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Abstract: The emergence of antibiotic resistance among pathogenic microorganisms is a major issue
for global public health, as it results in acute or chronic infections, debilitating diseases, and mortality.
Of particular concern is the rapid and common spread of carbapenem resistance in healthcare settings.
Carbapenems are a class of critical antibiotics reserved for treatment against multidrug-resistant
microorganisms, and resistance to this antibiotic may result in limited treatment against infections.
In addition to in clinical facilities, carbapenem resistance has also been identified in aquatic niches,
including marine environments. Various carbapenem-resistant genes (CRGs) have been detected in
different marine settings, with the majority of the genes incorporated in mobile genetic elements, i.e.,
transposons or plasmids, which may contribute to efficient genetic transfer. This review highlights
the potential of the marine environment as a reservoir for carbapenem resistance and provides a
general overview of CRG transmission among marine microbes.
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1. Introduction

Antibiotic resistance (AR) is a public health crisis that leads to increasingly complex
and expensive treatments, longer hospital stays, and higher mortality [1]. The Centre for
Disease Prevention and Control (CDC) has estimated that in the United States alone, two
million people are infected by antibiotic-resistant bacteria (ARB), resulting in 23,000 fatali-
ties every year [2]. The WHO estimates that this number will increase to approximately
10 million deaths per year by 2050 if the AR problem is not addressed [3,4]. ARB can be
found in humans, animals, plants, and the environment, such as in water and soil [5], and
may spread among humans, between humans and animals, from humans or animals to the
environment, or vice versa [6–10]. The factors contributing to the emergence and spread
of ARB include the overuse or misuse of antimicrobials; poor infection prevention and
control in healthcare facilities; lack of access to clean water, sanitation, and hygiene for
humans and animals; lack of knowledge and awareness; and lack of legislation enforce-
ment [5]. Furthermore, the rapid global spread of ARB that have acquired new resistance
mechanisms has, alarmingly, resulted in multi- and pan-resistant bacteria, also known as
“superbugs” [5]. Consequently, only a few antibiotics are left to treat human infections
caused by these multi-drug-resistant bacteria [11–13]. The WHO, therefore, suggests that
prevention and containment methods are required to decrease the spread of ARB, and
these include improved methods for antibiotic prescription, the regulation of antibiotics
use, the development of new antimicrobial drugs and vaccines, and improved surveillance
of ARB [5].

Microorganisms 2021, 9, 2147. https://doi.org/10.3390/microorganisms9102147 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-7529-1856
https://orcid.org/0000-0002-4688-3887
https://orcid.org/0000-0002-6531-9747
https://doi.org/10.3390/microorganisms9102147
https://doi.org/10.3390/microorganisms9102147
https://doi.org/10.3390/microorganisms9102147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9102147
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9102147?type=check_update&version=2


Microorganisms 2021, 9, 2147 2 of 14

The most diverse ARB worldwide are those that produce beta-lactamases (β-lactam
hydrolysing enzymes). More than 1000 beta-lactamases, including newly discovered classes
of genes and their mutations, have been identified [14]. The β-lactams belonging to the
class of carbapenems are very efficient antibiotics that are widely used to treat severe or
high-risk bacterial infections. Due to their broad spectrum of activity and efficacy against
both Gram-positive and Gram-negative bacteria, carbapenems are considered a “last re-
sort” antibiotic to treat severely ill patients or those suspected of carrying multi-resistant
bacteria [15]. Alarmingly, carbapenem resistance (CR) has been reported globally [15–17],
with the synthesis of carbapenemases being the most common mechanism underpinning
resistance [15,17–19]. Furthermore, several cases of CR have been reported in bacteria out-
side the hospital setting, including rivers [20], sewage [21,22], and marine waters [23–26].
This review summarizes the knowledge on the spread of CR outside of the clinical setting
with particular focus on the potential of the marine environment to act as a reservoir for
the genetic transfer of CR among bacteria.

