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THE BIGGER PICTURE The gravity of the COVID-19 pandemic has fostered a surge of works analyzing
SARS-CoV-2 consensus sequences to reconstruct phylogenomic models of its evolution and diffusion.
Yet, such approaches do not account for intra-host genomic diversity and may deliver inaccurate predic-
tions in conditions of noisy data and sampling limitations.
We propose VERSO, a data-science framework for the characterization of viral evolution from sequencing
data. By accounting for uncertainty in the data, VERSO delivers robust phylogenies also in conditions of
limited sampling and noisy observations. Additionally, the in-depth characterization of the intra-host
genomic diversity of samples allows one to identify undetected infection chains and clusters and to intercept
variants possibly undergoing positive selection. Accordingly, the joint application of our method and data-
driven epidemiological models may deliver a high-precision platform for contact tracing and pathogen sur-
veillance and characterization.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
WeintroduceVERSO, a two-step framework for thecharacterizationofviral evolution fromsequencingdataof viral
genomes, which is an improvement on phylogenomic approaches for consensus sequences. VERSO exploits an
efficient algorithmic strategy to return robust phylogenies from clonal variant profiles, also in conditions of sam-
pling limitations. It then leverages variant frequency patterns to characterize the intra-host genomic diversity of
samples, revealing undetected infection chains and pinpointing variants likely involved in homoplasies. On simu-
lations,VERSOoutperformsstate-of-the-art tools forphylogenetic inference.Notably, theapplication to6,726am-
plicon and RNA sequencing samples refines the estimation of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) evolution, while co-occurrence patterns ofminor variants unveil undetected infection paths, which
are validatedwith contact tracing data. Finally, the analysis of SARS-CoV-2mutational landscape uncovers a tem-
poral increase of overall genomic diversity and highlights variants transiting fromminor to clonal state and homo-
plastic variants, some of which fall on the spike gene. Available at: https://github.com/BIMIB-DISCo/VERSO.
INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19), which

started in late 2019 in Wuhan (China)1,2 and was declared a
This is an open access article und
pandemic by the World Health Organization, is fueling the publi-

cation of an increasing number of studies aimed at exploiting the

information provided by the viral genome of severe acute respi-

ratory syndrome-coronavirus 2 (SARS-CoV-2) virus to identify its
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proximal origin, characterize the mode and timing of its evolu-

tion, as well as to define descriptive and predictive models of

geographical spread and evaluate the related clinical impact.3–5

As a matter of fact, the mutations that rapidly accumulate in the

viral genome6 can be used to track the evolution of the virus

and, accordingly, unravel the viral infection network.7,8

At the time of this writing, numerous independent laboratories

around the world are isolating and sequencing SARS-CoV-2 sam-

ples and depositing them on public databases (e.g., GISAID9)

whose data are accessible via the Nextstrain portal.10 Such

data can be employed to estimate models from genomic epide-

miology and may serve, for instance, to estimate the proportion

of undetected infected people by uncovering cryptic transmis-

sions, as well as to predict likely trends in the number of infected,

hospitalized, dead, and recovered people.11–13

More in detail, most studies employ phylogenomic ap-

proaches that process consensus sequences, which represent

the dominant virus lineage within each infected host. A growing

plethora of methods for phylogenomic reconstruction is avail-

able to this end, all relying on different algorithmic frameworks,

including distance-matrix, maximum parsimony, maximum like-

lihood, or Bayesian inference, with various substitution models

and distinct evolutionary assumptions (see, e.g., Refs.10,14–22).

However, while such methods have repeatedly proven effective

in unraveling themain patterns of evolution of viral genomes with

respect to many different diseases, including SARS-CoV-2,10,23–25

at least two issues can be raised.

First, most phylogenomics methods might produce unreliable

results when dealing with noisy data, for instance due to

sequencing issues, or with data collected with significant sam-

pling limitations,14,26,27 as witnessed for most countries during

the epidemics.28,29

Second, most methods do not consider the key information on

intra-host minor variants (also referred to as minority variants or

intra-host single nucleotide variants), which can be retrieved

from whole-genome deep sequencing raw data and might be

essential to improve the characterization of the infection dy-

namics and to pinpoint positively selected variants.30–32 Due to

the high replication, mutation, and recombination rates of RNA

viruses, subpopulations of mutant viruses, also known as viral

quasispecies,30 typically emerge and coexist within single hosts,

and are supposed to underlie most of the adaptive potential to

the immune system response and to anti-viral therapies.31,33,34

In this regard, many recent studies highlighted the noteworthy

amount of intra-host genomic diversity in SARS-CoV-2 sam-

ples,35–43 similarly to what has already been observed in many

distinct infectious diseases.8,32,44–48

Here, we introduce VERSO (viral evolution reconstruction), a

new comprehensive framework for the inference of high-resolu-

tion models of viral evolution from raw sequencing data of viral

genomes (see Figure 1). VERSO includes two consecutive algo-

rithmic steps.

Step #1: robust phylogenomic inference from clonal
variant profiles
VERSO first employs a probabilistic noise-tolerant framework to

process binarized clonal variant profiles (or, alternatively,

consensus sequences), to return a robust phylogenetic model

also in conditions of sampling limitations and sequencing issues.
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Byadaptingalgorithmic strategieswidelyemployed incancerevo-

lution analysis,49–52 VERSO is able to correct false-positive and

false-negative variants, can manage missing observations due to

low coverage, and is designed to group samples with identical

(corrected) clonal genotype in polytomies, avoiding ungrounded

arbitrary orderings. As a result, the accurate and robust phyloge-

nomic models produced by VERSO may be used to improve the

parameter estimation of epidemiological models, which typically

rely on limited and inhomogeneous data.11,29 Notice that this

step can be executed independently from step #2; for instance,

in case raw sequencing data are not available.

Homoplasy detection (clonal variants)

The first step of VERSO allows one to identify clonal mutations

that might be involved in reticulation events53,54 and, in partic-

ular, in homoplasies, possibly due to positive selection in a sce-

nario of convergent/parallel evolution,55 founder effects,31 or

mutational hotspots.56 Such information might be useful to drive

the design of opportune treatments and vaccines; for instance,

by blacklisting positively selected genomic regions.

Step #2: characterization of intra-host genomic diversity
In the second step, VERSO exploits the information on variant

frequency (VF) profiles obtained from raw sequencing data (if

available), to characterize and visualize the intra-host genomic

similarity of hosts with identical (corrected) clonal genotype. In

fact, even though the extent and modes of transmission of qua-

sispecies from a host to another during infections are still

elusive,31,57 patterns of co-occurrence of minor variants de-

tected in hosts with identical clonal genotype may provide an

indication on the presence of undetected infection paths.8,58

For this reason, the second step of VERSO is designed to char-

acterize and visualize the genomic similarity of samples by

exploiting dimensionality reduction and clustering strategies

typically employed in single-cell analyses.59 Alternative ap-

proaches for the analysis of quasispecies, yet with different

goals and algorithmic assumptions, have been proposed, for

instance in Refs.60–63 and recently reviewed in Knyazev et al.64

As specified above, VERSO step #2 is executed on groups of

samples with identical clonal genotype: the rationale is that the

transmission of minor variants implicates the concurrent transfer

of clonal variants, excluding the rare cases in which the VF of a

clonal variant significantly decreases in a given host; for instance

due to mutation losses (e.g., via recombination-associated dele-

tions or via multiple mutations hitting an already mutated

genome location34) or to complex horizontal evolution phenom-

ena (e.g., super-infections65,66). Conversely, the transmission of

clonal variants does not necessarily implicate the transfer of all

minor variants, which are affected by complex recombination

and transmission effects, such as bottlenecks.31,57 As a final

result, VERSO allows one to visualize the genomic similarity of

samples on a low-dimensional space (e.g., UMAP [uniformmani-

fold approximation and projection]67 or tSNE [t-distributed sto-

chastic neighbor embedding]68) representing the intra-host

genomic diversity, and to characterize high-resolution infection

chains, thus overcoming the limitations of methods relying on

consensus sequences.

Homoplasy detection (minor variants)

Importantly, minor variants observed in hosts with distinct clonal

genotypes (identified via VERSO step #1) may indicate
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Figure 1. VERSO framework for viral evolution inference and intra-host genomic diversity quantification

(A) In this example, three hosts infected by the same viral lineage are sequenced. All hosts share the same clonal mutation (T>C, green), but two of them (#2 and

#3) are characterized by a distinct minor mutation (A>T, red), which randomly emerged in host #2 and was transferred to host #3 during the infection. Standard

sequencing experiments return an identical consensus sequence for all samples, by employing a threshold on VF and by selecting mutations characterizing the

dominant lineage.

(B) VERSO takes as input the VF profiles of samples, generated from raw sequencing data. In step #1, VERSO processes the binarized profiles of clonal variants

and solves a Booleanmatrix factorization problem bymaximizing a likelihood function via MCMC, in order to correct false-positives/-negatives andmissing data.

