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ABSTRACT

A novel proton-fueled molecular gate-like delivery
system has been constructed for controlled cargo
release using i-motif quadruplex DNA as caps onto
pore outlets of mesoporous silica nanoparticles.
Start from simple conformation changes, the
i-motif DNA cap can open and close the pore
system in smart response to pH stimulus.
Importantly, the opening/closing and delivery
protocol is highly reversible and a partial cargo
delivery can be easily controlled at will
A pH-switchable nanoreactor has also been
developed to validate the potential of our system
for on-demand molecular transport. This proof of
concept might open the door to a new generation
of carrier materials and could also provide a general
route to use other functional nucleic acids/peptide
nucleic acids as capping agents in the fields of
versatile controlled delivery nanodevices.

INTRODUCTION

Over the past two decades, nucleic acids have been
recognized as an attractive building material for nanotech-
nology and materials science owning to their
conformational polymorphism, programmable sequence-
specific recognition and robust physicochemical nature.
Many nucleic acids based, artificial structures/devices
have been constructed and shown potential applications
in miniaturized biosensors, microsurgery, drug delivery,
nanorobotics and dynamic nanomaterials, etc. (1-5).
Although these DNA nanodevices are promising, how to
make them to perform further functions remains a big
challenge in this field. Therefore, a new strategy is
needed to overcome these problems for the development
of simple DNA mechanical devices toward more
sophisticated functions.

Here for the first time, we described the use of DNA as
a biomolecule-based, proton-responsive cap system for
MSN, and demonstrated the operability of this system
with intelligent on-demand molecular transport. Because
the unique feature of mesoporous silica nanoparticles
(MSN), such as large load capacity, biocompatibility,
high thermal stability and tunable pore structure, the
development of functionalized MSNs as carrier vehicles
in a stimuli-responsive capped/gated release mechanism
have attracted great attention in basic discovery research
as well as in biosensor, drug/gene delivery and detergent
design, etc. (6-9). To date, the using of different kinds of
pore blocking caps, such as nanoparticles (10-12),
supermolecular assemblies (13,14) and large molecules
(15,16) to keep compounds from leaching out of porous
hosts and to permit their controlled release has taken
chemistry to the frontier of nanoscience. Despite these
burgeoning developments, many of the existing capping
systems are offset by their poor applicability in aqueous
solutions, irreversibility, the use of difficult-to-apply and/
or complex stimuli and the toxicity of the capping agents
used. In particular, regardless of very recent reported
gated MSN that can be capped by certain antibodies or
peptides (17-19), there is almost complete lack of
MSN-based devices involving biomolecular caps.

An i-motif DNA which carries a piece of the human
telomeric sequence was attached on the exterior of
MCM-41 particles as a model system in this work.
I-Motif DNA is a four-stranded DNA structure with
stretches of cytosine base (20). It undergoes a precise
structural change driven by a pH change with significant
force (8—10 pN) (5,21-22). We then sought to take advan-
tage of this unique feature to control the gate operation.
The working principle of the system is illustrated in
Figure 1. At low pH, the C residues are partially
protonated and the DNA folds into the closed i-motif
structure, the pores are capped by the quadruplex and
the release of the cargo is strongly inhibited. When the
pH is increased to basic, the C* residues are deprotonated
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Figure 1. Schematic representation of proton-fueled release of guest
molecules from the pores of MSN capped with i-motif DNA.

and the DNA unfolds to a single-stranded form, the silica
nanopores are spontaneously unblocked which results in
rapid delivery of the cargo from the pore voids into the
aqueous solution. Thus, the interconversional cycles of the
closed and open states of the gated system could be
demonstrated by measuring the pH-dependent release of
the loaded dye molecules.

MATERIALS AND METHODS
Materials and instrumentation

Nanopure water (18.2MQ; Millpore Co., USA) was
used in all experiments and to prepare all buffers.
Tetraethylorthosilicate (TEOS), (3-aminopropyl)
trimethoxysilane (APTES), 4-morpholineethanesulfonic
acid (MES), rodamine B and 7-diethylamino-3-(4-
maleimidophenyl)-4-methylcoumarin (CPM) were pur-
chased from Sigma-Aldrich. N-cetyltrimethylammonium
bromide (CTAB), 1-[3-(dimethylamino)propyl]-3-
ethylcarbodiimide hydrochloride (EDC), trisodium citrate
dihydrate and succinic anhydride were obtained from Alfa
Aesar. N-hydroxysulfosucnimide sodium salt (sulfo-NHS)
was purchased from Pierce Biotechnology. All the chem-
icals were used as received without further purification. The
oligonucleotide used in this article was synthesized by
Sangon Biotechnology Inc. (Shanghai, China). The
sequence is as follows:

DNA-1: 5-NH,-(CH,)s-CCCTAACCCTAACCCTAA
CCC-3
DNA-2: 5-NH,-(CH,)¢-CTCTCACTCTCACTCTCC
ACC-¥

FT-IR analyses were carried out on a Bruker Vertex
70 FT-IR Spectrometer. X-ray measurements were
performed on a Bruker D8 FOCUS Powder
X-ray Diffractometer using Cu Ko radiation.
Thermogravimetric analyses were carried out on a
PerkinElmer Pyris Diamond TG/DTA Analyzer, using
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an oxidant atmosphere (Air) with a heating program
consisting of a dynamic segment (10°C/min) from 373 to
1173 K. SEM images were obtained with a Hitachi S-4800
FE-SEM. N, adsorption—desorption isotherms were
recorded on a Micromeritics ASAP 2020M automated
sorption analyzer. The samples were degassed at 150°C.
for 5h. The specific surface areas were calculated from
the adsorption data in the low pressure range using the
BET model and pore size was determined following the
BJH method. Solid-state '*C CP-MAS NMR spectra were
obtained on Bruker AVANCE III 400 WB spectrometer
equipped with a 4mm standard bore CPMAS probe
whose X channel was tuned to 100.62MHz for '*C and
the other channel was tuned to 400.18 MHz for broad
band 1H decoupling, using a magnetic field of 9.39T at
297K. UV-vis spectroscopy was carried out with a
JASCO V-550 UV/vis spectrometer. Fluorescence
spectra were recorded with a JASCO FP-6500
spectrofluorometer.

Synthesis and chemical modification of the MSN surface

N-cetyltrimethylammonium bromide (CTAB, 1.00 g) was
first dissolved in 50ml of pure water by heating. After
cooling to room temperature, aqueous ammonia (13 ml)
and ethanol (75 ml) were added. The mixture was stirred
for 15min and TEOS (1.94ml) added rapidly while
stirring was continued. TEOS (30 ul) and APTES (30 ul)
were introduced 30 min later. The mixture was allowed to
stir for 2h to give rise to white precipitates. The solid
product was filtered, washed with deionized water and
methanol, and dried in air. To remove the surfactant
template (CTAB), the white powder was refluxed for
16h in a solution of 1.00ml of HCI (37%) and 80.00 ml
of methanol followed by extensively washing with
deionized water and methanol. The resulting surfactant-
removed amine-functionalized MSN (MSN-NH,) was
placed under high vacuum to remove the remaining
solvent in the mesopores. The MSN-NH, (50mg) was
reacted  with  succinic  anhydride (1.00g) in
N,N-dimetylformamide solution (20ml) under N, gas
for 8h with continuous stirring. By doing so, carboxyl
groups were formed onto the MSN surface for conjuga-
tion of DNA. After a thorough water wash, the
carboxylated nanoparticles (MSN-COOH) were activated
using EDC (10 mg/ml, 15ml) and sulfo-NHS (10 mg/ml,
15ml) in a MES buffer (pH 6.0) for 15min at room
temperature with continuous stirring. Twenty micro-
liters of PBS buffer (100 mM, pH 7.4) was then added in
the mixture, followed by the addition of DNA-1 or -2
(3ml 98.3uM) at room temperature with continuous
stirring for 6h and washing in PBS buffer (0.1 M,
pH 7.4) to form the resultant DNA-conjugated
nanoparticles (MSN-DNA or -cDNA). The unreacted
DNA was purified with Vivaspin ultrafiltration spin
column (MW 2kDa). The quantification of left
DNA was accomplished by UV-vis spectroscopy to be
104.1 nmol, which corresponded to an immobilization
efficiency of ~3.81umol/g SiO».
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Rhodamine B loading and dye release experiments