2. Mechanisms of Carbapenem Resistance

Compared to penicillins and cephalosporins, carbapenems have an overall broader
antimicrobial spectrum [27]. Generally, carbapenems enter bacteria through porins, and after
passing the periplasmic space, acylate penicillin-binding proteins (PBPs), which stops the
formation of peptidoglycan as well as the cell wall, ultimately leading to cell lysis [28]. A key
factor in the efficacy of carbapenems is their ability to bind to multiple different PBPs [15].

Structural changes in or mutations of PBPs, which typically occur in Gram-positive
cocci, can contribute to CR. Alterations in affinity, the expression of efflux pumps, and the
aberrant production of carbapenemases may also promote CR [15,17]. Several carbapenem-
resistant bacteria (CRB), such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseu-
domonas aeruginosa, are known to possess a combination of these resistance mechanisms [15].
Additionally, alteration in porins or membrane protein functions can lead to reduced diffu-
sion of carbapenem into the periplasm [29]. This has been observed in K. pneumoniae, which
acquired CR through a lack of the outer membrane proteins OmpK35 and OmpK36 [30].
Mutations of the regulator gene marR and lack of OmpF and OmpC porins have also been
correlated with CR in Escherichia coli strains from clinical samples [31].

Carbapenemases can hydrolyse almost all β-lactam antibiotics, including penicillins,
cephalosporins, monobactams, and carbapenems [16]. The expression of carbapenemases
seems to play an important role in the spread of CR [28,32]. The wide range of resistance
phenotypes observed among carbapenemase-producing isolates is associated with the level
of enzyme expression and other resistant mechanisms, such as the expression of other
β-lactamases, efflux pumps, or altered permeability [17,33].

Carbapenemases are divided into two major types, serine carbapenemases and metallo-
β-lactamases, which have serine and zinc ions at their active sites, respectively [16]. Serine
carbapenemases are mostly chromosomally encoded [34–36], and metallo-β-lactamases are
often found on plasmids [37–39], although recent studies have reported that this pattern has
shifted, with both classes being plasmid-encoded [19,40–42]. The metallo-β-lactamases are
characterized by their ability to hydrolyse extended-spectrum cephalosporins (cefotaxime,
ceftazidime, and cefepime) [43]. The hydrolysis ability is determined by the interaction
of zinc ions on their active site and the β-lactams [44]. New Delhi Metallo-β-lactamase
(NDM) is the latest type of metallo-β-lactamase to be identified. NDM-1 is the major
variant and is found mostly in Enterobacteriaceae [45]. It was first described in K. pneu-
moniae and E. coli isolates in 2008 in Sweden from an Indian patient transferred from a
New Delhi hospital [45,46]. The blaNDM-1 gene can be carried by different plasmid types
(IncA/C, IncF, and IncL/M), and in rare cases, is chromosomally integrated [45]. In addi-
tion, most plasmids with blaNDM-1 genes harbor a variety of other resistance genes, such as
blaTEM-1, blaOXA-1, blaOXA-10, and blaCMY (encoding various β-lactamases); qnrA6 and qnrB1
(encoding quinolone resistance); arr-2 (encoding rifampicin resistance); sul-2 (encoding
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sulphonamide resistance); cmlA (encoding chloramphenicol resistance); and ereC (encoding
macrolide resistance) [45].