As output, it returns both the corrected mutational profiles of samples and the phylogenetic tree, in which samples with identical corrected clonal genotypes are

grouped in polytomies. Corrected clonal genotypes are then employed to identify homoplasies of minor variants, which are further investigated to pinpoint

positively selected mutations. The VF profile of minor variants (excluding homoplasies) is processed by step #2 of VERSO, which computes a refined genomic

distance among hosts (via Bray-Curtis dissimilarity, after PCA) and performs clustering and dimensionality reduction, in order to project and visualize samples on

a 2D space, representing the intra-host genomic diversity and the distance among hosts. This allows one to identify undetected transmission paths among

samples with identical clonal genotype.
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Figure 2. Comparative assessment on simulated data
(A–D) Synthetic datasets were generated via the widely used coalescent model simulator msprime70 (see the Supplementary Material and Table S1 for the

parameter settings). Twenty distinct topologies with 1,000 samples were generated, including a number of distinguishable variants in the range (14, 31). For each

topology, four synthetic datasets were generated, with different sample sizes (n = 1000, 500), and different combinations of false-positives and false-negatives

(legend continued on next page)
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homoplasies, due to mutational hotspots, phantom mutations,

or to positive selection.56 VERSO pinpoints such variants for

further investigations and allows one to exclude them from the

computation of the VF-based genomic similarity prior to VERSO

step #2, to reduce the possible confounding effects.

To summarize, VERSO (1) returns accurate and robust phylog-

enies of viral samples, by removing noise from clonal variant pro-

files; (2) detects reticulation events due to homoplasies of clonal

variants; (3) exploits minor variant profiles to characterize and

visualize the intra-host genomic similarity of samples with iden-

tical (corrected) clonal genotype, thus pinpointing undetected

infection paths; (4) allows one to identify and characterize homo-

plastic minor variants, which might be due to positive selection

or mutational hotspots.

To assess the accuracy and robustness of the results pro-

duced by VERSO, we performed an extensive array of simula-

tions, and compared with two state-of-the-art methods for

phylogenetic reconstruction; i.e., IQ-TREE10 and BEAST 2.22 As

amajor result,VERSO outperforms competingmethods in all set-

tings and also in condition of high noise and sampling limitations.

Furthermore, we applied VERSO to two large-scale datasets,

generated via amplicon and RNA-seq Illumina sequencing pro-

tocols, including 3,960 and 2,766 samples, respectively. The

robust phylogenomic models delivered via VERSO step #1 allow

us to refine the current estimation on SARS-CoV-2 evolution and

spread. Besides, thanks to the in-depth analysis of the muta-

tional landscape of both clonal and minor variants, we could

identify a number of variants undergoing transition to clonality,

as well as several homoplasies, including variants likely under-

going positive selection processes.

Remarkably, the infection chains identified via VERSO step #2,

by assessing the intra-host genomic similarity of samples with the

same clonal genotype, were validated by employing contact

tracing data from Rockett et al.69 This important result, which

could not beachievedbyanalyzing consensus sequences, proves

the effectiveness of employing raw sequencing data to improve

the characterization of the transmission dynamics, in particular

during the early phase of the outbreak, in which a relatively low di-

versity of SARS-CoV-2 has been observed at the consensus level.

VERSO is released as free open source tool at this link: https://

github.com/BIMIB-DISCo/VERSO.

RESULTS

Comparative assessment on simulations
In order to assess the performance of VERSO and compare it

with competing approaches, we executed extensive tests on

simulated datasets, generated with the coalescent model simu-

lator msprime.70 Simulations allow one to compute a number of

metrics with respect to the ground truth, which in this case is

the phylogeny of samples resulting from a backwards-in-time

coalescent simulation.71 Accordingly, this allows one to evaluate
([a = 0.05, b = 0.05], [a = 0.10, b = 0.10]), for a total of four configurations (A, B, C

TREE10 and BEAST 2,22 on (1) absolute error evolutionary distance, (2) branch sco

truth sample phylogeny provided bymsprime (see the Supplemental experimental

are shown as violin plots, whereas lower panels include the empirical cumulative

competing methods is shown on all metrics (computed onmedian values), in addi

settings.
the accuracy and robustness of the results produced by

competing methods in a variety of in-silico scenarios.

In detail, we selected 20 simulation scenarios with n = 1,000

samples in which a number of clonal variants (with distinguish-

able profiles) between 14 and 31 was observed. We then inflated

the datasets with false-positives with rate a and false-negatives

with rate b, in order to mimic sequencing and coverage issues.

Moreover, additional datasets were generated via random sub-

sampling of the original datasets, to model possible sampling

limitations and sampling biases. As a result, we investigated

four simulations settings: (A) low noise, no subsampling; (B)

high noise, no subsampling; (C) low noise, subsampling; and

(D) high noise, subsampling (see Experimental procedures and

the Supplemental experimental procedures for further details;

the complete parameter settings of the simulations are provided

in Table S1).

VERSO step #1was comparedwith two state-of-the-art phylo-

genetic methods from consensus sequences: IQ-TREE,10 the

algorithmic strategy included in the Nextstrain-Augur pipeline,72

and BEAST 2.22 Consensus sequences to be provided as input

to such methods were generated from simulation data by em-

ploying the reference genome SARS-CoV-2-ANC (see below).

The performance of methods was assessed by comparing the

reconstructed phylogeny with the simulated ground truth, in

terms of (1) absolute error evolutionary distance, (2) branch score

difference,73 and (3) quadratic path difference74 (please refer to

the Supplemental experimental procedures for a detailed

description of all metrics).

Figure 2 shows the performance distribution of all methods

with respect to all simulation settings. Notably, VERSO step #1

outperforms competing methods in all scenarios (Mann-Whitney

U test, p < 0.001 in all cases), with noteworthy percentage

improvements, also in conditions of high noise and sampling lim-

itations. This important result shows that the probabilistic frame-

work that underliesVERSO step #1 can producemore robust and

reliable results when processing noisy data, as typically

observed in real-world scenarios.

Reference genome
Different reference genomes have been employed in the analysis

of SARS-CoV-2 origin and evolution. Two genome sequences

from human samples, in particular, were used in early phyloge-

nomic studies, namely sequence EPI_ISL_405839 (ref. #1 in

the following) used, e.g., in Bastola et al.75 and sequence EPI_

ISL_402125 (ref. #2) used, e.g., in Andersen et al.3 Excluding

the polyA tails, the two sequences are identical for 29,865 of

29,870 genome positions (99.98%) and differ for only five

SNPs at locations 8,782, 9,561, 15,607, 28,144, and 29,095, for

which ref. #1 has haplotype TTCCT and ref. #2 has haplo-

type CCTTC.

In order to define a likely common ancestor for both se-

quences, we analyzed the Bat-CoV-RaTG13 genome (sequence
, and D) and 80 independent datasets. VERSO step #1 was compared with IQ-

re difference73 and (3) quadratic path difference74 with respect to the ground-

procedures for the description of the metrics). In the upper panels, distributions

distribution functions. The percentage improvement of VERSO with respect to

tion to the p value of the two-sidedMann-Whitney U test on distributions, for all

Patterns 2, 100212, March 12, 2021 5
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EPI_ISL_402131)1 and the Pangolin-CoV genome (sequence

EPI_ISL_410721),3,4 which were identified as closely related

genomes to SARS-CoV-2.76 In particular, it was hypothesized

that SARS-CoV-2 might be a recombinant of an ancestor of

Pangolin-CoV and Bat-CoV-RaTG13,4,77 whereas more recent

findings would suggest that the SARS-CoV-2 lineage is the

consequence of a direct or indirect zoonotic jump from bats.76

Whatever the case, both Bat-CoV-RaTG13 and Pangolin-CoV

display haplotype TCTCT at locations 8,782, 9,561, 15,607,

28,144 and 29,095 and, therefore, one can hypothesize that

such a haplotype was present in the unknown common ancestor

of ref. #1 and #2.

For this reason, we generated an artificial reference genome,

named SARS-CoV-2-ANC, which is identical to both ref. #1 and

#2 on 29,865 (over 29,870) genome locations, includes the polyA

tail of ref. #2 (33 bases), and has haplotype TCTCT at locations

8,782, 9,561, 15,607, 28,144, and 29,095 (see Figure S2 for a depic-

tion of the artificial genome generation). SARS-CoV-2-ANC is a

likely common ancestor of both genomes and was used for

variant calling in downstream analyses (SARS-CoV-2-ANC is

released in FASTA format as Data S1). Notice that VERSO pipe-

line is flexible and can employ any reference genome.

