
Selection for Reducing Energy Cost of Protein Production
Drives the GC Content and Amino Acid Composition Bias in
Gene Transfer Agents

Roman Kogay,a Yuri I. Wolf,b Eugene V. Koonin,b Olga Zhaxybayevaa,c

aDepartment of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
bNational Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
cDepartment of Computer Science, Dartmouth College, Hanover, New Hampshire, USA

ABSTRACT Gene transfer agents (GTAs) are virus-like elements integrated into bac-
terial genomes, particularly, those of Alphaproteobacteria. The GTAs can be induced
under conditions of nutritional stress, incorporate random fragments of bacterial
DNA into miniphage particles, lyse the host cells, and infect neighboring bacteria,
thus enhancing horizontal gene transfer. We show that GTA genes evolve under
conditions of pronounced positive selection for the reduction of the energy cost of
protein production as shown by comparison of the amino acid compositions with
those of both homologous viral genes and host genes. The energy saving in GTA
genes is comparable to or even more pronounced than that in the genes encoding
the most abundant, essential bacterial proteins. In cases in which viruses acquire
genes from GTAs, the bias in amino acid composition disappears in the course of
evolution, showing that reduction of the energy cost of protein production is an im-
portant factor of evolution of GTAs but not bacterial viruses. These findings strongly
suggest that GTAs represent bacterial adaptations rather than selfish, virus-like ele-
ments. Because GTA production kills the host cell and does not propagate the GTA
genome, it appears likely that the GTAs are retained in the course of evolution via
kin or group selection. Therefore, we hypothesize that GTAs facilitate the survival of
bacterial populations under energy-limiting conditions through the spread of meta-
bolic and transport capabilities via horizontal gene transfer and increases in nutrient
availability resulting from the altruistic suicide of GTA-producing cells.

IMPORTANCE Kin selection and group selection remain controversial topics in evo-
lutionary biology. We argue that these types of selection are likely to operate in
bacterial populations by showing that bacterial gene transfer agents (GTAs), but not
related viruses, evolve under conditions of positive selection for the reduction of the
energy cost of GTA particle production. We hypothesize that GTAs are dedicated de-
vices mediating the survival of bacteria under conditions of nutrient limitation. The
benefits conferred by GTAs under nutritional stress conditions appear to include
horizontal dissemination of genes that could provide bacteria with enhanced capa-
bilities for nutrient utilization and increases of nutrient availability occurring through
the lysis of GTA-producing bacteria.

KEYWORDS GTA, nutrient depletion, metabolic efficiency, virus exaptation,
alphaproteobacteria, bacteriophages, energy saving, gene transfer agents, positive
selection

Gene transfer agents (GTAs) are phage-like entities that are known to be produced
by several groups of bacteria and archaea (1, 2). Unlike phages, GTAs do not

package genes encoding their own structural proteins and instead package pieces of
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DNA of the cell that produces them. The biological functions of the GTAs are not well
understood, but the leading hypothesis is that GTAs are dedicated vehicles for hori-
zontal gene transfer (HGT) (3, 4). The GTAs can be induced by stress (5) and, after
packaging host DNA and lysing the host cell, can infect neighboring cells (1, 6). These
cells can integrate the DNA contained within the GTAs and thus can acquire new alleles,
some of which could increase their fitness (7). GTAs are thought to have evolved from
different viral ancestors on at least five independent occasions (2), and in Alphaproteo-
bacteria, GTAs appear to have been maintained for many millions of years (8). Such
convergent acquisition, long-term persistence (far exceeding the typical persistence
spans of integrated proviruses and other mobile elements), and sequence conservation
of these elements suggest that GTAs provide a selective advantage for their host
populations (2).

The best-studied GTA (RcGTA) comes from the alphaproteobacterium Rhodobacter
capsulatus (9). Its production is directed by at least five loci that are scattered across the
R. capsulatus genome, with 17 genes that encode most of the proteins necessary for the
production of the RcGTA particles located in one locus (see Table S1 in the supple-
mental material) (10). This locus, also known as the “head-tail” cluster (2), is detectable
in many alphaproteobacterial genomes (8, 11). Across Alphaproteobacteria, the RcGTA-
like head-tail clusters appear to evolve relatively slowly (1), have elevated GC content
relative to the host genome (8), and have skewed amino acid composition compared
to their viral homologs (11).