3. Epidemiology and Distribution of Carbapenem Resistance

The CDC reports that the highest mortality rate related to AR occurs in health-
care settings, including hospitals. Hospitals are one of a number of sources of organ-
isms with multiple AR, so-called “superbugs”, which create a broad concern for public
health. Carbapenemase-resistant Enterobacteriaceae have been highlighted as a source of
life-threatening nosocomial infection [16], and the epidemiological status of CRB is pro-
gressively worsening. Giske et al. reported that in Europe, an outbreak of CR that occurred
during the 2000s in several Mediterranean countries was caused mainly by carbapenemase-
producing P. aeruginosa [47]. In addition, the OXA-48-like enzymes and NDM-producing
Enterobacteriaceae have also spread rapidly in several European countries [47]. In the US,
Klebsiella pneumoniae carbapenemase (KPC) is the predominant carbapenemase among
Enterobacteriaceae, and the first KPC was isolated from a patient in North Carolina in 1996.
Up to 2013, the CDC reported that at least one KPC-producing Enterobacteriaceae had been
identified in 46 states and mostly found in K. pneumoniae, E. coli, and Enterobacter spp. [48].
In Australia, CRGs encoding KPC, imipenem-hydrolysing β-lactamase (IMP), NDM, or
oxacillin-hydrolysing carbapenemase (OXA) have been identified in human pathogens.
A plasmid-mediated blaNDM-5 was identified in an E. coli isolate from a urine sample of a
patient in Brisbane [49]. Isolates belonging to species Serratia marcescens, K. pneumoniae,
P. aeruginosa, E. coli, and Enterobacter cloacae and containing IMP-4 resistance genes were
recovered from different patients hospitalized in Melbourne [50]. In addition, multiple
CRGs (e.g., blaIMP-4 and blaOXA-58) were also found in an Acinetobacter junii isolate from
a blood sample in Melbourne [51]. Furthermore, some carbapenemases were also iso-
lated from Enterobacteriaceae species found in various animals and in healthy humans [52].
These carbapenemases included KPC, OXA NDM, VIM, OXA, IMP from Citrobacter spp.,
Cronobacter sakazakii, Enterobacter spp., E. coli, Klebsiella oxytoca, K. pneumoniae, Morganella
spp., Proteus spp., Providencia spp., and Salmonella spp. [52–55].

Aside from human-populated environments, CR can also spread into the natural
milieu, including aquatic environments [42,56–58]. CRGs, such as blaNDM-1, blaKPC-2, and
blaOXA-58, have also been reported in known environmental bacteria, such as Acinetobacter
johnsonii [59] and Acinetobacter towneri [60]. Imipenem-hydrolysing β-lactamase-2 has also
been found in Enterobacter asburiae isolated from USA rivers [32]. A novel carbapenemase,
BIC-2, was identified in water samples from the Seine River, Paris. This enzyme was found
in Pseudomonas fluorescens and shares 68% amino acid identity with SFC-1 from Serratia
fonticola, and 59% with plasmid-encoded KPC-2 [61].

There are several ways for CR to enter the environment. These include, for exam-
ple, wastewater treatment plants (WWTPs), especially those receiving wastewater from
hospitals [21,62,63]. WWTPs can release large numbers of ARB into the environment,
where they might temporarily survive and even proliferate [7,8,64]. WWTPs typically
do not remove antibiotic-resistance genes (ARGs), but instead may spread them into the
aquatic environment [8,56,65]. For example, a study in Spain detected clinically relevant
ARGs in biofilms and river sediments that were distant to WWTP discharge points [7].
Carbapenemase-producing Enterobacteriaceae (CPE), Acinetobacter spp., Aeromonas spp., and
Pseudomonas spp. containing the genes blaNDM, blaKPC, and blaOXA have also been isolated
from raw sewage, treated effluent, and the receiving river waters [56,63]. WWTPs can,
therefore, play a significant role in the dissemination of CRB and CRGs.