Application of VERSO to 3,960 samples from amplicon
sequencing data (dataset #1)
We retrieved raw Illumina Amplicon sequencing data of 3,960

SARS-CoV-2 samples of dataset #1 and applied VERSO to the

mutational profiles of 2,906 samples selected after quality

check (mutational profiles were generated by executing

variant calling via standard practices; see Experimental pro-

cedures for further details). Notice that the analysis of this

dataset was performed independently from that of dataset #2

in order to exclude possible sequencing-related artifacts or

idiosyncrasies.

VERSO step #1: robust phylogenomic inference from
clonal variant profiles
We first applied VERSO step #1 to themutational profile of the 29

variants detected as clonal (VF > 90%) in at least 3% of the sam-

ples, in order to reconstruct a robust phylogenomic tree. The

VERSO phylogenetic model is displayed in Figure 3A and high-

lights the presence of 25 clonal genotypes, obtained by

removing noise from data, and that define polytomies including

different numbers of samples (see Experimental procedures for

further details). The mapping between clonal genotype labels

and the lineage dynamic nomenclature proposed by Rambaut

et al.78 was obtained via pangolin 2.079 and is provided in Data S3.

More in detail, variant g.29095T>C (N, synonymous) is the

earliest evolutionary event from reference genome SARS-CoV-

2-ANC and is detected in 2,454 samples of the dataset. The

related clonal genotype G1, which is characterized by no further

mutations, identifies a polytomy including 57 Australian, 15 Chi-

nese, 12 American, and one South-African samples.

Three clades originate fromG1: a first clade includes clonal ge-

notypes G2 (six samples) and G3 (103), while a second clade in-

cludes clonal genotype G4 (86). Clonal genotypes G1–G4 are

characterized by the absence of single nucleotide variants

(SNVs) g.8782T>C (ORF1ab, synonymous) and g.28144C>T

(ORF8, p.84S>L) and correspond to previously identified type
6 Patterns 2, 100212, March 12, 2021
A24 (also type S82), which was hypothesized to be an early

SARS-CoV-2 type.

The third clade originating from clonal genotypeG1 includes all

remaining clonal genotypes (G5-G25) and is characterized by the

presence of both SNVs g.8782T>C and g.28144C>T. This specific

haplotype corresponds to type B24 (also type L82) and an in-

crease of its prevalence has progressively recorded in the pop-

ulation, as one can see in Figure 3, as opposed to type A (S),

which was rarely observed in late samples. In this regard, we

note that there are currently insufficient elements to support

any epidemiological claim on virulence and pathogenicity of

such SARS-CoV-2 types, even if recent evidences would suggest

the existence of a low correlation.83

Variant g.23403A>G (S, p.614D>G) is of particular interest, as

proven by the increasing number of related studies.84–87 Such

a variant identifies a large clade including 11 clonal genotypes:

G15 (493 samples), G16 (1), G17 (512), G18 (25), G19 (118), G20

(94), G21 (648), G22 (90),G23 (127), G24 (4), and G25 (86), for a

total of 2,198 total samples, distributed especially in Australia

(971), the United States (841), South Africa (257), and Israel

(125). Importantly, a constant increase of the prevalence of

the haplotype corresponding to such variant is observed in

time (see Figure 3), which might hint at ongoing positive selec-

tion processes; e.g., due to increased viral transmission.

However, this hypothesis is highly debated88 and, in order to

investigate the possible functional effect of such variant and

the related clinical implications, in vivo and in vitro studies are

needed.87

By looking more in detail at the geo-temporal localization of

samples depicted via Microreact81 (Figure 3B), one can see that

the different clonal genotypes are distributed across the world

in distinct complex patterns, suggesting that most countries

might have suffered from multiple introductions, especially in

the early phases of the epidemics. In particular, samples are

distributed in 11 countries, with Australia (1,523 samples), United

States (910), South Africa (260), Israel (133), and China (45) rep-

resenting around 99% of the dataset.

The country displaying the largest number of samples is

Australia, with 1,523 samples, distributed in 22 different clonal

genotypes. The presence of a number of early clonal genotypes

(i.e., G1, G2, G3, G4, and G6) supports the hypothesis of multiple

introductions of SARS-CoV-2 in Australia. Interestingly, we note

that, from the 16th week on, the composition of the Australian

sample group tends to be polarized toward clonal genotypes

G17 (108/311 z 35%) and G25 (82/311 z 26%).

910 samples from the United States are included in the data-

set, distributed in 17 different clonal genotypes, with G21 being

the most abundant in the population (376/910 z 41%). Also in

this case, samples collected in the initial weeks belong to the

ancestral clades, supporting the hypothesis of multiple intro-

ductions. Notably, after the 17th week, all American samples

display the haplotype g.23403A>G (S,p.614D>G) and we notice

an overall decrease in genomic diversity, since the observed

clonal genotypes pass from 16 (week interval 9–16, 2020) to

8 (week interval 17–29, 2020). Notice that only 49.1% of the

American samples have a collection date.

Two-hundred and sixty samples from South Africa are

included in the dataset, which are partitioned in six different

clonal genotypes, four of which (G1, G8, G14, and G16) include
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Figure 3. Viral evolution and intra-host genomic characterization of 2906 SARS-CoV-2 samples of via VERSO (dataset #1)

(A) The phylogenetic model returned by VERSO step #1 from the mutational profile of 2,906 samples selected after the quality check, on 29 clonal variants (VF >

90%) detected in at least 3% of the samples of dataset #1 (reference genome: SARS-CoV-2-ANC). Colors mark the 25 distinct clonal genotypes identified by

VERSO (the mapping with the lineage nomenclature proposed in Rambaut et al.78 and generated via pangolin 2.079 is provided in File S3). Samples with identical

corrected clonal genotypes are grouped in polytomies and the black sample represents the SARS-CoV-2-ANC genome (visualization via FigTree80). The green

curves juxtaposed to certain polytomies report the number and fraction of samples in which the five homoplastic mutations are observed (only if the mutation is

detected in at least 10 samples with the same corrected clonal genotype; see Data S2 for a summary on the samples exhibiting homoplastic clonal variants). The

projection of the intra-host genomic diversity computed by VERSO step #2 from VF profiles is shown on the UMAP low-dimensional space for the clonal ge-

notypes includingR100 samples. Samples are clustered via Leiden algorithm on the kNN graph (k = 10), computed on the Bray-Curtis dissimilarity on VF profiles,

after PCA. Solid lines represent the edges of the k-NNG.

(B) The composition of the corrected clonal genotypes returned by VERSO step #1 is shown. Clonal SNVs are annotated with mapping on ORFs, synonymous (S),

nonsynonymous (NS), and non-coding (NC) states, and related amino acid substitutions. Variants g.8782T>C (ORF1ab, synonymous) and g.28144C>T (ORF8,

p.84S>L) are colored in blue, whereas variant g.23403 A>G (S, p.614 D>G) is colored in red. The prevalence variation in time of the relative haplotypes (i.e., the

fraction of samples displaying such mutations) is also shown. The five homoplastic variants are colored in green.

(C and D) (C) The geo-temporal localization of the clonal genotypes via Microreact81 and (D) the prevalence variation in time are displayed.
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a single sample, whereas 98.46% of the samples exhibit the

haplotype g.23403A>G (S,p.614D>G) and, specifically, are

included in clonal genotypes G15 and G17. Finally, all Chinese

samples were collected in the early phase (January–February,

2020) and are characterized by six different clonal genotypes

(i.e., G1, G6, G7, G9, G11, and G12).
Homoplasy detection (clonal variants)

Five clonal variants included in our model show apparent viola-

tions of the accumulation hypothesis, namely g.11083G>T (OR-

F1ab, p.3606 L>F), g.14805C>T (ORF1ab, synonymous),

g.18555C>T (ORF1ab, synonymous), g.27964C>T (ORF8,

p.24S>L), and g.28311C>T (N,p.13P>L), suggesting that they
Patterns 2, 100212, March 12, 2021 7
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might be involved in homoplasies. In Figure 3 the samples in

which the five homoplastic variants are detected are highlighted

(if the mutation is detected in R10 samples with the same cor-

rected clonal genotype), whereas in Figure S3 one can find the

expanded clonal variant tree, in which the reticulation related

to such variants is explicitly depicted.

Some of such variants have been exhaustively studied (e.g.,

g.11083G>T in vanDorp et al.89), specifically to verify possible sce-

narios of convergent evolution, which may unveil the fingerprint of

adaptation of SARS-CoV-2 to human hosts. To this end, particular

attention should be devoted to the three non-synonymous substi-

tutions; i.e., g.11083G>T (present in 460 samples, z16% of the

dataset), g.27964C>T (182 samples, z6%) and g.28311C>T (153

samples, z5%). As a first result, we note the prevalence dy-

namics of the haplotypes defined by such variants does not

show any apparent growth trend in the population (see Figure S5).