Because bacteria and archaea occupy diverse ecological niches, they face different
levels and directions of selective pressures and have different mutation rates, skewed
GC content, and amino acid composition that emerged from multiple, intertwined
processes. As a result, the genomic GC content of bacterial and archaeal species ranges
widely from less than 20% to more than 75% (12) and cannot be explained solely by the
universal mutational AT bias (13). Several studies have shown that the availability of
different nutrients in the environment can act as a selective force and is involved in
shaping the GC content of genomes and the amino acid content of the encoded
proteins. For example, inhabitants of nitrogen-poor environments tend to have low
levels of G and C nucleotides and of amino acids containing nitrogen in their side
chains (14, 15). Because A and T each contain one nitrogen atom less than G and C,
respectively, the reduced usage of the G and C allows an organism to minimize the
demand for the limiting nitrogen during replication and transcription. In contrast,
carbon limitation could drive long-term elevation of the genomic GC content (16, 17),
likely because small (carbon-poor) amino acids are preferentially encoded by GC-rich
codons (18).

In addition to the GC content fluctuation between species, there is also considerable
GC content heterogeneity within single bacterial and archaeal genomes. For example,
bacterial genomes can be subject to GC-biased gene conversion and thus recombina-
tion hot spots within a genome can have elevated GC content compared to the rest of
the genome (19). Also, highly expressed genes tend to have elevated GC content and,
accordingly, the amino acid composition of their highly abundant protein products is
skewed (20). Because highly abundant proteins appear to be optimized for low cost of
production (21, 22), the elevated GC content of highly expressed genes can be
explained by selection for GC-rich codons that tend to encode small, energetically
inexpensive amino acids. Generally, the molecular composition of genes and proteins
appears to reflect various selection pressures, among which those associated with
energy savings are prominent.

Thus, there are two possible explanations for the observed skew in both the GC
content and amino acid composition of the RcGTA-like genes and proteins. In the first
scenario, selection and mutational biases act on the base composition such that the
amino acid bias is a by-product of the skewed GC content. In the second scenario,
selection could favor the skewed amino acid composition, resulting in biased GC
content due to the structure of the genetic code. Here, we present evidence for the
second scenario and show that the observed amino acid bias is driven by selection to
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reduce carbon utilization and biosynthetic cost of production of the RcGTA-like pro-
teins. We show that the energy expense of the production of RcGTA-like proteins is
comparable to that seen with the highly expressed housekeeping genes. For some of
the amino acid changes, we identify clear signatures of positive selection toward amino
acids with a smaller number of carbons in their side chains. We hypothesize that
evolution of RcGTA-like elements was affected by selection to minimize cellular energy
investment into their production under nutrient-poor conditions.

RESULTS
Elevated GC content in RcGTA-like regions is due to the higher GC content in

the first and second codon positions of the coding genes. Because of the degen-
eracy of the genetic code, GC3 content is known to track the overall GC content of
genomic regions (23). Hence, if the GC content of RcGTA-like head-tail clusters is
elevated because they reside in GC-rich genomic regions, the GC content in the third,
primarily synonymous codon positions (GC3 content) of the RcGTA-like genes is
expected to be higher than the genomic average of the GC3 content. Moreover, the
elevated GC3 content would not be limited to the genes in the RcGTA-like region but
would be apparent in the adjacent genes as well. To test this hypothesis, we examined
homologs of one RcGTA locus (head-tail cluster) in 212 alphaproteobacterial genomes
(see Materials and Methods) (8, 11). Although we analyzed homologs of only one locus
from one GTA only, for brevity, here we refer to these regions simply as “GTA regions”
and to genes and encoded proteins in these regions as “GTA genes” and “GTA
proteins.” Contradicting the aforementioned expectation, we found no significant
differences among the GC3 content of GTA genes of the 212 alphaproteobacterial
genomes, their neighboring genes, and all genes in the genome (Kruskal-Wallis H test,
P value � 0.62; Fig. 1). In contrast, the levels of GC1 and GC2 content of the GTA genes
were found to be significantly higher than the corresponding values for both the
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FIG 1 GC1, GC2, and GC3 content of GTA regions and their immediate neighborhoods and all protein-coding genes in 212 alphaproteobacterial genomes. The
neighborhoods immediately upstream and downstream of a GTA region consist of 17 genes each. Box plots represent median values bounded by the first and
third quartiles. Whiskers show the values that lie in the range of the 1.5 � interquartile rule. Dots outside the whiskers represent the outliers.
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neighboring genes (Dunn’s test, P value � 0.0001) and the genes across the entire
genome (Dunn’s test, P value � 0.0001) (Fig. 1). Furthermore, the genes adjacent to the
GTA regions did not have elevated GC1 and GC2 content compared to the genes in the
entire genome (Dunn’s test, P value � 1), indicating that the presence of elevated GC1
and GC2 content is limited to the GTA genes. Due to the relationship between codons
and amino acids in the genetic code, the elevated GC1 and GC2 content of an open
reading frame (ORF) translates into a biased form of amino acid composition of the
encoded protein. Indeed, a significant amino acid composition bias in the GTA proteins
has been demonstrated previously (11). Specifically, the relative abundance of amino
acids encoded by GC-rich codons is significantly higher in the GTA genes than the
genomic average (see Fig. S1 in the supplemental material) (Student’s t test, P
value � 0.0001; see Materials and Methods for definition of GC-rich codons). Taken
together, these findings suggest that the GC content of GTA regions in Alphaproteo-
bacteria is driven by selection for a specific amino acid composition of the encoded
proteins.