The further circulation of CR in aquatic matrices may potentially pollute rivers and
drinking water sources [66]. A novel class B metallo-β-lactamase was also identified
in Shigella boydii, Aeromonas caviae, and Vibrio cholerae from seepage and drinking water
samples [67]. Multi-resistant bacteria and ARGs were detected at a drinking water intake at
Lake Geneva, Switzerland, which was 3.2 km away from a WWTP outlet [68]. Furthermore,
CRB have also been found in drinking water in several parts of the world. For instance,
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carbapenemase-producing Serratia fonticola was reported in drinking water in Portugal [69],
and CPE including E. coli, Kluyvera, Providencia, Klebsiella, and Citrobacter species, and
non-fermenting Gram-negative species, such as Shewanella spp., Pseudomonas spp., and
Acinetobacter spp., were found to contain blaOXA-48-type carbapenemase in USA drinking
waters [66]. In addition, non-fermenting Gram-negative rods carrying the blaNDM gene
were isolated from New Delhi drinking water [67]. Thus, the aquatic environments may
serve as a vehicle by which CRB or CRGs could be disseminated from one aquatic ecosystem
to another (see Figure 1).
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other marine microorganisms.

The dense bacterial communities in WWTPs can also facilitate genetic exchange
between bacteria, which can lead to the horizontal transfer of resistance genes between
clinical pathogens and environmental microorganisms or vice versa [7,70]. For example,
Citrobacter freundii and Enterobacter cloacae detected in hospital sewage have been found
to contain the same blaKPC-2 gene [71]. The species Pseudomonas monteilii, Brevundimonas
diminuta, and Enterobacter ludwigii have been found to contain the same genetic variant
of the blaVIM-13 gene in sewage [22]. Finding identical CRGs in different bacterial taxa
indicates that sewage is a suitable environment for horizontal resistance gene transfer.

4. Distribution of Carbapenem Resistance in Marine Systems

The dissemination of AR in seawater may be influenced by discharges from coastal
runoff, aquaculture, polluted rivers, and WWTP effluents, which frequently contain re-
sistant bacteria and resistant genes [72–77]. A study described that CRB communities in
seawater and storm water samples did not differ significantly at the investigated sites,
and the phylogenetic analysis showed that their CR isolates often belonged to the same
species [25]. CPE, such as Enterobacter spp. and E. coli carrying blaIMI-2, were also isolated
from river estuaries and beach water. Further molecular analysis and genome compar-
isons revealed the high similarity of these riverine and marine CRB from samples that
were collected one month apart [77]. Thus, local sources, such as stormwaters and rivers,
are an important source of CRB in the seawater and may have a significant effect on the
composition of CRB in the marine environment (see Figure 1).
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Furthermore, CR has also been recently detected in the marine environment [25,73,76,78–80].
For example, CRB belonging to a wide range of bacterial taxa, including four phyla,
eight classes, and 30 genera, were found in Australian marine and near-shore environ-
ments [25]. Many genera found in the marine environment, such as Pseudomonas [9,81],
Stenotrophomonas [81], Acinetobacter [51,82,83], Brevundimonas [84], Caulobacter [85], Chry-
seobacterium [86,87], Empedobacter [88], Sphingomonas [86], Flavobacterium [89], Cupriavidus [81],
Myroides [89], Ochrobactrum [90], and Pedobacter [86], have already been previously de-
scribed to contain CR, and these bacteria may carry well-known and clinically relevant
CRGs. For example, clinically relevant CRGs, such as KPC-2, Guiana extended spectrum
(GES)-like, and OXA-carbapenemases, have been identified in several species, includ-
ing Klebsiella spp., Citrobacter spp., Kluyvera spp., Enterobacter cloacae, E. kobei, E. asburiae,
Aeromonas punctata, and A. hydrophila isolated from coastal water [73,91]. In addition, NDM
genes have also been detected in K. pneumoniae and E. coli from beach waters [91–93]. Wor-
ryingly, CPE, Acinetobacter spp., Aeromonas spp., and Pseudomonas spp. from recreational
beach waters have been consistently found throughout the year to carry multiple CRGs,
including KPC, GES-like carbapenemase, NDM, IMP, Verona integron-encoded metallo-β-
lactamases (VIM), Sao Paulo metallo-β-lactamases (SPM), and OXA-carbapenemase [76]
(see Table 1). These studies show that clinically relevant CRGs have entered the marine
environment and potentially spread into other bacteria.