To further investigate if such variants fall in a region prone to

mutations of the SARS-CoV-2 genome, we evaluated the muta-

tional density employing a sliding window approach similarly to

Soares et al.90 (see Supplemental experimental procedures for

additional details). As shown in Figure S4, themutational density,

computed by considering synonymousminor variants, exhibits a

median value of = 0.083 [syn.mutations][nucleotides]�1. Interest-

ingly, the three nonsynonymous SNVs (g.11083G>T, g.27964C>T

and g.28311C>T) are located within windows with a higher muta-

tional density than the median value: 0.085, 0.124, and 0.1
syn:mutations
nucleotides , respectively (see Table S5), and this would suggest

that they might have originally emerged due to the presence of

natural mutational hotspots or phantom mutations.

However, this analysis is not conclusive and further investiga-

tions are needed to characterize the functional effect of suchmu-

tations and the possible impact in the evolutionary and diffusion

process of SARS-CoV-2.

Stability analysis

The choice of an appropriate VF threshold to identify clonal var-

iants and, accordingly, to generate consensus sequences from

raw sequencing data might affect the stability of the results of

any downstream phylogenomic analysis. On the one hand, loose

thresholds might increase the risk of including non-clonal vari-

ants in consensus sequences. On the other hand, too strict

thresholds might increase the rate of false-negatives, especially

with noisy sequencing data.

For this reason, we assessed the robustness of the results pro-

duced by VERSO step #1 on dataset #1 when different thresh-

olds in the set d˛{0.5,0.6,0.7,0.8} are employed to identify clonal

variants, with those obtained with default threshold (d = 0.9), in

terms of tree accuracy (see the Supplemental experimental pro-

cedures for further details). As one can see in Figure S7, the tree

accuracy varies between 0.97 and 0.98 in all settings, proved the

results produced by VERSO step #1 are robust with regard to the

choice of the VF threshold for clonal variant identification.

VERSO step #2: Characterization of intra-host genomic
diversity
We then applied VERSO step #2 to the complete VF profiles of

the samples with the same clonal genotype and projected their

intra-host genomic diversity on the UMAP low-dimensional

space. This was done excluding (1) the clonal variants employed

in the phylogenetic inference viaVERSO step #1, (2) all minor var-
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iants (VF % 90%) observed in more than one clonal genotype

(i.e., homoplasies) and that are likely emerged independently

within the hosts, due to mutational hotspots, phantom muta-

tions, or positive selection (see Experimental procedures and

the next subsections). Even though, as expected, the VF profiles

of minor variants are noisy, a complex intra-host genomic archi-

tecture is observed in several individuals. Moreover, patterns of

co-occurrence of minor variants across samples support the hy-

pothesis of transmission from one host to another.

In Figure 3 we display the UMAP plots for the clonal genotypes

including more than 100 samples, plus clonal genotype G4 (n =

86 samples), which was used for contact tracing analyses.

Such maps describe likely transmission paths among hosts

characterized by the same (corrected) clonal genotype and, in

most cases, suggests the existence of several distinct infection

clusters with different size and density. This result was achieved

by exploiting the different properties of clonal and minor variants

via the two-step procedure of VERSO.

Contact tracing

To corroborate our findings, we employed the contact tracing

data from Rockett et al.,69 in which 65 samples from dataset

#1 are characterized with respect to household, work location,

or other direct contacts. Four distinct contact groups, including

36, 15, 12, and 2 samples, respectively, are associated directly

or indirectly to three different New South Wales institutions

(i.e., institutions #1, #2, and #3) and to the same household envi-

ronment (household #1).

As a first result, all samples belonging to a specific contact

group are characterized by the same clonal genotype, deter-

mined via VERSO step #1, a result that confirms recent find-

ings.42,69 More importantly, the analysis of the intra-host

genomic diversity via VERSO step #2 allows one to highly refine

this analysis.

In Figure 4 one can find the UMAP plot of clonal genotypes G4,

G12, and G21, which include 36 (over 86), 14 (over 115), and 14

(over 648) samples with contact information. Strikingly, the distri-

bution of the pairwise intra-host genomic distance among

samples from the same institution/household (computed on

the K-nearest neighbor graph [k-NNG] via Bray-Curtis dissimi-

larity, after principal component analysis [PCA]; see Experi-

mental procedures) is significantly lower with respect to the dis-

tance of all samples with the same clonal genotype (p value of

the Mann-Whitney U test <0.001 in all cases). Furthermore, all

samples belonging to the same contact group are connected

in the k-NNG, while a noteworthy proportion of samples without

contact information in genotypes G12 and G21 are placed in

disconnected graphs (24.9% and 76.4%, respectively).

This major result suggests that patterns of co-occurrence of

minor variants can indeed provide useful indication on contact

tracing dynamics, which would be masked when employing

consensus sequencing data. Accordingly, the algorithmic strat-

egy employed by VERSO step #2 and, especially, the identifica-

tion of the k-NNG on intra-host genomic similarity provides an

effective tool to dissect the complexity of viral evolution and

transmission, which might in turn improve the reliability of

currently available contact tracing tools.

Homoplasy detection (minor variants)

Several minor variants are found in samples with distinct clonal

genotypes and might indicate the presence of homoplasies. In
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Figure 4. Infection dynamics revealed via characterization of intra-host genomic similarity (dataset #1)
(A) The distribution of the pairwise intra-host genomic distance (computed via Bray-Curtis dissimilarity on the kNN graph, with k = 10, after PCA; see Experimental

procedures) for the samples belonging to the same household or institution (including samples marked as near), versus the pairwise distance of all samples

belonging to clonal genotypes G4, G12, and G21. The p values of the Mann-Whitney U test two-sided are also shown.

(B) The proportion of samples that are disconnected in the kNN graph, with respect to the samples belonging to the same household or institution (including

samples marked as near) and with respect to all samples.

(C) The UMAP projection of the intra-host genomic diversity of the samples belonging to clonal genotypes G4, G12, and G21, returned by VERSO step #2.
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this respect, the heatmap in Figure 5F returns the distribution of

minor SNVs with respect to (1) the number of distinct clonal ge-

notypes in which they are detected, and (2) the mutational den-

sity of the region in which they are located (see the Supplemental

experimental procedures for details on the mutational density

analysis).

The intuition is that the variants detected in single clonal geno-

types (left regionof theheatmap)are likelyspontaneouslyemerged

private mutations, or the result of infection events between hosts

with same clonal genotype (see above). Conversely, SNVs found

in multiple clonal genotypes (right region of the heatmap) may

have emerged due to positive selection in a parallel/convergent

evolution scenario, or to mutational hotspots or phantom muta-

tions. To this end, the mutational density analysis provides useful

information to pinpoint mutation-prone regions of the genome.

Interestingly, a significant number of minor variants are

observed in multiple clonal genotypes and fall in scarcely

mutated regions of the genome (see Figure S4). This would sug-

gest that some of these variants might have been positively
selected, due to some possible functional advantage or to trans-

mission-related founder effects. In this respect, we further

focused our investigation on a list of 80 candidate minor variants

that (1) are detected in more than one clonal genotype, (2) are

present in at least 10 samples, (3) are nonsynonymous, and (4)

fall in a region of the genome with mutational density lower

than the median value (see Table S6 for details on such variants).

In the following, we focus on a subset of such variants falling on

the spike gene of the SARS-CoV-2 genome.

Considerations on homoplasies falling on the spike gene

The spike protein of SARS-CoV-2 plays a critical role in the recog-

nition of the ACE2 receptor and in the ensuing cell membrane

fusion process.91 We prioritized three candidate homoplastic mi-

nor variantsoccurringon theSARS-CoV-2 spike gene (S) (seeTable

S6). Interestingly, two out of three, namely g.24552T>C (p.997I>T)

and g.24557G>T (p.999G>C), detected in 57 samples in total (10

and 47 samples, respectively), clustered in the so-called

connector region (CR),bridgingbetween the twoheptad repeat re-

gions (HR1 and HR2) of the S2 subunit of the spike protein.
Patterns 2, 100212, March 12, 2021 9
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Figure 5. Mutational landscape of 2906SARS-CoV-2 samples (dataset #1)

(A) Scatterplot displaying, for each sample, the number of clonal (VF > 90%) and minor variants (VF % 90%, node size proportional to the number of samples).

(B andC) Boxplots returning the distribution of the number of clonal (B) andminor variants (C), obtained by grouping samples according to collection date (weeks,

2020). The p value of the Mann-Kendall (MK) trend test on clonal variants is highly significant.

(D) Distribution of the median VF for all SNVs detected in the viral populations.

(E) Pie charts returning (left) the proportion of SNVs detected as always clonal, always minor, or mixed; (right) for each category, the proportion of synonymous,

nonsynonymous, and non-coding variants (check the pie-chart border color for a visual clue).