Proteins encoded in GTA regions contain smaller number of carbons and are
energetically less expensive than their viral homologs. RcGTA production has been
experimentally demonstrated to be stimulated by carbon depletion (5). Furthermore,
knockout of the RcGTA-like genes in three alphaproteobacterial strains (24) resulted in
a significant decrease in fitness of the mutants under conditions of growth with
alternative carbon sources that might not be utilized by these strains (11). If GTAs are
indeed produced under conditions of limited carbon availability, the observed amino
acid bias in the GTA genes might represent an adaptation in the GTA-containing
lineages to utilize energetically less expensive amino acids for GTA particle production.
To test this hypothesis, we compared the number of carbons in amino acid side chains
and costs of amino acid biosynthesis (measured as the number of high-energy phos-
phate bonds) in GTA proteins and in their viral homologs. We assumed that (i) all amino
acids are produced by bacteria de novo, as at least 174 of the analyzed genomes can
produce 19 or all 20 amino acids (Fig. S2), and (b) viral infections are not specifically
associated with the carbon-limited conditions and that, therefore, viral homologs of
RcGTA genes should not be subject to selection for energy saving. Consistent with the
proposed hypothesis, for all 12 of the genes with a sufficient number of viral homologs
to allow estimation of statistical significance (see Table S1 in the supplemental mate-
rial), GTA proteins were found to have both a significantly smaller number of carbons
(Mann-Whitney U test, all 12 Bonferroni-corrected P values � 0.01; Fig. 2A) and a cost
of amino acid biosynthesis that was significantly reduced in comparison to that seen
with their viral homologs (Mann-Whitney U test, all 12 Bonferroni-corrected P val-
ues � 0.01; Fig. 2B).

To demonstrate that the observed differences in the carbon content of the GTA and
viral proteins were not simply due to the compositional bias present in the ancestor of
the alphaproteobacterial GTA elements (8), we sought to examine only a subset of viral
homologs that are presumed to be horizontally acquired from the GTA regions. Genes
with significant sequence similarity to GTA genes have been previously found in viruses
and inferred to be horizontally acquired from GTAs on the basis of phylogenetic
reconstruction (10, 25). In our phylogenetic analyses, we examined several viral genes
of this apparent origin (Table 1; see also Fig. S3) (also see Materials and Methods for
details). Under the assumption of no selection for energy saving in viruses, we expect
the carbon content of the GTA genes acquired by viruses to increase after their
relocation to the virus genomes. Indeed, in all cases, the carbon content of the
now-viral homologs consistently (and, overall, significantly) increased compared to the
inferred ancestral state at the time of acquisition (Table 1; see also Fig. S3).

Energetic cost of the GTA proteins is as low as that of essential bacterial
proteins. Highly expressed genes have been demonstrated to evolve under selection
to decrease the energetic cost of production of the encoded proteins (20). Indeed,
collectively, 20 single-copy housekeeping genes involved in translation ([J] COG cate-
gory [26]) (Table S2), and therefore presumed to be expressed at relatively high levels
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under any conditions, were found to have a significantly lower energetic cost than the
average calculated for all proteins encoded in a genome, as measured by both side
chain carbon utilization and biosynthetic cost of production per amino acid (Fig. 3)
(Mann-Whitney U test, P values � 0.0001). The biosynthetic cost per amino acid of the
GTA proteins was found to be statistically indistinguishable from that of the products
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TABLE 1 Change in the carbon content between viral homologs of the GTA proteins and their closest GTA ancestral node