Table 1. Carbapenem-resistant bacteria and carbapenem resistance genes found in coastal environments.

Carbapenem Resistant Bacteria Carbapenem Resistance
Determinants Reference

Vibrio cholerae Not identified [24]

Rheinheimera spp. B3-MBL
[25]

Variovorax spp. NDM

Enterobacteriaceae KPC, OXA [72]

Citrobacter sp., Citrobacter sp., Kluyvera sp., Aeromonas sp. KPC-2 [73]

Acinetobacter spp. OXA

[76]

Aeromonas spp. KPC-2, GES-5, GES-16

Citrobacter sp. KPC-2, OXA-370

Enterobacter spp. KPC-2, KPC-26, GES-5, GES-16

Klebsiella spp. KPC-2, KPC-26, GES-16, NDM-1

Kluyvera spp., Serratia spp. KPC-2

Pseudomonas spp. VIM-2, SPM-1

Enterobacter asburiae IMI-2

[77]Enterobacter bugandensis IMI-20

Escherichia coli OXA-48

Erythrobacter litoralis ElBla2 * [78]

Enterobacter cloacae KPC-2, CTX-M-15, OXA-17 [79]

Pelagibacterium halotolerans PH-1 * [80]

Aeromonas punctata, Enterobacter asburiae, K. pneumoniae, Enterobacter kobei KPC, GES-16, OXA-48-like [91]

K. pneumoniae NDM [93]

K. pneumoniae NDM-1, OXA-1 [92]

Pseudomonas spp., Rheinheimera spp., Stenotrophomonas sp., Shewanella sp.,
Raoultella sp., Vibrio sp., Pseudoalteromonas sp., Algoriphagus sp.,

Bowmanella sp., and Thalassospira sp.
OXA-58 [94]

E. coli, K. pneumoniae OXA-48 [95]

Shewanella livingstonensis SLB-1 *
[96]

Shewanella frigidimarina SFB-1 *

Aliivibrio salmonicida ALI-1 * [97]

* Novel metallo-β-lactamase.
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5. Potential for CR Transfer and Reservoir in the Marine Environment

The marine environment may contribute to the further dissemination of CRGs between
different bacterial strains by providing a medium in which horizontal gene transfer can take
place [98,99]. For example, a study of CR in the coastal environment found that most of the
CR aquatic isolates were assigned to the genus Pseudomonas, including the species P. asplenii,
P. monteilii, P. fulva, P. plecoglossicida, P. stutzeri, P. taiwanensis, and P. xanthomarina. In the
genus Pseudomonas (family Pseudomonadaceae), the production of carbapenemases, such as
IMP, VIM, NDM, and KPC, is considered to be the predominant mechanism underlying
CR [9,18,100,101]. The CRGs are frequently located in the mobile genetic elements, which
facilitate their horizontal transfer between different species [102–105]. Thus, horizontal
gene transfer might have been involved in the dissemination of CRGs in the Pseudomonas
species, similar to what has been observed in the family Enterobacteriaceae [40,41,106,107].

Several CRGs, such as blaKPC, blaNDM, blaGES, and blaOXA48-like, have been found
in different members of Enterobacteriaceae, including K. pneumoniae, Aeromonas punctata,
A. hydrophila, E. coli, E. cloacae, E. kobei, and E. asburiae, in recreational seawaters [91,93].
Furthermore, E. coli from terrestrial sources could transfer its blaCTX-M-15 gene to Pantoea
agglomerans and Raoultella terrigena in the coastal seawater [108]. Another study reported
that in seawater samples, Rheinheimera spp., which are typical marine bacteria [109,110],
have been found to share an identical MBL gene utilizing plasmid transfer and chromoso-
mal integration with the species C. freundii and E. cloacae, which are not typically found in
seawater [25]. In addition, Variovorax spp. carried the NDM-type genes, which were likely
acquired from the species E. coli, K. pneumoniae, and A. baumannii. These utilized plasmids
have also been reported in this coastal water study [25].