The purified MSN-DNA was incubated in the phosphate-
buffered saline (10mM, 25ml, pH 7.4) of rhodamine B
(5mg) for 24h. The pH value of the suspension was
adjusted to 5.0 by the addition of HCI. The solution was
stirred for 16h, followed by centrifuging and repeated
washing with citrate buffer (25mM, pH 5.0) to remove
physisorbed rhodamine B molecules from the exterior
surface of the material. All the washing solutions were
collected, and the loading of rhodamine was calculated
from the difference in the concentration of the initial
and left dyes to be ~40 umol/g Si02. Rhodamine-loaded
MSN-DNA (10mg) material was dispersed in 25ml of
citrate buffer at a certain pH value (pH 5.0 or 8.0).
Aliquots were taken from the suspension and the
delivery of rhodamine dye from the pore to the buffer
solution was monitored via the absorbance band of the
dye centered at 553nm. As for partial cargo release,
MSN-RhB (10mg) was dispersed in 25ml of citrate
buffer at pH 5.0. Aliquots were taken from the suspension
every Smin over a range of 550 min, and the amount of
cargo delivered by carrying out interconversion cycles of
the closed and open states via pH variation.

CPM loading experiments

The purified MSN-DNA (10mg) was incubated in
dimethylsulfoxide (DMSO) of CPM (0.5mg) at 20°C
overnight, followed by centrifuging and washing with
deionized water to afford CPM-loaded MSN-DNA.

Fluorescence detection of nanoreactor activity

CPM-loaded MSN-DNA (0.5 mg) material was dispersed
in 2ml of citrate buffer at a certain pH value (between
pH 5.0 and 8.0). After the reaction with a model
compound 6-mercapto-1-hexanol (50 uM) at 20°C over-
night, the resultant nanoparticles were centrifuged and
then dispersed in citrate buffer at corresponding pH.
The pH-dependant nanoreactor activity was monitored
via the fluorescence of thiol derivative of CPM
(Aex = 384 nm/A.,, = 410-650 nm) in the nanoreactor.

RESULTS AND DISCUSSION
Synthesis and characterization of MSN-DNA

The MCM-41 particle was synthesized using a
base-catalyzed sol-gel procedure (23) and MSN (400 nm
in diameter) that contain hexagonally arranged pores were
confirmed by SEM and X-ray diffraction (Supplementary
Figures S1 and S2). The surface of MSN was then
functionalized with amine groups by treatment with
3-aminopropyltriethoxysilane ~ (APTES) to  afford
MSN-NH,. N, adsorption—desorption isotherms of
MSN-NH, showed a typical Type IV curve with a
specific surface area of 1476m?g~', average pore
diameter of 2.14nm and a narrow pore distribution
(Figure 2A and Table 1). The silica particle functionalized
with a carboxylic group (MSN-COOH) was obtained by
allowing MSN-NH, to react with succinic anhydride in
N,N-dimetylformamide (DMF). The resultant carboxyl
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Figure 2. (A) Nitrogen sorption isotherms of the samples
(a) MSN-NH,, (b) MSN-DNA and (¢) MSN-RhB. (B) FTIR spectra
of the samples (a) MSN-NH,, (b) MSN-COOH and (c) MSN-DNA.

Table 1. BET specific surface values, pore volumes and pore sizes
calculated from the N, adsorption—desorption isotherms for selected
materials

SBET (ng*l) Pore volume Pore size (nm)
(em’g™")
MSN-NH, 1476 0.79 2.14
MSN-DNA 1062 0.52 1.95
MSN-RhB 294 0.18 -

unit on the surface was activated by 1-[3-
(dimethylamino)propyl]-3-ethylcarbodiimide hydrochlor-
ide (EDC) and N-hydroxysulfosucnimide sodium salt
(sulfo-NHS) in a MES buffer and subsequently treated
with DNA-NH, to obtain MSN-DNA.

The surface functionalization of MSN was monitored
by FTIR spectroscopy (Figure 2B). The emerging absorp-
tion band at around 1700cm™' in the sample
MSN-COOH can be assigned to C=0O stretching of the
carboxyl groups contained within the attached succinic
acid molecules. The efficient grafting of DNA onto
mesoporous silica was validated by the appearance of an
enhanced band at 1562cm™', which is characteristic of
acylamide vibration. '*C CP-MAS NMR spectroscopy
provides clear evidence for the successful incorporation
of the functional groups (Figure 3). The MSN-NH,
nanoparticles had three peaks at 8.7 ppm (C1), 23.9 ppm
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Figure 3. Solid state 3C CP-MAS NMR spectra of (a) MSN-NH,, (b) MSN-COOH and (c) MSN-DNA.