GTA
gene Virus name

Change in the no. of
carbons per side chain
of an amino acid P value

Alignment
length (in
nucleotides)

g6 Cellulophaga phage phi10 1 �0.605 �0.001 193
g7 Cellulophaga phage phi18 1 �0.394 0.001 147
g7 Streptomyces phage phiSASD1 �0.167 0.179 147
g7 Salmonella phage ST64B �0.222 0.048 147
g7 Salmonella phage 118970 sal3 �0.229 0.042 147
g7 Shigella phage SfIV �0.184 0.115 147
g7 Enterobacteria phage SfV �0.244 0.083 147
g7 Shigella phage SfII �0.191 0.107 147
g10 Rhizobium phage 16-3 �0.105 0.271 123
g12 Rhodobacter phage RcCronus �0.123 0.081 228
g13 Paracoccus phage vB PmaS R3 �0.048 0.226 304
g13 Dinoroseobacter phage vB DshS R5C �0.027 0.383 304
g13 Roseobacter phage RDJL Phi 1 �0.005 0.447 304
g13 Roseobacter phage RDJL Phi 2 �0.019 0.388 304
g14 Rhodobacter phage RcRhea �0.191 0.108 166
g15 Rhodobacter phage RcRhea �0.147 �0.001 1,369
g15 Rhodobacter phage RcCronus �0.143 �0.001 1,369

Cumulative across 7 genes �0.163 �0.001 2,530

Selection for Reduced Energy Cost of GTA Production ®

July/August 2020 Volume 11 Issue 4 e01206-20 mbio.asm.org 5

https://mbio.asm.org


of the 20 highly expressed genes (Mann-Whitney U test, P value � 0.3372), and,
remarkably, the GTA proteins were found to utilize even lower levels of carbon
(Mann-Whitney U test, P value � 0.0001) (Fig. 3).

Reductions of carbon utilization differ among GTA genes and across bacterial
taxa. To investigate how reduction of carbon content evolved from the common
ancestor of the examined GTA genes to the extant forms, we reconstructed the number
of carbons per amino acid at the ancestral nodes of individual evolutionary trees of 14
GTA genes (those with at least one detectable viral homolog; Table S1). To correct for
differences in the GC content across taxa (which affects the carbon content of the
encoded proteins), for each taxon we normalized the number of carbons per amino
acid of GTA proteins by that of 26 housekeeping proteins (Table S2). No unifying
pattern of directional selection toward the lower carbon content was detected across
all genes and all taxa (Fig. S4). This lack of an overall signal was not surprising because
GTA genes can be horizontally transferred across taxa (8), have different evolutionary
rates among and within taxa (8), and are likely to reach unequal translation levels
during GTA production (27). These differences would make the carbon content opti-
mization gene and taxon specific, blurring the net effect. However, members of the
order Sphingomonadales showed the most pronounced reduction in carbon utilization
for the GTA regions overall, as well as for the majority of individual genes (Fig. 4).
Notably, many Sphingomonadales species can live under nutrient-depleted conditions
(28).

In Sphingomonadales, the decrease in carbon content of GTA proteins is driven
by positive selection. To evaluate whether diversifying (positive) selection plays a role
in the observed reduction of carbon utilization in the GTA genes in Sphingomonadales,
we tested for evidence of positive selection in individual sites on the branch leading to
this clade. For 9 of the 14 evaluated genes, the model of positive selection on the
branch was a significantly better fit than the neutral null model (Table S3). For 8 of
these 9 genes, members of the Sphingomonadales clade showed significant decreases
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in carbon utilization relative to three other orders (Mann-Whitney U test, � of 0.01, P
values � 0.01; Table S4; Fig. 4). Conversely, for 4 of the 5 genes that did not show
evidence of positive selection, there was no significant decrease in the carbon content
of proteins in the Sphingomonadales genomes (Fig. 4).