Marine samples have also been found to house CRB from genera such as Chromobac-
terium, Rheinheimera, Variovorax, Aquiflexum, Chitinophaga, Herbaspirillum, and Xanthobacter,
which have not previously been known to have CR, indicating the potential for new resis-
tance genes [25]. As marine environments are not usually exposed to high concentrations
of clinically relevant carbapenems or other β-lactam antibiotics [111,112], marine bacteria
may evolve novel CR due to the selection pressure of natural β-lactam antibiotics produced
by other marine microorganisms [113,114]. This could, for example, include aureoverticil-
lactam and lajollamycin found in the marine species Streptomyces aureoverticillatus [115] and
S. nodosus [116], respectively (see Figure 1). As such, several novel carbapenemases have
been recently discovered. These include ElBla2 MBL from the species Erythrobacter litoralis
(family Sphingomonadaceae), which has an amino acid sequence similarity to NDM-1 [78]; the
PH-1 MBL gene from the species Pelagibacterium halotolerans (family Hyphomicrobiaceae) [80];
and the RH-B3-MBL gene from the genus Rheinheimera (family Chromatiaceae) [25]. These
findings provide further evidence that the marine environment represents an unexplored
reservoir of novel carbapenemases.

6. The Effect of Marine CRGs/CRB on Human Health

To date, the impact of pathogenic CRB has been extensively studied within the health-
care setting [33,48,49]. However, several bacteria relevant to human health with CR,
including Pseudomonas fulva, Brevundimonas vesicularis, Enterococcus durans, Acinetobacter
junii, A. johnsonii, Microbacterium lacus, and S. maltophilia, have been found in coastal seawa-
ter in Australia [25]. These species have been found to cause human infections, such as
bacteraemia (Acinetobacter junii, A. johnsonii, Pseudomonas fulva, and Brevundimonas vesic-
ularis) [117–120], meningitis (P. fulva) [100], endocarditis (E. durans) [121], cellulitis, soft
tissue, urinary and respiratory tract infections (Stenotrophomonas maltophilia, Microbacterium
lacus) [122–125], and eye infections (S. maltophilia and A. junii) [126,127].

In addition, there is growing evidence that CRGs have been carried by human op-
portunistic pathogens into seawaters [73,80,94]. For example, CRGs, such as KPC, IMP,
VIM, SPM, NDM, and OXA-carbapenemases, have been identified in E. coli, K. pneumoniae,
Acinetobacter spp., Aeromonas spp., Enterobacter spp., and Pseudomonas spp. in recreational
coastal waters of Rio de Janeiro [73,76], Israel [77], and Ireland [95].
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This prevalence has public health implications [26,86], since coastal waters are fre-
quently used for recreational and sport purposes. CR infections can, in such circumstances,
be acquired through common routes of pathogen exposure to humans, including inges-
tion, inhalation, and dermal or eye contact with the beach waters [128,129] (see Figure 2).
For example, the risk of experiencing symptoms of gastrointestinal, ear, and skin infec-
tions from exposure to seawater with bacterial contamination is higher in bathers than
in non-bathers [26,129]. Open wounds in soft tissues are also vulnerable to infection by
opportunistic human pathogens. For example, a soft tissue infection by Microbacterium
lacus was acquired after a bather’s elbow was bumped on a rock while swimming [124].
Considering the spread of CRB in marine environments that are frequently used for human
activities, the potential risk of CRB transfer from this reservoir to humans is still great. Fur-
ther in-depth studies to quantify the risk of human infection with these CRB in recreational
seawater should be performed.
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lacus) [122–125], and eye infections (S. maltophilia and A. junii) [126,127]. 