(C2) and 43.0 ppm (C3). The resonances at 173.0 ppm and
175.4ppm were typical positions for C=0O of the
acylamide and carboxyl groups. The grafting of DNA
was also confirmed by the declined intensity of the reson-
ance at 175.0 ppm and band shift to 164.9 ppm for C=0
of the acylamide. The observed results agreed well with
previous studies and were ecasily assigned (24,25). As
shown in Figure 2A and Table 1, changes in pore
volume and diameter were investigated by nitrogen
sorption experiments. The decline in surface areca and
pore volume by ~30% in the sample MSN-DNA is
attributed to partial pore blocking effect induced by the
large organic moieties on the outer shell of the MSN.
On the other hand, practically similar pore sizes have
been determined with value of 2.14 and 1.95nm for
samples MSN-NH, and MSN-DNA, respectively. This
result indicated that the internal surface of the
mesoporous particles remained unfunctionalized and the
residual porosity remaining in MSN-DNA had little effect
on the dye loading. Quantification of the content of DNA
anchored on MSN-DNA was accomplished by
thermogravimetric studies (TGA) and UV-vis spectros-
copy (Supplementary Figure S3).

On-demand dye release

To investigate the proton-fueled gating behavior of the
MSN-DNA system, rhodamine B was first loaded as
guest molecule by soaking MSN-DNA in a
phosphate-buffered saline (PBS) solution (pH 7.4).
The pore was capped by i-motif quadruplex when the
pH value of the solution was adjusted to five. The excess
amount of dye was removed by centrifugation and
repeated washing with PBS (pH 5.0). The resulting
particles (denoted as MSN-RhB) were then dispersed the
citrate buffer (25ml, 25mM, pH 5.0 or pH 8.0) to test

their controlled release property. As can be seen in
Figure 4A, a very clear and highly effective pH-operable
gating effect was demonstrated by monitoring the absorb-
ance maximum of rhodamine B (553 nm) as a function of
time. When the pH value is adjusted to 8.0, 91% release is
obtained after 24h. However, only negligible release
occurs at pH 5.0 under the same condition, indicating
good capping efficiency and tunable release rate via pH
change. The pH-dependent release rate is consistent with
the mechanism of operation for the MSN system: release
of guest molecules depends on the reversible conform-
ational change between i-motif quadruplex and random
coil DNA. Since the diameter of i-motif structure is
1.9nm (26,27), we speculated that the gate-like structure
formed at the closed state (pH 5.0) might be expected to be
large enough to gate the ~2-nm diameter pore and thus
prevent rhodamine B molecules from escaping. Indeed, we
note that the structural change of DNA could be extreme-
ly complicated on the surface. For example, a DNA strand
may fold into more than one i-motif structure, while the
i-motif could form by association of two or more single
strands. Further studies will be required to clucidate the
exact mechanisms involved, but these are beyond
the scope of this brief communication. In contrast, when
the folded four-stranded i-motif domain was denatured
into single-stranded form with cross-sectional diameter
of 0.6nm at pH 8.0, the packing of ssDNA displayed
poor coverage of the pore and consequently leaded to
leakage of entrapped dye molecules. In comparison, the
results of unfunctionalized MCM-41 and MSN-cDNA
showed remarkable dye liberation at both pH 5.0 and
8.0 (Supplementary Figures S4-S6). These data clearly
demonstrated that we were able to close the pore system
of MSN with the i-motif quadruplex DNA, and to release
the loaded molecules subsequently by unfolding the
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quadruplex DNA in smart response to pH stimulus.
Compared to the fast capping/uncapping response on
the basis of the conformational change of i-motif DNA,
the relatively slow liberation processes observed is
ascribed to the diffusion-controlled kinetics of dye release.

One distinctive advantage of this system is that the
reversible structural feature of i-motif DNA opened up
new possibilities for a more sophisticated on-demand
cargo delivery. As a proof of concept, a partial cargo
release of trapped guest could be regulated with
open-close cycles via alternating addition of H* and
OH™. As demonstrated in Figure 4B, the closed state at
starting pH 5.0 strongly constrained the delivery of the
cargo. On the contrary, a distinct release of the entrapped
rhodamine dye was triggered in the open state as a result
of the conformational change of i-motif DNA when the
pH was suddenly changed to 8.0 by addition of OH™ (see
the arrow in Figure 4B). After 50 min the release of the
entrapped dye was again restricted by lowering the pH to
5.0. This inhibition is somehow slower than the process
when the delivery is triggered. At time 350 min, pH 8§ was
set back and further delivery of the entrapped dye
occurred until pH 5.0 was again selected, inhibiting the
release of the dye. The decrease of dye release in each
open-close sequence was due to the reduced amount of
dye to be delivered from the pores to the solution in
each cycle. The results demonstrated that the interconver-
sion protocol was reversible and that the delivery of the
cargo in small portions could be operated at will owning
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Figure 4. (A) Release profiles of rhodamine B dye from MSN-RhB at

pH 5.0 and 8.0. (B) Partial guest release profile of rhodamine B dye
from MSN-RhB as function of pH variations.

