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ABSTRACT
In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes
were identified from the genomes of four cotton species, which are the members of
Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-
1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship,
gene structure, and expression provides the basis for studies on function of UGP genes
in cotton. The evolutionary tree and gene structure analysis revealed that the UGP
gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that
amplification ofUGP genes is due to repetitive crosstalk generating between new family
genes, while being under strong selection pressure. The analysis of cis-acting elements
exhibited that UGP genes play important role in cotton growth, development, abiotic
and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at
15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of
low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency
promoted the development of ovules and fiber clusters, and qRT-PCR showed that
expression of these six UGP genes was differentially increased. These results suggest
that the UGP gene may play an important role in fiber development, and provides
the opportunity to plant researchers to explore the mechanisms involve in fiber
development in cotton.

Subjects Agricultural Science, Bioengineering, Bioinformatics, Molecular Biology, Plant Science
Keywords Cotton, Fiber development, UDP-glucose pyrophosphorylase

INTRODUCTION
UDP-glucose pyrophosphorylase (UGP) is a member of Pfam glycosyltransferase family
(PF01702), an enzyme found in various organisms, including plants, animals and bacteria
(Chen et al., 2007; Johansson et al., 2002; Kleczkowski, 1994; Winter & Huber, 2000), which
catalyzes the reaction between glucose-1-phosphate and UTP to produce UDPG (Daran
et al., 1995). UDPG is an important molecule in biology, food, biopharmaceutical and
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cosmetic chemistry, and an essential glucose donor compound. It is also one of the key
precursors for sugar interconversion, disaccharide and polysaccharide formation, and
amino and nucleotide sugar metabolism (Lamerz et al., 2006), and is involved in several
essential cellular processes, including carbohydrate metabolism, cell wall biosynthesis, and
protein glycosylation (Chen et al., 2007; Daran et al., 1995).

Previous studies have shown thatUGP genes have diversity of roles in various organisms.
For example, in fungi, UDPG is an essential precursor of b-1,3-glucan and b-1,6-glucan,
where both are the components of biosynthesis of cell wall (Daran et al., 1995). In
yeast, YKL248 cells, UDPG concentration was reduced by 50% when UGP activity
was significantly reduced by 10-fold, resulting in the induction of multiple outgrowth
phenotypes (Daran, Bell & François, 1997; Daran et al., 1995). It was also reported that
antisense repression of UGP genes in plants reduces the content of soluble carbohydrates,
starch or sucrose (Borovkov et al., 1996; Spychalla et al., 1994). In Arabidopsis, the
AtUGP1/AtUGP2 double-silent mutant showed the decreased concentration of UDPG,
growth defects, and male-sterility (Park et al., 2010). Changes in the cell wall structure and
number of mycelial meristems in UGP homolog knockout mutants of Ganoderma lucidum
(Li et al., 2015b). In rice, silencing of UGP 1 by co-repression or double-stranded RNA
interference (dsRNAi) affects the callus deposition during meiosis of pollen, resulting in
male sterile phenotype (Chen et al., 2007; Woo et al., 2008). The data also suggests that
over-expression of native or exotic UGP gene in various plants can the increase plant
height, leaf area and leaf-stem biomass ratio or nutritional profile (Coleman et al., 2006;
Payyavula et al., 2014).

Cotton is one of the most important sources of fiber in the world. The widely cultivated
upland cotton (Gossypium hirsutum) is an allotetraploid originated from two diploid
ancestral species, G. arboreum (A-genome) and G. raimondii (D-genome), resulting from
natural hybridization and genome doubling over millions of years in natural conditions
(Wendel, 1989; Wendel & Cronn, 2003). Amongst the several quality traits, fiber strength
is one of the important traits, where cotton fiber is a single-celled seed hair of the ovule
epidermis, whose development is accomplished in four different stages (Kim & Triplett,
2004), in which cell elongation determines the primary quality traits of cotton fiber (Deng
et al., 2012). Fibroblast elongation is a complex process involving multiple metabolic
and regulatory events (Kim & Triplett, 2001). It was reported in literature that various
abiotic stresses and hormonal homeostasis play a crucial role in the development and
quality of cotton fibers, such as BR (Sun et al., 2005; Yang et al., 2014). Fiber strength
is mainly determined by the strength of its cell wall, where main components of cell
wall includes cellulose and non-cellulose components. Cellulose is formed by UDPG,
and UDPG can be synthesized by employing three enzymes namely, UGP, UDP-sugar-
pyrophosphorylase (USP) and sucrose synthase. For the synthesis of UDPG and UGP, USP
use monosaccharide-1-phosphate as a substrate, while SuSy catalyzes sucrose cleavage and
delivers UDPG directly to the plasma membrane-associated cellulose synthase complex
(Amor et al., 1995; Kotake et al., 2004). These findings support the existence and important
role of UGP genes in fiber development of cotton, and the sequencing of cotton genome
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has made it possible to analyze various gene families through genome-wide approach (Du
et al., 2018; Hu et al., 2019; Paterson et al., 2012; Zhang et al., 2015).