To assess how the specific sites that are inferred to be subject to positive selection
contribute to the carbon content of the Sphingomonadales’ GTA genes, we examined
carbon content of amino acids in the sites with �0.95 posterior probability of being
subject to positive selection. For 8 of the 9 positively selected genes, these sites
substantially contributed to the decrease in carbon utilization in Sphingomonadales
(Table 2; see also Table S5). This trend is manifested, in particular, by the observed
replacements of aromatic amino acids, which contain relatively high numbers of
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TABLE 2 Contribution of positively selected sites to the reduction of carbon utilization in
GTA proteins of Sphingomonadales

GTA
protein

No. of sites
under positive
selection

Avg change in no. of
carbons mediated by
the contribution of all
sites under positive
selection

No. of sites that
contributed to the
decrease in no. of
carbons

g2 13 �0.22 6
g3 33 �0.72 22
g4 29 �0.42 13
g5 12 �0.39 8
g6 11 �0.16 5
g9 29 �0.68 16
g12 23 �0.52 13
g13 31 �0.44 16
g15 27 �0.55 15
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carbons and have excessive biosynthetic costs, with nonaromatic amino acids (Fig. S5).
The observed replacements of tryptophan with phenylalanine indicate that, under the
constraint of maintaining an amino acid with similar physicochemical properties, there
is selection for utilization of an energetically less expensive amino acid (Fig. S5).
Mapping of the positively selected sites in the Sphingomonadales g5 homolog onto a
structural model of the T5 bacteriophage major capsid protein shows that these sites
tend to be located on the surface of the protein (see the movie in the supplemental
material available in the FigShare repository (https://doi.org/10.6084/m9.figshare
.12071223). This example suggests that carbon-saving replacements preferentially
occur in sites that are not involved in the folding of GTA proteins, allowing the GTAs to
preserve the functionality of their proteins at reduced production costs.

DISCUSSION

We show here that the elevated GC content of GTA regions is driven by selection
toward encoding proteins with energetically less expensive amino acids. Although
GC-rich genes have an increased cost of mRNA expression, cells spend much more
energy on the synthesis of amino acids than on the synthesis of ribonucleotides (20,
29). Hence, the elevation of GC content in nonsynonymous codon positions (GC1 and
GC2) reduces the energetic expenses associated with the production of the respective
proteins. Consistent with this notion, energy savings for GTA proteins are as pro-
nounced as or even greater than those for the highly expressed housekeeping genes
that are known to utilize less expensive and smaller amino acids (20). Given that
production of RcGTA-like particles in Alphaproteobacteria occurs in the stationary phase
(2, 30) and is associated with carbon depletion (5, 11), the shift in GC content of GTA
genes and amino acid composition of their products likely reflects adaptation for their
efficient expression under such conditions.

The change in the amino acid composition of GTA proteins was not uniform across
the examined alphaproteobacterial lineages. These differences are not unexpected
because GTA-carrying bacteria live in different environments and under conditions of
different selection pressures. We demonstrated that, on the branch leading to Sphin-
gomonadales, the decrease in carbon content of the GTA proteins was driven by
positive selection for the use of less expensive amino acids. We hypothesize that the
last common ancestor of Sphingomonadales evolved in a nutrient-depleted environ-
ment that selected for the reduction in the use of energetically expensive amino acids
in the GTA proteins.

Although bacterial viruses also spend disproportionate amounts of energy on
translation (31), our analysis of viral genes that apparently were acquired by viruses
from bacterial GTAs showed a decrease in GC1 and GC2 content, with the concomitant
increase in protein production energy cost. Thus, positive selection for cost saving
probably ceases to substantially affect the evolution of these genes once they are
transferred to virus genomes. Lytic bacteriophages reproduce rapidly, with a typical
burst size of about 200 virions that hijacks about 30% of the host energy budget (31).
Under the conditions associated with such brief, explosive growth, energy saving might
not be an important selective factor. Differences in the viral burst sizes imply that
selection for energy saving could play some role. However, such selection is expected
to be weak due to other constraints affecting the lytic viruses, such as fluctuations in
the host energy budget, often-error-prone viral replication machinery, and the main
evolutionary pressure being evasion of host defense systems (32, 33). Thus, our
observations provide additional evidence that GTAs are not selfish, virus-like agents but
rather represent microbial adaptations.

