM-SCC-1 response to AZD8055 in 2D and in the spheroid. 
(C) Graph shows UM-SCC-47 response to AZD8055 in 2D and in the spheroid. (D) Graph shows UM-SCC-1 
response to CTX in 2D and in the spheroid. (E) Graph shows UM-SCC-47 response to CTX in 2D and in the 
spheroid. Graphs show mean value ± standard deviation.

https://doi.org/10.1038/s41598-019-48764-3


6Scientific Reports |         (2019) 9:12480  | https://doi.org/10.1038/s41598-019-48764-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

product gradients observed in vivo in solid tumors (Fig. 3A). When grown as a spheroid, UM-SCC-1 cells exhib-
ited a significantly higher resistance to AZD8055, increasing cell viability across the drug concentration range 
and reducing cytotoxicity 2.6-fold at highest doses, p-value < 0.001 (Fig. 3B). Interestingly, culturing UM-SCC-1 
cells as a spheroid did not affect CTX sensitivity (p-value = 0.18); suggesting culture in a 3D hydrogel and a 
spheroid affect drug sensitivity differently (Fig. 3C). UM-SCC-47 cells cultured as a spheroid had significantly 
higher resistance to AZD8055; showing a 2-fold reduction in cytotoxicity at highest drug concentrations and sig-
nificantly increased cell viability over the dose-response slope, p-value < 0.001 (Fig. 3D). Finally, when cultured 
as a spheroid UM-SCC-47 showed a slight but statistically significant increase in resistance to CTX treatment 
at higher drug concentrations, p-value = 0.01 (Fig. 3E). These results showed again the impact that the culture 
environment exerts in drug response.

Tumor spheroids can exhibit a barrier effect, hindering drug penetration into the spheroid. Thus, we wanted to 
explore whether the increased drug resistance observed in spheroids was only due to a barrier effect. In order to 
study the penetration of small molecules (e.g., AZD), we used doxorubicin (Dox), a naturally fluorescent chemo-
therapy drug (Supplemental Fig. 1A–C). Additionally, we used a fluorescently labelled anti-EpCAM antibody 
with a similar weight to CTX to evaluate antibody penetration (Supplemental Fig. 1D–F). Although both com-
pounds diffused into the spheroid, Dox exhibited a faster penetration into the spheroid. After 5 hours, Dox profile 
was flat, whereas the antibody profile exhibited a gradient across the spheroid diameter. Additionally, UM-SCC-1 
and UM-SCC-47 spheroids were treated with AZD8055 and CTX and after 3 days cell viability was evaluated by 
confocal microscopy. The confocal images showed both AZD8055 and CTX killed UM-SCC-47 cells specially at 
the periphery of the spheroid, only affecting the core at the highest concentrations (Fig. 4A). On the other hand, 
AZD8055 and CTX showed a minor effect on UM-SCC-1 cells regardless their location in the spheroid (Fig. 4B). 
When combined, the results showed the culture environment can dramatically change HNSCC drug response 
(Fig. 5). Therefore, in order to develop new in vitro functional assay for HNSCC treatment, the variability gener-
ated by the culture environment is a challenge that these potential assays need to overcome.

Figure 4.  Spheroid differential response depending on cell location. AZD8055 and CTX response in spheroids 
was evaluated by confocal microscopy, labelling viable cells in green (CAM) and dead ones in red (propidium 
iodide). (A) Images show UM-SCC-47 cell response to AZD8055 at different concentrations. Graphs show the 
area occupied by viable and dead cells (green and red columns respectively). Graphs display mean ± standard 
deviation. (B) UM-SCC-47 response to CTX. (C) UM-SCC-1 response to AZD8055. (D) UM-SCC-1 response 
to CTX.
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Conclusion and Discussion
HNSCC targeted therapy holds great potential and a large number of new potential therapies targeting EGFR 
are being explored8. However, most in vitro functional assays do not mimic the complexity observed in vivo23,24. 
Thus, to improve the predictive power of in vitro drug sensitivity assays and accelerate the translation of new 
therapies and assays to the clinic; the level of complexity included in these functional assays should be carefully 
considered17. In this work, the effect of the culture environment (i.e. monoculture vs co-culture, 2D vs 3D, 2D 
vs spheroids) has been assessed in HNSCC cells. The results showed the culture environment had a deep impact 
in drug sensitivity, leading to higher or lower sensitivity depending on the specific condition assessed. In this 
context, the presence of CAFs led to an increase in CTX and AZD8055 resistance in UM-SCC-1 cells; highlight-
ing the role CAFs play in EGFR pathway25. Cell culture in a 3D hydrogel showed no change in drug response in 
UM-SCC-1. However, culturing the cells as a 3D spheroid led to a significant increase in drug resistance, showing 
a similar response compared with the addition of CAFs. Confocal images showed that UM-SCC-47 cells at the 
spheroid periphery were more affected by AZD and CTX compared with the cells at the core. Conversely, confo-
cal images showed AZD and CTX exhibited no effect on UM-SCC-1 spheroid viability regardless their position 
within the spheroid. This observation suggested the increased drug resistance observed in UM-SCC-1 spheroids 
was not due to a barrier effect; but to mechanistic changes in the targeted pathways when cells were cultured 
as spheroids. Interestingly, the culture environment affected drug response on UM-SCC-1 (i.e. HPV-negative) 
as well as UM-SCC-47 (i.e. HPV-positive) cells, showing that response to anti-EGFR therapy is modulated by 
the environment in both HNSCC types. Therefore, HNSCC drug response is a complex process where mul-
tiple different factors influence drug response. Overall, this study demonstrated the deep impact that the cul-
ture environment has on HNSCC EGFR targeted therapy and highlights the challenge of heterogeneity in drug 
response. Multiple previous reports have analyzed the molecular mechanisms involved in drug sensitivity, includ-
ing cetuximab and mTOR inhibitors18,26,27. Traditionally, most studies evaluating these molecular pathways have 
been performed in 2D monocultures. Recently, researchers have started to point out the effect the culture envi-
ronment can exert in protein expression, leading to different drug response28–30. Thus, future studies could dis-
sect these environment-dependent mechanistic alterations to identify more effective therapies against HNSCC. 
Additionally, future in-vitro work should pursue a model capable of predicting patient tumor response to drug 
therapy. This study utilizes components of the tumor microenvironment (i.e. extracellular matrix proteins, 

Figure 5.  Influence of the culture environment in the drug response. The graphs show the cell viability in the 
different culture environments (A) in the presence of AZD8055; 10 uM for 72 hours (B) and CTX; 1 uM for 
72 hours (C) for UM-SCC-1 and UM-SCC-47 cells (D,E). Graphs show mean value ± standard deviation. And 
asterisk denotes p-value < 0.05.
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primary stroma cells, and cell-cell interaction) to better recapitulate in-vivo tumors; however, patient tumor cells 
are not always accurately represented by immortalized cell lines such as UM-SCC-1 and UM-SCC-47. For this 
reason, future studies should investigate models utilizing primary patient-derived tumor cells. In conclusion, the 
role of the tumor environment in HNSCC, and also in other types of cancer, should be considered if functional 
tests will be used in the clinic to predict drug response.
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