to the high degree of cooperation between individual
DNA molecules.

pH-switchable nanoreactor for controllable mass
transport

To realize the potential application of our system as
pH-switchable nanoreactor with on-demand sensor-
effector functionality, we took advantage of the large
load capacity of mesoporous nanoparticles as the
supporting matrix to incorporate hydrophobic molecules
for chemical reactions in aqueous solution. A
water-insoluble non-fluorescent probe 7-Diethylamino-3-
(4-maleimidophenyl)-4-methylcoumarin (CPM) was first
loaded in the DNA-capped mesoporous nanocontainer,
and showed negligible release in solution once it was
encapsulated owing to its poor solubibity. Only low
molecular weight thiols were expected to diffuse into the
pores due to the size-sieving ability of the mesoporous
silica framework, and then react with CPM to give rise
to highly fluorescent products as depicted in Figure 5A
and Supplementary Figure S7. The nanoparticle showed
significant blue luminescence at neutral conditions, while
only faint fluorescence was found at acidic pH.
Meanwhile, it is evident that the fluorescent signal inten-
sity increased with enhanced pH value, which suggests
that the gated system was able to change its state of
activity by pH wvariation of the surrounding solution
(Figure 5B and C). It was also found that thiol derivative
of CPM, CPM-loaded MSN-cDNA and nanocontainers
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Figure 5. (A) Illustration of the pH-switchable nanoreactor. (B)
Fluorescence response of the nanoreactor activity in acidic and
neutral environment: (a) MSN-DNA, (b) MSN-CPM before the
addition of thiol, (c-g) MSN-CPM after the reaction of thiol from
pH 5.0 to 7.0 with increments of 0.5 pH units. (C) Fluorescence
images of the nanoreactors in the absence and presence of thiol.
Only weak fluorescence could be observed with the addition of thiol
at pH 5.0, whereas the container showed strong blue fluorescence at
pH 8.0.



without DNA capping showed ignorable difference at
acidic and basic conditions (Supplementary Figures
S8-S10), indicating that the behavior of the nanoreactor
depends on the conformational change of i-motif DNA on
the mesoporous silica surface. Besides the application as
nanoscale reactor, the specific recognition of CPM with
thiol and unique pH-dependant conformational change of
i-motif make it possible to immobilize the CPM-loaded
nanocontainer on the solid support as a chip for sensing
thiol or pH.

CONCLUSION

In summary, we have demonstrated the first example
of a molecular gate-like functional system consisting of
MSN material functionalized onto pore outlets with
nucleic acids as caps. Starting from simple quadruplex/
single strand conformation changes, the i-motif DNA
cap can open and close the pore system in smart
response to pH stimulus: the release of the cargo is in-
hibited at pH 5, whereas there is significant release of
the guest molecule from the MPN at pH 8. Importantly,
a partial cargo delivery can be easily controlled due to the
reversible opening/closing protocol and the rapid struc-
tural switch of i-motif DNA, which opens the possibility
of designing stimuli-induced pulsatile release supports.
The operability of a pH-controlled nanoreactor for
on-demand molecular transport makes the switchable
nanocontainer promising for an easily producible,
self-regulating, target-specific and stable carrier which
can combine sensing and effector functionality on the
nanoscale. Furthermore, the utility of nucleic acids in
this system provides several critical advantages such as
high biocompatibility, ease of synthesis and modification,
straightforward operation and functional versatility. In
contrast to the previous systems whose switching relies
upon intermolecular interaction, the DNA-based
nanocontainers can switch reversibly without the aid of
other compounds, and thus make our system simple in
design and facile in operation. This proof of concept
might open the door to a new generation of carrier ma-
terials and could also provide a general route to use other
functional nucleic acids/peptide nucleic acids as capping
agents in the fields of versatile controlled delivery
nanodevices.
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