Taken together, our findings, and in particular, the evidence of positive selection for
energy saving in Sphingomonadales, are in line with the previous suggestions that
maintenance of GTAs and production of GTA particles confer some advantage to the
bacterial hosts (2, 7). Because GTA-producing cell lyses and GTA genes are not trans-
ferred to the recipient cell, the reduction of energy utilization for the production of GTA
particles has to be beneficial at the population or community level; that is, it needs to
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involve some form of kin or group selection (34, 35). The nature of such a benefit(s) is
not entirely clear, but it appears likely that the GTAs, effectively, are devices for survival
under the energy- or nutrient-limited conditions that are common in bacterial ecology.
More specifically, GTAs might provide two types of adaptations. Previous studies
suggest that oligotrophic conditions do not interfere with the capacity of bacteria to
engage in genetic exchange (36). Moreover, the nutrient limitation can upregulate
horizontal gene transfer via transformation (37), suggesting potential benefits of gene
exchange under adverse conditions of energy or nutrient limitations. Conceivably, HGT
mediated by the GTAs can confer additional metabolic or transport capacities to the
recipient bacteria. Additionally, GTAs could be perceived as a mechanism of bacterial
programmed cell death (38, 39). Under this type of adaptation, the GTA-mediated lysis
of a fraction of the bacterial community would decrease the population density and
increase the nutrient availability per cell, by supplying additional nutrients released
from the lysed cells.

MATERIALS AND METHODS
Generation of GTA and viral data sets. The initial data set of 422 GTA regions in 419 alphapro-

teobacterial genomes consisted of 88 regions identified by Shakya et al. (8) and 334 regions in complete
alphaproteobacterial genomes predicted by Kogay et al. (11). Four GTA regions from the Methylobacte-
rium nodulans ORS2060 genome were removed due to their questionable assignment as GTAs (8).
Because our previous GTA prediction procedure (11) screened for the presence of only 11 of the 17
homologs of the RcGTA head-tail cluster (1), the remaining 6 homologs were identified using BLASTP (40)
(version 2.6.0, E value � 0.1, manually curated homologs from Kogay et al. [11] as queries), with
subsequent restriction of the hits to the regions with previously identified GTA genes. To reduce the
computational cost of the downstream analyses, highly similar GTA regions were excluded. To this end,
genomes that contained the 418 GTA regions were clustered into operational taxonomic units (OTUs)
using furthest-neighbor clustering and an average nucleotide identity (ANI) cutoff of 95%. The ANI values
were calculated using fastANI v.1.1 (41). From each of the identified 215 OTUs, only the GTA region with
the largest number of the relevant genes was retained. Further removal of the regions that contained less
than 9 genes resulted in the final data set of 212 GTA regions.

To obtain viral homologs of the GTA genes, genes from the 212 GTA regions were used as queries
in BLASTP searches (40) (version 2.6.0, E value � 0.001, query and subject coverage of at least 60%)
against the viral RefSeq database (release 96, accessed October 2019) (42).

The numbers of identified alphaproteobacterial and viral homologs for the 17 RcGTA genes are
shown in Table S1.

Calculation of GC content for the 212 alphaproteobacterial genomes. The GTA region’s neigh-
borhood was defined as 51 genes upstream and 51 genes downstream of the region. Each neighborhood
was divided into 6 nonoverlapping regions with 17 genes each. For each neighborhood region, the GTA
region, and all annotated genes in the genome, GC1, GC2, and GC3 content values were calculated using
an in-house script. The significance of the GC content differences among the obtained 8 groups was
assessed using the Kruskal-Wallis H test followed by the Dunn’s test (43). The P values were adjusted for
multiple testing using the Bonferroni correction method.

Calculation of the relative abundances of amino acids encoded by GC-rich codons for 212
alphaproteobacterial genomes. The amino acids that are encoded by GC-rich codons were defined as
those that have G or C in the first and second codon positions (alanine, arginine, glycine, and proline).
For each genome, the amino acid frequencies were calculated for the pooled set of proteins encoded by
genes in the GTA region, as well as for the pooled set of proteins encoded by all genes in a genome. The
significance of the differences in the relative abundances of the 4 amino acids encoded by GC-rich
codons in the two sets was assessed using the Student’s t test.

Calculation of carbon content and biosynthetic cost of amino acids in the encoded proteins.
Because differences in the carbon content of amino acids are determined solely by the composition of
their side chains, for each amino acid sequence encoded by a GTA gene (or its viral homolog), the
number of carbons in the side chains of the amino acids was counted and normalized by the length of
the encoded polypeptide. Additionally, for each amino acid sequence encoded by a GTA gene (or its viral
homolog), the average biosynthetic cost of protein production per amino acid, defined as the number
of high-energy phosphate bonds needed to produce a particular amino acid, was calculated. Because
almost all of the 212 alphaproteobacteria containing the GTA regions are either obligate or facultative
aerobes, the individual costs of amino acid production already computed for Escherichia coli by Akashi
and Gojobori (44) were used. The significance of the differences in the carbon utilization and biosynthetic
costs between GTA proteins and viral homologs was assessed using the Mann-Whitney U test, followed
by Bonferroni correction of P values to account for multiple testing.