In this study, 19 UGP genes were identified form upland cotton through gene
family identification, phylogenetic tree construction, structural analysis, chromosome
distribution, analysis of covariance and its Ka/Ks ratio, prediction and analysis of
promoter cis-acting elements, transcriptome data analysis, ovule culture and its phenotypic
observation, etc. The expression pattern of UGP gene in cotton fiber was analyzed by using
qRT-PCR. In addition, we have determined the expression patterns of UGP genes under
phytohormone-stimulated conditions to explore the functional role of these genes in cotton.
This study provides the foundation for elucidation of evolutionary and functional analysis
of UGP genes and provides a molecular and biological basis for a deeper understanding of
the association between UGP genes and cotton fiber development.

MATERIALS AND METHODS
Identification of UGP gene family
TheUGP gene was obtained by searching the whole genome (TAIR: http://www.arabidopsis.
org) of Arabidopsis thaliana, and Hidden Markov Model (HMM) of UGP (PFAM01704)
was obtained by searching the conserved structural domain of proteins through National
Center for Biotechnology Information Search database (NCBI), and the HMM was
used in the hmmer search program in hmm3.0 software (Finn, Clements & Eddy, 2011).
The genomic data of seven species were screened out using the Arabidopsis UDPGP
model and downloaded from the CottonFGD (https://cottonfgd.org/about/download.html)
website for G. arboreum (Ga) (Du et al., 2018), G. barbadense (Gb) (Hu et al., 2019),
G. hirsutum (Gh) (Hu et al., 2019) andG. raimondii (Gr) (Paterson et al., 2012), Theobroma
cacao (Motamayor et al., 2013) and Carica papaya (Ming et al., 2008) were retrieved from
ePhytozome 2.1 database6 databases (https://phytozome-next.jgi.doe.gov/) the Arabidopsis
thaliana genome sequence (A. thaliana) was retrieved from the TAIR database. The search
results were filtered with a threshold value of E-value = 1e−5, and unqualified and
duplicate transcripts were discarded after the results were obtained.

Construction and structural analysis of the phylogenetic tree of UGP
gene
The protein sequences of seven species were compared by usingMEGA7.0 ‘‘muscle’’ analysis
(Kumar, Stecher & Tamura, 2016), and then neighbor-joining method (NJ) (Saitou & Nei,
1987) was used to generate a phylogenetic tree with a bootstrap of 1000 (Tamura et al.,
2013). In addition, the sequences ofUGP based from four species of cotton were isolated to
construct an evolutionary treeUGP gene, and intron-exon analysis was performed by using
TBtools (Chen et al., 2020). The gene motifs were analysed through the MEME website
(meme-suite.org/meme/index.html), and aminimumof 10motifs were designed (Hu et al.,
2015). The isoelectric point (PI) andmolecular weight (MW) of these genes were calculated
separately online through the ExPASy website (http://web.expasy.org/compute pi/).
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Chromosome location, collinearity and Ka/Ks analysis
TBtools (Chen et al., 2020) were applied on cotton genome file and GFF3 file to draw the
position of gene on the chromosome. Homologous UGP gene pairs were obtained by
BLASTP full-pair search (Altschul et al., 1990), and visualization was obtained by TBtools
(Chen et al., 2020).

Prediction and analysis of promoter cis-acting elements
The 2,000 bp sequence formupstreamof start codonof theUGP genewas extracted from the
CottonFGD website, and the cis-regulatory elements were predicted through PlantCARE
database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al., 2002).
The predicted cis-elements were categorized according to the role in transcriptional
regulation (Pandey et al., 2016).

Transcriptome data analysis
The transcriptome data of standard genetic line TM-1 was retrieved from NCBI
SPA (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490626) (Hu et al., 2019), and
transcriptome data of sGK9708 and 0–153 was obtained from Zhang’s research group
(Zhang et al., 2020). The date forUGP gene were extracted from three cotton transcriptome
databases mentioned above at various time periods for preliminary analysis.