(F) Heatmap returning the distribution of alwaysminor SNVs with respect to (x axis) the number of clonal genotype of the phylogenomic model in Figure 3 in which

each variant is observed, (y axis) the mutational density of the genome region in which it is located (see the Supplemental experimental procedures).

(G) Mapping of the candidate homoplastic minor variants located on the spike gene of the SARS-CoV-2 virus.
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When the receptor binding domain (RBD) binds to ACE2 re-

ceptor on the target cell, it causes a conformational change

responsible for the insertion of the fusion peptide (FP) into the

target cell membrane. This, in turn, triggers further conforma-

tional changes, eventually promoting a direct interaction be-

tween HR1 trimer and HR2, which occurs upon bending of the

flexible CR, in order to form a six-helical HR1-HR2 complex

known as the fusion core region (FCR) in close proximity to the

target cell plasma membrane, ultimately leading to viral fusion

and cell entry.92

Peptides derived from the HR2 heptad region of enveloped vi-

ruses and able to efficiently bind to the viral HR1 region inhibit the

formation of the FCR and completely suppress viral infection.93

Therefore, the formation of the FCR is considered to be vital to

mediate virus entry in the target cells, promoting viral infectivity.

Of note, the CR is highly conserved across the Gammacoronavi-

rus genus, supporting the notion that this region may play a very

important but still unclear functional role (Figure 5G). Although

structural and in vitro models will be required in order to exten-
10 Patterns 2, 100212, March 12, 2021
sively characterize the functional effect of these variants, the ev-

idence that two of our three minor variants detected in the spike

protein falls in a small domain comprising less than 14% of the

entire spike protein length is intriguing, as it suggests a potential

functional role for these mutations. It will be important to track

the prevalence of these mutations, as well as of all other candi-

date convergent variants falling on different region of the SARS-

CoV-2, to highlight possible transitions to clonality (see below).

We also remark that, being a data-science computational

approach, VERSO can struggle in dissecting complex mutational

cases, since all the experimental hypotheses that can be gener-

ated are clearly data dependent. For this reason, and given the

heterogeneity and limitations of currently available SARS-CoV-2

datasets, any hypothesis delivered byVERSO requires additional

independent investigations and ad hoc experimental validations.

Mutational landscape
We analyzed in depth the mutational landscape of the samples

of dataset #1. First, the comparison of the number of clonal
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(VF > 90%) and minor variants detected in each host (Figure 5A)

reveals a bimodal distribution of clonal variants (with first mode

at 4 and s mode at 10), whereas minor variants display a more

dispersed long-tailed distribution with median equal to 2 and

average z23. From the plot, it is also clear that individuals

characterized by the same clonal genotype may display a signif-

icantly different number of minor variants, with distinct distribu-

tions observed across clonal genotypes.

The comparison of the distribution of the number of variants

obtained by grouping the samples with respect to collection

week (Figures 5B and 5C) allows us to highlight a highly statisti-

cally significant increasing trend for clonal variants (Mann-Ken-

dall trend test on median number of clonal variants, p < 0.001).

This result would strongly support both the hypothesis of accu-

mulation of clonal variants in the population and that of a concur-

rent increase of overall genomic diversity of SARS-CoV-2,36,94

whereas the relevance of this phenomenon on minor variants is

unclear.

We then focused on the properties of the SNVs detected in the

population. Surprisingly, the distribution of the median VF for

each detected variant (Figure 5D) reveals a bimodal distribution,

with the large majority of variants showing either a very low or a

very high VF, with only a small proportion of variants showing a

median VF within the range 10%–90%. This behavior is typical

of systems where the prevalence of some subpopulations is

driven by positive Darwinian selection while others are purified.95

In order to analyze the two components of this distribution, we

further categorized the variants as always clonal (i.e., SNVs de-

tected with VF >90% in all samples), alwaysminor (i.e., SNVs de-

tected with VF 5% and %90% in all samples), and mixed (i.e.,

SNVs detected as clonal in at least one sample and as minor in

at least another sample). As one can see in Figure 5E, 9.4%,

80.6%, and 10% all SNVs are respectively detected as always

clonal, always minor, and mixed in our dataset. Moreover,

56%, 73.4%, and 57.6% of always clonal, always minor, and

mixed variants, respectively, are nonsynonymous, whereas the

large majority of remaining variants are synonymous.

These results would suggest that, in most cases, randomly

emerging SARS-CoV-2minor variants tend to remain at a low fre-

quency in the population, whereas, in some circumstances,

certain variants can undergo frequency increases and even

become clonal, due to undetected mixed transmission events

or to selection shifts, as it was observed by Poon et al.8 for the

cases of H3N2 and H1N1/2009 influenza. Interestingly, 15 vari-

ants identified as possibly convergent (see above) fall into this

category and deserve further investigations (see Table S6 for

additional details).

Transmission bottleneck analysis

The estimation of transmission bottlenecks might be of specific

interest during the current pandemics. Despite most available

methods requiring data collected on donor-host couples (see,

e.g., Sobel Leonard et al.96 and Ghafari et al.97), here we em-

ployed a strategy akin to Monsion et al.98 and Lequime et al.99

that is roughly based on the analysis of the variation of the VF

variance of a number of candidate neutral mutations. The intui-

tion is that variance shrinking indicates significant transmission

bottlenecks, which, accordingly, would result in lower viral diver-

sity transferred from a host to another and, possibly, in purifica-

tion of certain variants in the population. As the analysis ideally
requires the comparison of groups in which infection events

have occurred, here we considered groups of samples with

distinct clonal genotypes, separately. We then selected a

number of variants as neutral markers. The rationale is that trans-

mission phenomena such as bottlenecks are expected to

significantly affect the VF variance of neutral markers (please

see Supplemental experimental procedures for further details).

More in detail, we first split the samples of each clonal genotype

forwhich acollectiondate is available intonon-overlappinggroups

corresponding to two consecutive time windows; i.e., before and

after the 14th week, 2020. Accordingly, three SNVs were selected

as candidate-neutral or quasineutral markers, namely variants

g.634T>C, g.14523A>G, and g.15168G>A. In Figure S6, one can

find the distribution of the VF of the selectedmarkers with respect

to the time windows, which highlights moderate variations of the

variance for all markers (see also Table S7. All in all, this result

would suggest the presence ofmild bottleneck effects, consistent

with recent studies involving donor-host data.43

Application of VERSO to 2,766 samples from RNA-
sequencing data (dataset #2)
We retrieved the raw Illumina RNA-sequencing data of 2,766

samples included in dataset #2 and applied VERSO to the muta-

tional profiles of 1,438 samples selected after quality check.

Twenty-three clonal variants were employed in the analysis, ac-

cording to the filters described later.

The resulting phylogenetic model is consistent with the one

obtained for dataset #1, despite minor differences (Figure S8A).

Specifically, 18 distinct clonal genotypes are identified by

VERSO step #1, 11 of which are identical to those found in the

analysis of dataset #1 (in such cases the same genotype label

was maintained; see Data S3 for the mapping with the lineage

nomenclature proposed by Rambaut et al.78). Five further clonal

genotypes are evolutionarily consistent and represent indepen-

dent branches detected due to the non-overlapping composition

of the dataset, and are labeled with progressive letters from the

closest genotype (i.e., G13a, G21a, G22a, G22b, G23a), while the

two samples of genotype G13a* might be safely assigned to ge-

notype G13a, since the absence of mutation g.3037C>T is likely

due to low coverage.

By excluding the remaining clonal genotype GH, which pre-

sents inconsistencies due to the presence of the candidate ho-

moplastic variant g.11083G>T (ORF1ab, p.3606L>F, see above),

all clonal genotypes display the same ordering in both datasets

(also see the expanded clonal variant tree in Figure S9). This

proves the robustness of the results delivered by VERSO step

#1 even when dealing with data generated from distinct

sequencing platforms.

By looking at the geo-temporal localization of samples ob-

tained viaMicroreact81 (Figure S8B), one can see that that dataset

#2 includes samples with a significantly different geographical

distribution with respect to dataset #1. This dataset contains

sample from 10 countries, with the large majority collected in

the United States (96.8%). More in detail, the samples of such

countries are mostly characterized by clonal genotype G21. We

further notice that, also for dataset #2, mutation g.23403A>G

(S,p.614D>G) becomes prevalent in the population at late collec-

tion dates. Moreover, only samples belonging to previously

defined type B are detected in this dataset.
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The analysis of the intra-host genomic diversity was also per-

formed for dataset #2 via VERSO step #2, which would suggest

the existence of undetected infection events and of several

infection clusters with distinct properties, even though no con-

tact tracing is available in this case. Overall, this proves the gen-

eral applicability of the VERSO framework, which can produce

meaningful results when applied to data produced with any

sequencing platforms. However, in order to minimize the

possible impact of data- and platform-specific biases, our sug-

gestion is to perform the VERSO analysis on datasets generated

from different protocols separately.