Verification of amino acid biosynthesis pathways in the alphaproteobacterial genomes. Pres-
ence of the amino acid biosynthesis pathways in the genomes was evaluated using the KEGG database
(release 92) (45). For 189 of the 212 alphaproteobacteria, either its own genome (186 genomes) or the
genome of a close relative (ANI � 95%; 3 genomes) was examined. For the remaining 23 genomes, no
information was available from the closely related genomes in KEGG. For each of the 189 genomes, the
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map of amino acid biosynthesis (map number � 01230) was examined for completeness. If key enzymes
were missing, additional maps (map numbers � 00250 to 00400) were evaluated to identify alternative
enzymes that could catalyze the same reactions. If alternative enzymes were not found, Escherichia coli
homologs that catalyze the missing steps were used as queries for a BLASTP search of the genome
(version 2.6.0, E value 0.001, query coverage of at least 50%) and the RefSeq annotations of the obtained
matches were examined. If a complete biosynthetic pathway of an amino acid could not be recon-
structed, the genome was designated “auxotrophic” for the biosynthesis of the given amino acid.

Exclusion of divergent viral homologs. To minimize possible misplacement of viral homologs due
to long-branch attraction, we identified and excluded divergent viral homologs using the following
procedure. Amino acid sequences of GTA genes and their viral homologs were aligned using MAFFT v
7.305 with the “auto” setting (46). Phylogenetic trees from individual gene alignments were recon-
structed in the IQ-TREE v 1.6.7 (47) using the best substitution model detected by ModelFinder (48). The
obtained trees were used as guides for the reconstruction of more-accurate trees, using the profile
mixture model “LG�C60�F�G” and the site-specific frequency models that were approximated accord-
ing to the posterior mean site frequency (49), as implemented in IQ-TREE.

To exclude viral homologs not closely related to GTA genes, only those viral homologs nested within
the taxonomic rank of alphaproteobacterial order with ultrafast bootstrap support of greater than or
equal to 60% (1,000 pseudoreplicates [50]) were retained. Because large numbers of viral homologs were
retained for genes g3, g4, and g8, only the top 5 nonidentical viral proteins most closely related to the
alphaproteobacterial homologs were kept. The retained viral homologs were realigned with the GTA
genes, and the phylogenetic trees were reconstructed and examined as described above. The process
was repeated until all retained viral homologs grouped within alphaproteobacterial orders.

Reconstruction of ancestral amino acid sequences. Amino acid sequences of the ancestral nodes
of the reconstructed phylogenetic trees were reconstructed using FastML v 3.11 (51). Indels in the
ancestral sequences were inferred using the maximum likelihood and a probability cutoff value of 0.5.
Ancestral amino acid states of nongapped states were determined using marginal reconstruction
performed with an LG substitution matrix (52), with heterogeneity in substitution rates among sites
modeled using Gamma distribution (53).

Reconstruction of the alphaproteobacterial reference phylogeny. In each of the 212 genomes
containing GTA regions, 31 phylogenetic markers were detected and retrieved using AMPHORA2 (54).
Amino acid sequences of these markers were aligned using MAFFT v 7.305 with the “auto” setting (46).
The best substitution matrix for each gene was determined using the ProteinModelSelection.pl script
obtained from https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts (last accessed
November 2019). The individual gene alignments were concatenated, and each gene was treated as a
separate partition (55) in the subsequent phylogenetic reconstruction. The maximum likelihood tree was
reconstructed by the IQ-TREE v 1.6.7 (47), and the Gamma distribution with four categories was used to
account for heterogeneity in substitution rates among sites (53). Although no outgroup sequences were
included in the alignment, for presentation purposes, the tree was rooted to reflect the branching of
Alphaproteobacteria as previously observed (11). Phylogenetic tree was visualized using iTOL (56).

Retrieval of selected single-copy and highly expressed genes. A total of 26 of the 120 phyloge-
netically informative genes (57) were found to be present in a single copy in all 212 genomes (Table S2).
The 26 genes were extracted from each genome using hmmersearch v 3.1b2 and modified scripts from
AMPHORA2 (54). The functional annotations of the 26 genes were examined using eggNOG-mapper (58)
based on eggNOG orthology database v. 4.5 (59). Twenty of the 26 genes were found to belong to the
[J] COG category (“Translation, ribosomal structure and biogenesis”) and were therefore designated
“highly expressed” genes.