Types of cotton 0–153 and sGK9708 from based at Chinese Academy of Agricultural
Sciences, Zhengzhou, China (Zhang et al., 2020). The day to flowering was marked as 0 day
post anthesis (0 DPA), and cotton bolls with five, 10, 15, 20, 25 and 30 DPA were taken as
materials, and stores in liquid nitrogen for various assays. The RNA extraction calibration
of RNA concentration, and reverse synthesis of cDNA was prepared according to the
protocols provides by manufacturers, and similar protocols were used previously by Jia et
al. (2020) and final results were analysed and plotted by using available TBtools (Chen et
al., 2020). In addition, fluorescent quantitative specific primers were designed on Primer3
(bioinfo.ut.ee/primer3-0.4.0/primer3/) and upland cotton GhHistone3 (AF024716) was
used as an internal reference gene (Xu et al., 2004) in current studies.

Ovule culture and its phenotypic observation
The response against four growth hormone, namely, indole acidic acid (IAA), gibberellin
(GA3), abscisic acid (ABA) and salicylic acid (SA) was determined by 2.4 analysis, , and
one additional hormone ethylene (ETH) was added for ovule ex vivo culture experiments.

Ovules from cultivars 0–153 were cultured and five hormones, IAA, GA3, ETH, SA
and ABA, were added at final concentrations of 0.1 uM, 0.5 uM and 1 uM. Hormone
configuration and packaging method; sampling of bolls and ovules, cleaning and
sterilization, culture conditions, and fiber cluster area was measured according to methods
previously used by Jia et al. (2020). All of experiments were performed in three independent
replicates, where, four to five ovules were selected for fiber quality area assessment and
were analysed for statistical significance by using a t -test.

Intact ovules cultured for 15 DPA were used as material for RNA extraction and data
were summarised by reverse transcription followed by qRT-PCR experiments (methods as
above). Data were analysed to observe gene expression.
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RESULT
Identification of the UGP gene family
A total of 81 UGP genes were identified in seven species by screening genes containing
complete sequences for UGP structural domains, including nine from G. arboreum, 26
from G. barbadense, 19 from G. hirsutum, 12 from G. raimondii, seven in A. thaliana, four
in C. papaya, and T. cacao four. Among them, a total of 66UGP genes were identified from
four cotton species (Table S1).

Evolutional analysis of UGP gene family
The UGP gene family was divided into two subclades UGP-I and UGP-II based on the
evolutionary tree topology, containing 35 and 46 genes, respectively. Wang et al. (2011)
divided the UGP genes into five sub-clades by using an evolutionary tree of UGP genes
among 11 species, which were differed from previous studies.

Further analysis of conserved structural domains allowed the division of UGP-I into
three subgroups UGP-I-A (Fig. 1A), UGP-I-B (Fig. 1B), and UGP-I-C (Fig. 1B), and
UGP-II was further divided into three subgroups UGP-II-D (Fig. 1D), UGP-II-E (Fig. 1E),
and UGP-II-F (Fig. 1F). In four cotton species, 66 UGP genes were divided into these
six subgroups, of which A contained 15 genes, B contained seven genes, C contained
eight genes, D contained 12 genes, E contained six genes, and F contained 18 genes; while
none of gene from G. arboreum was found in sub-group C. The number of G. barbadense
and G. hirsutum in each sub-population was about twice as compared to other species.
The isoelectric points and molecular weights of these 81 genes were counted, and it was
found that ∼74% of their isoelectric points were between 5.5 and 7.3, and ∼72% of their
molecular weights were between 48.6 and 80.6 kD (Table S2).

Structural analysis of the UGP gene family
The UGP structural domains were present in all of genes, and UGPs were divided into six
sub-groups based on length and composition of structural domains, and the conserved
structural domains were similar in each sub-group (Fig. 2A). The gene sequence analysis
revealed that each sub-group contained similar types and numbers of motif elements, with
sub-population F which contain 9–10motifs, Sub-population C containing only 2–3motifs
which is minimum as compared to others, while remaining sub-populations contained
between four and eight motifs, and majority of genes contained motif1 and motif4 (Fig.
2B). Exon analysis revealed that each UGP gene contained a high number of exons i.e.,
12–20, and only sub-group C had 5–12 exons, and exons were similar with reference to
position and length, and UTR structure was found only in G. raimondii (Fig. 3).