Scalability
We finally assessed the computational time required by VERSO

in a variety of simulated scenarios. The results are shown in

the Supplemental experimental procedures (Figure S10) and

demonstrate the scalability of VERSO also when processing

large-scale datasets.

DISCUSSION

We introducedVERSO, a comprehensive framework for the high-

resolution characterization of viral evolution from sequencing

data, which is an improvement on currently available methods

for the analysis of consensus sequences. VERSO exploits the

distinct properties of clonal and minor variants to dissect the

complex interplay of genomic evolution within hosts and trans-

mission among hosts.

On the one hand, the probabilistic framework underlying

VERSO step #1 delivers highly accurate and robust phylogenetic

models from clonal variants, also in conditions of noisy observa-

tions and sampling limitations, as proved by extensive simula-

tions and by the application to two large-scale SARS-CoV-2 data-

sets generated from distinct sequencing platforms. On the other

hand, the characterization of intra-host genomic diversity pro-

vided by VERSO step #2 allows one to identify undetected infec-

tion paths, which were in our case validated with contact tracing

data, as well as to intercept variants involved in homoplasies.

This may represent a major advancement in the analysis of

viral evolution and spread and should be quickly implemented

in combination with data-driven epidemiological models to

deliver a high-precision platform for pathogen detection and sur-

veillance.12,100 This might be particularly relevant for countries

that suffered outbreaks of exceptional proportions and for which

the limitations and inhomogeneity of diagnostic tests have

proved insufficient to define reliable descriptive/predictive

models of disease diffusion. For instance, it was hypothesized

that the rapid diffusion of COVID-19 might be likely due to the

extremely high number of untested asymptomatic hosts.101

More accurate and robust phylogenetic models may allow

one to improve the assessment of molecular clocks and,

accordingly, the estimation of the parameters of epidemiolog-

ical models such as susceptible-infected-recovered (SIR) and

susceptible-infected-susceptible (SIS),11,102 as well as to un-

ravel the cryptic transmission paths.8,12,13,103 Furthermore,

the finer grain of the analysis on intra-host genomic similarity

from sequencing data might be employed to enhance the

active surveillance; for instance, by facilitating the identifica-

tion of infection clusters and super-spreaders.104 Finally, the
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characterization of variants possibly involved in positive selec-

tion processes might be used to drive the experimental

research on treatments and vaccines.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Alex Graudenzi, Institute of Molecular Bioimaging and Physiology, Consiglio

Nazionale delle Ricerche (IBFM-CNR), via F.lli Cervi, 93, 20,090 Segrate, Milan,

Italy. alex.graudenzi@ibfm.cnr.it.

Materials availability

This study did not generate new unique reagents.

Data and code availability

VERSO is freely available at this link: https://github.com/BIMIB-DISCo/

VERSO. VERSO step #1 is provided as an open source standalone R tool,

whereas step #2 is provided as a Python script. The source code to replicate

all the analyses presented in the manuscript, both on simulated and real-world

datasets, is available at this link: https://github.com/BIMIB-DISCo/VERSO-

UTILITIES.

SCANPY59 is available at this link: https://scanpy.readthedocs.io/en/stable/.

The Web-based tool for the geo-temporal visualization of samples, Micro-

react,81 is available at this link: https://microreact.org/showcase. The tool em-

ployed to plot the phylogenomic model returned by VERSO step #1 (in Newick

file format) is FigTree80 and is available at this link: http://tree.bio.ed.ac.uk/

software/figtree/. The tool used for the mapping between clonal genotype la-

bels and the dynamic nomenclature proposed by Rambaut et al.78 is pangolin

2.079 and is available at this link: https://github.com/cov-lineages/pangolin.

VERSO step #1: robust phylogenomic inference from clonal variant

profiles

VERSO is a novel framework for the reconstruction of viral evolution models

from raw sequencing data of viral genomes. It includes a two-step procedure,

which we describe in the following.

The first step of VERSO employs a probabilistic maximum-likelihood frame-

work for the reconstruction of robust phylogenetic trees from binarized muta-

tional profiles of clonal variants (or, alternatively, from consensus sequences).

This step relies on an evolved version of the algorithmic framework introduced

by Ramazzotti et al.105 for the inference of cancer evolution models from sin-

gle-cell sequencing data, and can be executed independently from step #2, in

case raw sequencing data are not available.

Inputs

The method takes as input a n ðsamplesÞ3mðvariantsÞ binary mutational pro-

filematrix, as defined on the basis of clonal SNVs only. In this case, an entry in a

given sample is equal to 1 (present) if the VF is larger than a certain threshold (in

our analyses, equal to 90%), it is equal to 0 if lower than a distinct threshold (in

our analyses, equal to 5%), and is considered as missing (NA) in the other

cases, thus modeling possible uncertainty in sequencing data or low

coverage.

Notice that consensus sequences can be processed by VERSO step #1 by

generating a consistent binarized mutational profile matrix. We also note that,

given the intrinsic challenges associated with a reliable identification of low VF

indels, the analysis focuses only on SNVs. Further details on the variant calling

pipeline employed in this study are provided next.

The algorithmic framework

VERSO step #1 is a probabilistic framework that solves a Boolean matrix

factorization problem with perfect phylogeny constraints and relying on the in-

finite sites assumption (ISA).106,107 The ISA subsumes a consistent process of

accumulation of clonal variants characterizing the evolutionary history of the

virus and does not allow for losses of mutations or convergent variants (i.e.,

mutations observed in distinct clades).

In this regard, we recall that that the variant accumulation hypothesis holds

only when considering clonal mutations. In fact, clonal mutations (e.g., A, B, C,

D, and E) are present, by definition, in the large majority of the quasispecies of

a given sample, depending on the chosen VF threshold (in our case, equal to

90%; see above). Since such variants are rarely lost, they are most likely trans-

mitted from one host to another during infections. In addition, the origination of

mailto:alex.graudenzi@ibfm.cnr.it
https://github.com/BIMIB-DISCo/VERSO
https://github.com/BIMIB-DISCo/VERSO
https://github.com/BIMIB-DISCo/VERSO-UTILITIES
https://github.com/BIMIB-DISCo/VERSO-UTILITIES
https://scanpy.readthedocs.io/en/stable/
https://microreact.org/showcase
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://github.com/cov-lineages/pangolin
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new clonal mutations in single samples leads to the definition of new clonal ge-

notypes, following a standard branching process (e.g., A, AB, ABC, ABD,

ABDE). As a result, clonal mutations typically accumulate during the evolu-

tionary history of a virus, excluding complex scenarios involving reticulation

events,53 whereas clonal genotypes can clearly become extinct. Conversely,

variants with lower frequency do not necessarily accumulate, due to the

high recombination rates, as well as to bottlenecks, founder effects, and sto-

chasticity,31 and this is the reason why they were considered separately in the

analysis, via VERSO step #2 (see below).

More in detail, VERSO step #1 accounts for uncertainty in the data, by em-

ploying a maximum-likelihood approach (via Markov chain Monte Carlo

[MCMC] search) that allows for the presence of false-positives, false-nega-

tives, and missing data points in clonal variant profiles. As shown by Ramaz-

zotti et al.105 in a different experimental context, our algorithmic framework

ensures robustness and scalability also in case of high rates of errors and

missing data, due, for instance, to sampling limitations. Furthermore, it is

robust to mild violations of the ISA (e.g., due to reticulation events, such as

convergent variants) or mutation losses, which can be characterized after

the inference, if present (see the specific features on homoplasy detection dis-

cussed next). Please refer to the Supplemental experimental procedures for

further details on the algorithmic framework and its assumptions, including

the probabilistic graphical model depicted in Figure S1 and the summary of no-

tation in Table S4.

Outputs

The inference returns a set of maximum-likelihood variants trees (minimum 1)

as sampled during the MCMC search, representing the ordering of accumula-

tion of clonal variants, and a set of maximum-likelihood attachments of

samples to variants. Given the variants tree and the maximum-likelihood at-

tachments of samples to variants, VERSO outputs (1) a phylogenetic model

where each leaf correspond to a sample, whereas internal nodes correspond

to accumulating clonal variants; (2) the corrected clonal genotype of each

sample (i.e., the binary mutational profile on clonal variants obtained after

removing false-positives, false-negatives, and missing data).