Calculation of carbon utilization in extant and ancestral GTA genes. The relative levels of carbon
utilization of the extant proteins encoded by a GTA gene were defined as representing the ratio of the
average number of carbon atoms per site to that calculated for the 26 single-copy genes. To calculate
carbon utilization for the ancestral states, amino acid sequences of 14 GTA proteins with at least one viral
homolog were aligned by the use of MAFFT v 7.305 with the “auto” setting (46), and phylogenetic trees
were reconstructed using IQ-TREE v 1.6.7 (47), with the best substitution model detected with ModelF-
inder (48). Using reconstructed phylogenies and carbon utilization data for extant proteins, carbon
utilization at the internal nodes was inferred using the marginal maximum likelihood reconstruction, as
implemented in the phytools package (60). The change of carbon utilization along the tree branches was
deduced via as described previously by Felsenstein (61; see equation 2 in that report) and also as
implemented in the phytools package (60).

To assess the significance in the increase of carbon content of the selected viral proteins in
comparison to the corresponding inferred ancestral protein, for each of the seven GTA genes with such
viral homologs, amino acid sequences of these extant viruses and their closest inferred ancestral
sequence were retrieved and aligned via MAFFT using “linsi” settings (46). For each gene alignment,
1,000 bootstrap replicates were generated in RAxML v 8.2.11 (62). For each bootstrap replicate, the net
change in the number of carbons per amino acid between the viral protein and the ancestral protein was
calculated. The P value was defined as the proportion of bootstrap replicates with a zero or negative net
change in the number of carbons per amino acid. Additionally, the cumulative net change in the number
of carbons per amino acid across all 7 GTA proteins (Table 1) was calculated by adding up the net
changes across individual genes. For genes with more than one viral homolog, the viral homolog with
the smallest difference in the number of carbons per amino acid was selected to obtain a conservative
estimate. The P values were calculated as described for the individual comparisons.
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Detection of positive selection on the branch leading to Sphingomonadales. Using the phylo-
genetic trees and amino acid sequence alignments of the GTA proteins (see “Calculation of carbon
utilization in extant and ancestral GTA genes” section), evidence of episodic events of positive selection
in the Sphingomonadales clade was inferred under the branch site A model, as implemented in the
codeml package of PAML version 4 (63). Codon alignments of nucleotide sequences were obtained using
pal2nal (64). The branch lengths in the corresponding phylogenetic trees were reestimated in PAML.
Because the g12 and g15 genes differ in length between Sphingomonadales and other alphaproteobac-
terial orders, codons that were present in less than 50% and 80% of sequences in the g12 and g15 data
sets, respectively, were removed. For the null model (no positive selection), �2a and �2b were fixed to
a value of 1, and the significance for the alternative model (positive selection) was tested using the
likelihood ratio test with one degree of freedom and � of 0.01. P values were adjusted for multiple testing
using the Bonferroni correction. A site was classified as being “under positive selection” if its probability
value was calculated to be at least 0.95 in the Bayes empirical Bayes estimation (65) and if it was present
in at least of 50% of the Sphingomonadales branches and 50% of the remaining branches.

Visualization of positively selected sites on the 3D model of capsomer. The amino acid
sequences of the RcGTA genes were used in a BLASTP search (E value � 0.01, low-complexity masking,
and query coverage of at least 50%) against the PDB database (66) (last accessed November 2019). Only
the g5 gene query returned significant matches to the PDB database. The amino acid sequence of the
top-scoring match (PDB identifier [ID] 5TJT) was retrieved and aligned with the representative g5
homolog from Sphingomonadales (Sphingobium amiense DSM 16289) using the Needleman-Wunsch
algorithm (67). Of the 12 sites classified as being under positive selection in the Sphingobium amiense
DSM 16289 homolog, 2 sites did not have homologous positions in the 5TJT sequence. The remaining 10
sites were mapped onto the 5TJT PDB structure using PyMol version 2.3 (The PyMOL Molecular Graphics
System, Version 2.0; Schrödinger, LLC.)

Data availability. A list of accession numbers of 212 alphaproteobacterial genomes with GTA
regions, amino acid sequences of identified GTA proteins in alphaproteobacteria and viruses, sequence
alignments and phylogenetic trees used in the described analyses, and a supplemental movie have been
deposited in the FigShare repository (https://doi.org/10.6084/m9.figshare.12071223).
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