Chromosome location and collinearity analysis
TheUGP genes were evenly distributed on At andDt sub-genomic chromosomes of upland
cotton, where 10 of 19UGP genes were assigned to eight At sub-genomic and nine to seven
Dt sub-genomic chromosomes. Two UGP genes were present on chromosomes A08, D08,
A11 and their D11, respectively, while only one UGP gene was contained on A02, A03,
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Figure 1 UGP gene phylogenetic tree: A total of 81UGP genes of seven species, includingG. arbore-
tum,G. barbadense,G. hirsutum,G. raimondii, A. thaliana, C. papaya, T. cacao.

Full-size DOI: 10.7717/peerj.13460/fig-1

A05, A07, A10, A12, D01, D02, D03, D10 and D12, and no UGP gene was found on the
remaining chromosomes (Fig. S1).

Because G. hirsutum is a four-ploid cotton species formed by natural crosses of two
two-ploid cotton species (G. arboreum and G. raimondii) (Wendel & Cronn, 2003). Co-
lineage analysis by using 19UGP genes of upland cotton andG. arboreum andG. raimondii
cotton species showed he presence of 47 homologous pairs of genes. 24 homologous
pairs were found in A genome and 23 homologous pairs in D genome of upland cotton
(Fig. 4A). Co-lineage analysis revealed 45 homologous gene pairs were part of genome of
G. barbadense (Fig. 4B). The number of UGP genes in upland cotton was nearly double
that of the two-ploid cotton species, and the At and Dt genomes contained essentially the
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same number of homologous gene pairs, suggesting that the UGP genes were present in
cotton before the upland cotton cross.

The Ka/Ks (non-synonymous/synonymous) ratios homologous gene pairs were
calculated by TBtools (Chen et al., 2020). It is reported that Ka/Ks = 1.0 represents
neutrally selected pseudogenes, Ka/Ks < 1.0 indicates the tendency of purifying selection on
replicated genes, and Ka/Ks > 1.0 ratio indicates accelerated evolutionary positive selection
(Qanmber et al., 2019a). We found that 18 of 19 Gh/Ga homozygous gene pairs, 19 Gh/Gb
homozygous gene pairs and 19 Gh/Gr homozygous gene pairs had Ka/Ks values below 1.0,
accounting for about 95%; only one gene pair had a Ka/Ks ratio of > 1.0, and since most
Ka/Ks were less than 1.0 (Fig. 4C).

Cotton transcriptome data analysis
Two cotton fiber transcriptome datasets were used to study the expression patterns of
the UGP gene family: one is NCBI SPA database TM-1 dataset (Fig. 5A) and other is
raw RNA-Seq dataset of sGK9708 and 0–153 (Fig. 5B) (Table S3). Analysis of expression
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Figure 3 Intron distribution ofUGP gene family.
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data showed that six genes namely GH_A08G0422, GH_D08G0444, GH_A12G0472,
GH_D12G0484, GH_A11G1773 and GH_D11G1805 had relatively high PKFM values in
all of three genomes of upland cotton, with highest expression of about 15 days of fiber
development. The qRT-PCR data of six genes in days 0–30, showed high expression of
0–153 and sGK9708, which was consistent with the data from transcriptome analysis
(Fig. 6).

Cis-acting regulatory elements in promoter region of UGP gene
Analysis of approximately 2,000 bp sequences upstream of start codon (ATG) of 66 genes
in UGP gene family revealed that all of these genes contain several similar elements,
including light and stress response elements, growth response elements (endosperm
expression elements, meristem expression elements), and various hormone response
elements (Fig. 7). Light response elements include GT1-motif, ACE, G-box, GT1-motif,
3-AF1 binding site and Sp1, four hormone response elements include growth hormone
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Full-size DOI: 10.7717/peerj.13460/fig-4

response elements (TGA-element, AuxRR-core), gibberellin response elements (P-box,
TATC-box, GARE-motif), salicylic acid response element (TCA-element), and abscisic
acid response elements (ABRE), and stress response elements including defense and stress
response elements (TC-rich repeats) and low-temperature response elements (LTR). Taken
together, the distribution of these different kinds of cis-acting elements responds to the fact
that these genes can exert a significant influence on fiber development under light, stress,
growth, development, and hormone induction.