The model naturally includes polytomies, which group samples with the

same corrected clonal genotype. The length of the branches in the model rep-

resents the number of clonal substitutions (which can be normalized with

respect to genome length), as in standard phylogenomic models, and the

clades of the model correspond to viral lineages. The VERSO phylogenetic

model is provided as output in Newick file format and can be processed and

visualized in standard tools for phylogenetic analysis, such as FigTree80 orDen-

droscope.108 Furthermore, VERSO allows one to visualize the geo-temporal

localization of clonal genotypes via Microreact.81

Additional feature: homoplasy detection on clonal variants

Violations of the ISA are possible and can be due to reticulation events53 such

as homoplasies (i.e., identical variants detected in samples belonging to

different clades) or to rare occurrences involving mutation losses (e.g., due

to recombination-related deletions or to multiple mutations hitting an already

mutated genome location34), as well as to infrequent transmission phenom-

ena, such as super-infections65,66 (a discussion on the general limitations of

approaches based on phylogenetic trees when dealing with reticulation events

is available elsewhere109–111).

In this regard, VERSO allows one to identify clonal mutations likely involved

in homoplasies, in a similar fashion to the plethora of works on mitochondrial

evolution and phylogenetic networks (discussed elsewhere53,54,56,112–114). In

detail, given the maximum-likelihood phylogenetic tree, VERSO can estimate

the variants that are theoretically expected in each sample. By comparing

the theoretical observations with the input data, VERSO can estimate the

rate of false-positives (i.e., the variants that are observed in the data but are

not predicted by VERSO), and false-negatives (i.e., variants that are not

observed but predicted). Variants that show particularly high estimated error

rates represent candidate homoplasies and are flagged. First, this allows

one to pinpoint samples exhibiting homoplastic mutations (see Figures 3

and S8) and, second, to reconstruct an expanded clonal variants tree, in which

candidate homoplastic mutations are duplicated after the inference, so to

allow the visualization of reticulation events, as proposed by Skála and

Zrzavỳ112 (see, e.g., Figures S3 and S9).

Furthermore, once this procedure has been completed, the list of flagged

variants can include (1)mutations falling in highlymutated regions due tomuta-
tional hotspots, (2) phantom mutations (i.e., systematic artifacts generated

during sequencing processes56), or (3) mutations that have been positively

selected in the population (e.g., due to a particular functional advantage).

Since one might be interested in identifying positively selected mutations,

VERSO allows one to perform a consecutive analysis that aims at highlighting

the mutation-prone regions of the genome and that might be due to mutational

hotspots or phantom mutations (see the Supplemental experimental proced-

ures for further details). We finally note that the detection of homoplasies for

minor variants requires a different algorithmic procedure, which is detailed in

the following.
VERSO step #2: characterization of intra-host genomic diversity

In the second step,VERSO takes into account the VF profiles of groups of sam-

ples with the same corrected clonal genotype (identified via VERSO step #1), in

order to characterize their intra-host genomic diversity and visualize it on a

low-dimensional space. This allows one to highlight patterns of co-occurrence

of minor variants, possibly underlying undetected infection events, as well as

homoplasies involving; e.g., positively selected variants. Notice that this step

requires raw sequencing data and the prior execution of step #1.

Inputs

VERSO step #2 takes as input a n ðsamplesÞ3mðvariantsÞ VF profile matrix, in

which each entry includes the VF ˛ð0;1Þ of a given mutation in a certain sam-

ple, after filtering out (1) the clonal variants employed in step #1 and (2) the mi-

nor variants possibly involved in homoplasies (see below). The variant calling

pipeline employed in this work is detailed next.

The algorithmic framework

While it is sound to binarize clonal variant profiles to reconstruct a phylogenetic

tree, it is opportune to consider the VF profiles when analyzing intra-host var-

iants, for several reasons. First, VF profiles describe the intra-host genomic di-

versity of any given host, and this information would be lost during binarization.

Second, minor variant profiles might be noisy, due to the relatively low abun-

dance and to the technical limitations of sequencing experiments. Accord-

ingly, such datamay possibly include artifacts, which can be partially mitigated

during the quality-check phase and by including in the analysis only highly

confident variants. However, binarization with arbitrary thresholds might in-

crease the false-positive rate, compromising the accuracy of any downstream

analysis. Third, as specified above, the extent of transmission of minor variants

among individuals is still partially obscure. The VF of minor variants is, in fact,

highly affected by recombination processes, as well as by complex transmis-

sion phenomena, involving stochastic fluctuations, bottlenecks, and founder

effects, which may lead certain variants changing their VF, not being trans-

mitted, or even becoming clonal in the infected host.57 The latter issue also

suggests that the hypothesis of accumulation of minor variants during infec-

tions may not hold and should be relaxed.

For these reasons, VERSO step #2 defines a pairwise genomic distance,

computed on the VF profiles, to be used in downstream analyses. The intuition

is that samples displaying similar patterns of co-occurrence of minor variants

might have a similar quasispecies architecture, thus being at a small evolu-

tionary distance. Accordingly, this might indicate a direct or indirect infection

event. In particular, in this work we employed the Bray-Curtis dissimilarity,

which is defined as follows: given the ordered VF vectors of two samples

(i.e. vi = fVFi
1;.;VFi

r ; g and vj = fVFj
1; .; VFj

r ; g), the pairwise Bray-Curtis

dissimilarity d(i,j) is given by:

dðvi ; vjÞ =
Pr

l = 1

�
�VFi

l � VFj
l

�
�

Pr
l =1

�
�VFi

l +VFj
l

�
�
: (Equation 1)

Since this measure weights the pairwise VF dissimilarity on each variant with

respect to the sum of the VF of all variants detected in both samples, it can be

effectively used to compare the intra-host genomic diversity of samples, as

proposed, for instance, by Srinivas et al.115 However, VERSO allows one to

employ different distance metrics on VF profiles, such as correlation or

Euclidean distance.

As a design choice, in VERSO, the genomic distance is computed among all

samples associated to any given corrected clonal genotype, as inferred in step

#1. The rationale is that, in a statistical inference framework modeling a com-

plex interplay involving heterogeneous dynamical processes, it is crucial to

stratify samples into homogeneous groups, to reduce the impact of possible
Patterns 2, 100212, March 12, 2021 13
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confounding effects.116 Furthermore, as specified above, due to the distinct

properties of clonal and minor variants during transmission, it is reasonable

to assume that the event in which certain minor variants and no clonal variants

are transmitted from a host to another during the infection is extremely unlikely.

Accordingly, the clonal variants employed for the reconstruction of the phylo-

genetic tree in step #1 are excluded from the computation of the intra-host

genomic distance among samples.

In order to produce useful knowledge from the genomic distance discussed

above and since, in real-world scenarios, this is a typically complex high-

dimensional problem, it is sound to employ state-of-the-art strategies for

dimensionality reduction and (sample) clustering, as typically done in single-

cell analyses.117 In this regard, the workflow employed in VERSO ensures

high scalability with large datasets, also making it possible to take advantage

of effective analysis and visualization features. In detail, the workflow includes

three steps: (1) the computation of k-NNG, which can be executed on the orig-

inal VF matrix, or after applying PCA, to possibly reduce the effect of noisy ob-

servations (when the number of samples and variants is sufficiently high); (2)

the clustering of samples via either Louvain or Leiden algorithms for commu-

nity detection;118 (3) the projection of samples on a low-dimensional space

via standard tSNE68 or UMAP67 plots.

Outputs

As output, VERSO step #2 delivers both the partitioning of samples in homoge-

neous clusters and the visualization in a low-dimensional space, also allowing

samples to be labeled according to other covariates, such as collection date or

geographical location. In the map in Figure 3, for instance, the intra-host

genomic diversity of each sample and the genomic distance among samples

are projected on the first two UMAP components, whereas samples that are

connected by k-NNG edges display similar patterns of co-occurrence of var-

iants. Accordingly, the map shows clusters of samples likely affected by infec-

tion events, in which (a fraction of) quasispecies might have been transmitted

from one host to another. This represents a major novelty introduced by

VERSO and also allows one to effectively visualize the space of VF profiles.

To facilitate the usage, VERSO step #2 is provided as a Python script which

employs the SCANPY suite of tools,59 which is typically used in single-cell an-

alyses and includes a number of highly effective analysis and visualization

features.

Additional feature: homoplasy detection on minor variants

Also in the case of minor variants, it is important to pinpoint possible homo-

plasies that might be due to mutational hotspots, phantom mutations, and

convergent variants. Given the phylogenetic model retrieved via step #1,

VERSO allows one to flag the variants that are detected in a number of clonal

genotypes exceeding a user-defined threshold. In our case, the threshold is

equal to 1, meaning that all minor variants found in more than one clonal geno-

type are flagged.

Such variants are then excluded from the computation of the intra-host

genomic distance, prior to the execution of step #2. Furthermore, the list

of flagged variants can be investigated as proposed for step #1 (see above),

in order to possibly identify mutations involved in positive selection

scenarios.