In addition, there is growing evidence that CRGs have been carried by human op-
portunistic pathogens into seawaters [73,80,94]. For example, CRGs, such as KPC, IMP, 
VIM, SPM, NDM, and OXA-carbapenemases, have been identified in E. coli, K. pneu-
moniae, Acinetobacter spp., Aeromonas spp., Enterobacter spp., and Pseudomonas spp. in rec-
reational coastal waters of Rio de Janeiro [73,76], Israel [77], and Ireland [95].  

This prevalence has public health implications [26,86], since coastal waters are fre-
quently used for recreational and sport purposes. CR infections can, in such circum-
stances, be acquired through common routes of pathogen exposure to humans, including 
ingestion, inhalation, and dermal or eye contact with the beach waters [128,129] (see Fig-
ure 2). For example, the risk of experiencing symptoms of gastrointestinal, ear, and skin 
infections from exposure to seawater with bacterial contamination is higher in bathers 
than in non-bathers [26,129]. Open wounds in soft tissues are also vulnerable to infection 
by opportunistic human pathogens. For example, a soft tissue infection by Microbacterium 
lacus was acquired after a bather’s elbow was bumped on a rock while swimming [124]. 
Considering the spread of CRB in marine environments that are frequently used for hu-
man activities, the potential risk of CRB transfer from this reservoir to humans is still 
great. Further in-depth studies to quantify the risk of human infection with these CRB in 
recreational seawater should be performed. 

 
Figure 2. Schematic diagram showing the route of potential CRB transmission from the coastal en-
vironment to humans and the potential health problems that may occur. The practice of recreational 
activities, such as sport and fishing, in CR-contaminated coastal environments may result in poten-
tial human illnesses, such as dermal or eye problems and gastrointestinal infections. The possible 
routes of transmission include accidentally ingested or inhaled beach waters that are contaminated 
by CR. 

  

Figure 2. Schematic diagram showing the route of potential CRB transmission from the coastal
environment to humans and the potential health problems that may occur. The practice of recreational
activities, such as sport and fishing, in CR-contaminated coastal environments may result in potential
human illnesses, such as dermal or eye problems and gastrointestinal infections. The possible routes
of transmission include accidentally ingested or inhaled beach waters that are contaminated by CR.

7. Conclusions

The global spread of CR is becoming a major threat to public health and has worsened
with the detection of resistance in last-line antibiotics, including carbapenems [1,15,16]. CR
has not only been reported in pathogenic bacteria [6,9,10,31,130], but also in environmen-
tally derived bacteria [86,108,131,132]. As non-clinical environments, such as sewage, rivers,
lakes, and oceans, may serve as the media for the transmission of CR [24,73,76,133,134],
studies of the further dissemination of CR in these matrices are critically important. In
the coastal environment, CRB and CRGs seem to be transported from terrestrial sources
through stormwater runoff, wastewater discharges, and polluted rivers [21,25,42,57], which
had a significant effect on the diversity and CRB load in the marine environment.

To date, a large variety of CRGs have been identified, and the transfer of CRGs
between different bacteria has been characterized [22,49,135]. Most CRGs are located on
mobile genetic elements, such as plasmids or transposons, and their mobility contributes to
the rapid spread of CRGs between bacteria [16,136]. The identification of CRGs, including
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novel carbapenemases in non-targeted marine bacteria [25,78,80], suggests either that CRGs
have been horizontally transferred from non-marine bacteria (e.g., fecal contaminant) to
marine bacteria or that novel CRGs have evolved in marine lineages due to continuing
selection by naturally produced β-lactam antibiotics in the marine environment.

Given that the CRB identified in coastal environments are relevant to human health,
public health concerns may arise due to the fact that beach water is mostly designated
for recreational and sporting activities [24,26,73,137]. Future investigation of CR in the
coastal environment is necessary to understand the resistant epidemiology and quantify
the potential risk for CRB to cause human illnesses.
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