Response of UGP genes to different hormones in cotton fibers
Cotton ovules were cultured in three gradients of five hormones, and phenotypic
observation and RNA extraction were performed at fiber stage of 15DPA. Six of
highly expressed genes (GH_A08G0422, GH_D08G0444, GH_A12G0472, GH_D12G0484,
GH_A11G1773, GH_D11G1805) were subjected to qRT-PCR analysis.
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The supply of IAA and GA3 revealed better growth and development with larger ovule
volume and fiber cluster area of 15 DPA ovules than the control, whereas ovules cultures
with ABA, ETH and SA grew slowly and had smaller fiber cluster area than the control
(Fig. 8A). The area of fiber clusters of ovule culture was counted for each concentration
of hormones in a sample of 5–10 ovules, and it was found that fiber cluster development
was approximately 10–20% higher than the control with external application of IAA and
GA3 hormones, and approximately 20–90% lower under the influence of ETH, SA and
ABA hormones (*, P < 0.05; **, P < 0.01) (Fig. 8B). Analysis of qRT-PCR results of
ovule fibers at 15 days showed that the expression of GH_A08G0422 and GH_D08G0444
genes were increased differentially with addition of low concentrations of hormones, and
were increased to 4–6-fold with addition of IAA. However, the other four genes showed
significant increase in expression only when IAA was added (*, P < 0.05; **, P < 0.01)
(Fig. 9).

DISCUSSION
In the present study, we idefntified 81UGP genes in seven different species, a total of 66UGP
genes were identified in four cotton species, which were classified into two subfamilies:
UGP-I and UGP-II, containing 46 and 35 genes, respectively, based on topology and
conserved structural domains, and the two subfamilies, UGP-I and UGP-II, were divided
into three subgroups, respectively. The phylogenetic tree analysis of UGP genes from
seven different species revealed a very similar homology of UGP genes among different
species. The distribution of each species in the subpopulations was relatively uniform,
demonstrating thatUGP genes are very conserved across species evolution (Liu et al., 2018;
Qanmber et al., 2019a).
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Figure 6 Perform qRT-PCR analysis on sixUGP genes with high expression of 0–153 and sGK9708. The expression level is shown relative to the
internal reference gene GhHis3. Error bars represent the standard deviation of three independent experiments.

Full-size DOI: 10.7717/peerj.13460/fig-6

The molecular weights of UGP genes are concentrated at 48.6–80.6 kD, and most of
isoelectric points are concentrated at 5.5–7.3. The same cis-acting elements were found
in most of these genes in the analysis of first 2,000 bp cis-acting elements of the start
codon, and hormone response elements have been identified, including growth (Guilfoyle
& Hagen, 2007; Hagen & Guilfoyle, 2002) and gibberellin (Wang et al., 2018), abscisic acid
(Narusaka et al., 2003; Song et al., 2005)and salicylic acid, and light (Fankhauser & Chory,
1997), drought and low-temperature response elements (Singh, Foley & Oñate Sánchez,
2002). It is tentatively speculated thatUGP genes may be involved in growth, development,
abiotic and hormonal stresses in cotton (Qanmber et al., 2019a; Qanmber et al., 2019b).

The UGP genes were distributed relatively evenly on the chromosomes, i.e., 10 genes
were distributed on At-sub-genic chromosome group and nine genes on Dt-chromosome
group. The conserved structural domains, motif analysis and intron analysis revealed
that the conserved structural domains were similar in each sub-group with majority of
genes containing motif1 and motif4 motif structures, and each UGP gene contained a
high number of exons between 12–20, and UTR structure was only found in G. raimondii.
From these finding, it is concluded that UGP genes are evolutionarily conserved in cotton
(Qanmber et al., 2018).
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The number ofUGP genes in G. hirsutum and G. barbadense is about twice as compared
to G. arboreum and G. raimondiid, due to polyploidization. Since G. hirsutum was evolved
1.5 million years ago by crossing of diploid ancestral species having A and D genomes (Hu
et al., 2019; Li et al., 2015a; Schaper & Anisimova, 2015). It is reported that UGP gene was
present in parental species of upland cotton. Polyploidy is a common phenomenon in
the evolution of plants and is a major mechanism of adaptation and speciation (Ramsey
& Schemske, 1998). It is estimated that 47–70% of angiosperms are polyploid in nature
(Grant, 1981; Masterson, 1994). Polyploids arises due to involvement of partial or whole-
genome duplication (WGD) (Cannon et al., 2004). WGD is also a common phenomenon
in evolution, and Arabidopsis thaliana has experienced two WGDs that have resulted in
DNA loss and chromosomal rearrangements (Tang et al., 2008). However, gene loss can
occur when genes obtain form duplicate amplification after hybridization (Li et al., 2015a;
Paterson, Bowers & Chapman, 2004), and homologous of UGP were lost during evolution
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Figure 8 Phenotypic identification of hormones added to ovule culture. (A) The phenotypic changes of
fiber mass area when hormones of different concentrations are applied in the culture medium. (B) Statisti-
cal analysis of phenotypic variation of fiber mass area at different concentrations. *, P < 0.05; **, P < 0.01.