Datasets description

Dataset #1 (Illumina Amplicon sequencing)

We analyzed 3,960 samples fromdistinct individuals obtained from 22NCBI Bio-

Projects, which, at the time of writing, are all the publicly available datasets

including raw Illumina Amplicon sequencing data. In detail, we selected the

following NCBI BioProjects: (1) PRJNA613958, (2) PRJNA614546, (3)

PRJNA616147, (4) PRJNA622817, (5) PRJNA623683, (6) PRJNA625551, (7)

PRJNA627229, (8) PRJNA627662, (9) PRJNA629891, (10) PRJNA631042, (11)

PRJNA633948, (12) PRJNA634119, (13) PRJNA636446, (14) PRJNA636748,

(15)PRJNA639066, (16)PRJNA643575, (17)PRJNA645906, (18)PRJNA647448,

(19) PRJNA647529, (20) PRJNA650037, (21) PRJNA656534, and (22)

PRJNA656695.

Dataset #2 (Illumina RNA sequencing)

We analyzed 2,766 samples fromdistinct individuals obtained from 22NCBI Bio-

Projects, which, at the time of writing, are all the publicly available datasets

including raw Illumina RNA-sequencing data. In detail, we selected the following

NCBI BioProjects: (1) PRJNA601736, (2) PRJNA603194, (3) PRJNA605983, (4)

PRJNA607948, (5) PRJNA608651, (6) PRJNA610428, (7) PRJNA615319, (8)
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PRJNA616446, (9) PRJNA623895, (10) PRJNA624792, (11) PRJNA626526,

(12)PRJNA631061, (13)PRJNA636446, (14)PRJNA637892, (15)PRJNA639591,

(16)PRJNA639864, (17)PRJNA650134, (18)PRJNA650245, (19)PRJNA655577,

(20) PRJNA657938, (21) PRJNA657985, and (22) PRJNA658211.

Contact tracing data

Contact tracing data were obtained from the study presented by Rockett

et al.69 In detail, for 65 samples included in dataset #1 (NCBI BioProject:

PRJNA633948), information on households, work institutions, and epidemio-

logical linkages are provided. Thus, it is possible to identify three different

contact groups based on institutions regularly frequented by patients and

one-household couples. Contact information was employed to assess the

relation between the intra-host genomic similarity and the contact dynamics.

The results are provided in the main text.
Parameter settings

Parameter settings of variant calling (datasets #1 and #2)

Weconverted all the samples to FASTQ files using the Sequence Read Archive

(SRA) toolkit. Following Bastola et al.,75 we used Trimmomatic (version 0.39) to

remove the nucleotides with low quality score from the RNA sequences with

the following settings: LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20

MINLEN:40. We then used bwa mem (version 0.7.17) to map reads to SARS-

CoV-2-ANC reference genome (Data S1; see Results). We generated sorted

BAM files from bwa mem results using SAMtools (version 1.10) and removed

duplicates with Picard (version 2.22.2). Variant calling was performed gener-

ating mpileup files using SAMtools and then running VarScan (min-var-freq

parameter set to 0.01).119

We note that it was recently reported that some currently available SARS-

CoV-2 datasets exhibit quality issues.13,120 Accordingly, one should be

extremely careful when performing quality check and, especially, when

considering low-frequency variants, which might possibly result from

sequencing artifacts even in case of high-coverage experiments. In this re-

gard, many effective approaches can be employed to reduce false variants.

For instance, the Broad Institute recently updated an effective variant calling

pipeline for viral genome data,121 while new methods for error correction of

viral sequencing have been proposed at a widely used website (https://

virological.org), which also includes a number of useful up-to-date guidelines

and best practices for viral evolution analyses.

In our case, we here employed the following significance filters on variants.

In particular, we kept only the mutations (1) showing a VarScan significance p

value <0.01 (Fisher’s exact test on the read counts supporting reference and

variant alleles) and more than 25 reads of support in at least 75% of the sam-

ples, (2) displaying a VF >5%. As a result, we selected a list of 15,892 (over

55,280 overall SNVs) highly confident SNVs for dataset #1 and 7,389 (over

53,354) for dataset #2.

High-quality variants were then mapped on SARS-CoV-2 coding sequences

(CDSs) via a custom R script, also by highlighting synonymous/nonsynony-

mous states and amino acid substitutions for the related open reading frame

(ORF) product. In particular, we translated reference and mutated CDSs with

the seqinr R package to obtain the relative amino acid sequences, which we

compared to assess the effect of each nucleotide variation in terms of amino

acid substitution.

We finally note that availability of the cycle threshold (Ct) values generated

by qPCR and the related quantification of the amounts of viral transcripts

would be very useful to characterize samples with high viral load, yet this infor-

mation is not available for the considered datasets.
Quality check (datasets #1 and #2)

In order to select high-quality samples, we selected only those exhibiting high

coverage and in particular those with at least 25 reads in more than 90% of the

SARS-CoV-2-ANC genome. In addition, we filtered out all samples exhibiting

more than 100 minor variants (VF % 90%).

We finally excluded samples SRR11597146 and SRR11476447 from dataset

#1, as the first sample displays zero SNVs and the second one reports an un-

feasible collection date (i.e., 30th Jan. 2019).

After the quality-check filters, 2,906 samples of dataset #1 are left for down-

stream analyses, in which 10,571 distinct high-quality SNVs are observed, and

1,438 samples are left for dataset #2, with 6,143 high-quality SNVs.

https://virological.org
https://virological.org
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Parameter settings of VERSO (datasets #1 and #2)

The phylogenomic analysis via VERSO step #1 was performed on datasets #1

and #2 by considering only clonal variants (VF > 90%) detected in at least 3%

of the samples. A grid search comprising 16 different error rates was employed

(see Table S3). Samples with the same corrected clonal genotype were group-

ed in polytomies in the final phylogenetic models.

The analysis of the intra-host genomic diversity via VERSO step #2 was per-

formed by considering the VF profiles of all samples, by excluding (1) the clonal

variants employed in the phylogenomic reconstruction via VERSO step #1, (2)

the minor variants involved in homoplasies (i.e., observed in more than one

clonal genotype returned by VERSO step #1). Missing values (NA) were

imputed to 0 for downstream analysis. A number of principal components

equals to 10 was employed in PCA step, prior to the computation of the k-

NNG (k = 10) on the Bray-Curtis dissimilarity of VF profiles. Leiden algorithm

was applied with resolution = 1 (see Table S3 for the parameter settings of

VERSO employed in the case studies).

Parameter settings of simulations

In order to compare the performance of VERSO step #1 with competing

phylogenomic tools (i.e., IQ-TREE10 and BEAST 222), we performed extensive

simulations via msprime,70 which simulates a backwards-in-time coales-

cent model.

In particular, we simulated 20 distinct evolutionary processes, with the

following parameters: n = 1,000 total samples, effective population size Ne =

0.5 (i.e., haploid population), mutational rate M = 2 3 10�6 mutations per

site per generation, and a genome of length L = 29,903 bases. Such parame-

ters were chosen to roughly approximate the mutational rate currently esti-

mated for SARS-CoV-2 (i.e., M z 10�3 mutations per site per year and z

10�3generation
year

122) and to obtain a number of clonal mutations (in the range 15–

30) that is comparable with the one observed in the real-word scenarios (see

the case studies). As output, msprime returns a phylogenetic tree representing

the genealogy between the samples, the genotype of all samples (i.e., the

leaves of the tree), and the location of all mutations.

The genotypes of the samples were then inflated with different levels of

noise, with false-positive rate a and false-negative rate b (see the parameter

settings in Table S1), in order to assess the performance of the methods in

conditions of noisy observations and possible sequencing issues. Finally, we

subsampled all datasets to obtain two distinct samples sizes (500 and 1,000

samples), in order to test the robustness of methods in conditions of sampling

limitations.

The parameters of the phylogenetic methods employed in the comparative

assessment are reported in the Supplemental experimental procedures (Ta-

ble S2).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2021.100212.
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A., Caly, L., Sait, M., Ballard, S.A., Horan, K., Schultz, M.B., et al. (2020).

Tracking the COVID-19 pandemic in Australia using genomics. Nat.

Commun. 11, 4376, https://doi.org/10.1038/s41467-020-18314-x.

43. Popa, A., Genger, J.W., Nicholson, M.D., Penz, T., Schmid, D., Aberle,

S.W., Agerer, B., Lercher, A., Endler, L., Colaço, H., et al. (2020).

Genomic epidemiology of superspreading events in Austria reveals

mutational dynamics and transmission properties of SARS-CoV-2. Sci.

Transl. Med. 12, https://doi.org/10.1126/scitranslmed.abe2555.

44. Miralles, R., Gerrish, P.J., Moya, A., and Elena, S.F. (1999). Clonal inter-

ference and the evolution of RNA viruses. Science 285, 1745–1747,

https://doi.org/10.1126/science.285.5434.1745.

45. Xu, D., Zhang, Z., and Wang, F.S. (2004). SARS-associated coronavirus

quasispecies in individual patients. N. Engl. J. Med. 350, 1366–1367,

https://doi.org/10.1056/NEJMc032421.
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