Full-size DOI: 10.7717/peerj.13460/fig-8

of upland cotton. This indicated that UGP gene is evolutionarily conserved in cotton
(Klinghammer & Tenhaken, 2007).

The covariance analysis of 19 UGP genes found in upland cotton and other three cotton
species revealed that most of UGP genes were homologous among the four cotton species.
Some of homologous genes were prevalent on similar positions, because UGP genes were
generated from new genes family through tandem repeats during the doubling of upland
cotton (Gě et al., 2020; Jia et al., 2020; Schaper & Anisimova, 2015). By calculating the Ka/Ks
ratios of homologous gene pairs, it was found that most of Ka/Ks ratios of upland cotton
and other three cotton species were below 1.0. This indicated that UGP genes were under
strong purifying selection pressure during evolution (Qanmber et al., 2019a; Qanmber et
al., 2018).

NineteenUGP genes were analyzed for various timelines of DPA by using transcriptome
data, including TM-1, 0–153, and sGK9708. Six genes namely GH_A08G0422,
GH_D08G0444, GH_A12G0472, GH_D12G0484, GH_A11G1773 and GH_D11G1805
were found to be highly expressed in cotton fiber on 15 DPA. RNA from fiber material
of cultivar 0–153 and SGK9708 strain was used for qRT-PCR, which supported with
transcriptome data (Zhang et al., 2020), both UGP genes were highly expressed at 15 DPA.

Ovule isolation culture experiments were performed by adding different hormones
(Kim et al., 2015) and ovules were observed at 15 days of culture. Ovule growth and
development were found to be better under due to IAA and GA3, with larger fiber cluster
area, while ovule development was retarded under the influence of ABA, ETH and SA.
These results indicate that auxin and gibberellin promote cotton ovule growth, while the
other three hormones have opposite effects, which are consistent with previous studies
(Wang et al., 2018; Zhang et al., 2011). Ovule samples at 15 days of culture were taken for
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Figure 9 The relative expression levels of the 6 genes in the ovule at 15 DPA after hormone treatment were verified by qRT-PCR. CK is con-
trolled without additional hormones, and the ovules only grow on BTmedium. *, P < 0.05; **, P < 0.01.

Full-size DOI: 10.7717/peerj.13460/fig-9

RNA extraction, and the expression of six highly expressed genes under the influence of
five hormones was measured, and it was found that the expression of UGP genes increased
correspondingly under the influence of IAA and GA3, and the expression ofGH_A08G0422
and GH_D08G0444 increased 6-fold and 4.5-fold, respectively, and the expression of these
two genes increased under the influence of low concentrations of ABA, ETH and SA also
increased the expression of these two genes under the influence of low concentrations of
ABA, ETHand SA. It showed that expression ofUGP geneswas influenced by hormones and
was more strongly stimulated for growth hormone and gibberellin (Bai et al., 2014; Xiao,
Zhao & Zhang, 2019). It is tentatively hypothesized that UGP genes have an indispensable
role in cotton fiber development. Its expression is closely related to the activity of pectin
pathway in the fiber.

CONCLUSION
In this study, a total of 66 UGP genes were identified based on the genomic information of
G. raimondii, G. arboreum, G. hirsutum and G. barbadense. Covariance analysis postulated
that the amplification ofUGP genes was due to repetitive tandem generation of new family
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genes. Ka/Ks ratio analysis postulated that UGP genes are under strong purifying selection
pressure in cotton. Six highly expressed genes namely GH_A08G0422, GH_D08G0444,
GH_A11G1773, GH_D11G1805, GH_A12G0472 and GH_D12G0484, all possessing
relatively long UDPGP structural domains, were obtained by qRT-PCR and transcriptome
data screening of cotton fiber. The addition of 0.5 mM IAA and GA3 to ovule culture
medium promoted the growth of ovule fiber clusters, which showed an increase of about
10% in area and the expression of six UGP genes increased from 1.5-fold to 6-fold.
These results suggest that UGP genes may play an important role in the growth and
development of cotton fibers, and that the speed of cotton fiber development and level of
UGP gene expression are closely related, and that their mechanisms of action in cotton
fiber development and fiber quality formation and their effects on pectin synthesis in
cotton fiber development deserve in-depth study.
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