
Metagenomics-based tracing of genetically modified microorganism
contaminations in commercial fermentation products

Jolien D’aes a,1, Marie-Alice Fraiture a,1, Bert Bogaerts a, Yari Van Laere a,b,
Sigrid C.J. De Keersmaecker a, Nancy H.C. Roosens a,2, Kevin Vanneste a,*,2

a Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
b UGent, Department of Plant Biotechnology & Bioinformatics, Technologiepark 71 9052 Zwijnaarde, Belgium

A R T I C L E I N F O

Keywords:
Food enzyme
Phylogenomics
Strain-level deconvolution
Antimicrobial resistance

A B S T R A C T

Genetically modified microorganisms (GMM) are frequently employed for the production of microbial fermen-
tation products such as food enzymes. Although presence of the GMM or its recombinant DNA in the final
product is not authorized, contaminations occur frequently. Insight into the contamination source of a GMM is of
crucial importance to allow the competent authorities to take appropriate action. The aim of this study was to
explore the feasibility of a metagenomic shotgun sequencing approach to investigate microbial contamination in
fermentation products, focusing on source tracing of GMM strains using innovative strain deconvolution and
phylogenomic approaches. In most cases, analysis of 16 GMM-contaminated food enzyme products supported
finding the same GM producer strains in different products, while often multiple GMM contaminations per
product were detected. Presence of AMR genes in the samples was strongly associated with GMM contamination,
emphasizing the potential public health risk. Additionally, a variety of other microbial contaminations were
detected, identifying a group of samples with a conspicuously similar contamination profile, which suggested
that these samples originated from the same production facility or batch. Together, these findings highlight the
need for guidelines and quality control for traceability of these products to ensure the safety of consumers. This
study demonstrates the added value of metagenomics to obtain insight in the microbial contamination profiles, as
well as their underlying relationships, in commercial microbial fermentation products. The proposed approach
may be applied to other types of microbial fermentation products and/or to other (genetically modified) pro-
ducer strains.

1. Introduction

Naturally fermented foods, such as cheese, yoghurt and tofu, are a
valuable component of the human diet. Their production depends on the
activity of micro-organisms that digest natural substrates, converting
them into enzymes or metabolites that play a key role in the taste and
properties of the final product. On the other hand, many food supple-
ments such as vitamins, additives, or enzymes, with important appli-
cations in the food and feed industry, are the result of industrial
fermentation with axenic microbial cultures (Graham & Ledesma-
Amaro, 2023). These microbial fermentation products are increasingly
being produced by genetically modified microorganisms (GMM), mainly
because of the increases in productivity and yield during the

fermentation process (Deckers, Deforce, et al., 2020).
Although novel gene editing techniques, such as CRISPR/Cas tech-

nology, allow for swift and targeted introduction of unmarked genetic
modifications, in practice many GMM constructs still incorporate anti-
microbial resistance (AMR) genes. The selection pressure that can be
imposed by the presence of these genes is often needed to prevent loss of
the high-copy plasmid or multi-copy chromosomal insertion carrying
the transgenic construct. However, a public health risk may arise if a
GMM carrying AMR genes contaminates the final fermented product,
since those AMR genes could spread via horizontal gene transfer to other
bacteria upon ingestion, particularly if residing on a plasmid (Arnold
et al., 2022; Florez-Cuadrado et al., 2018; VonWintersdorff et al., 2016).

The presence of a genetically modified organism (GMO) in a product

* Corresponding author.
E-mail address: kevin.vanneste@sciensano.be (K. Vanneste).

1 equal first-author contribution
2 equal last-author contribution

Contents lists available at ScienceDirect

Food Chemistry: Molecular Sciences

journal homepage: www.sciencedirect.com/journal/food-chemistry-molecular-sciences

https://doi.org/10.1016/j.fochms.2024.100236
Received 6 September 2024; Received in revised form 16 December 2024; Accepted 19 December 2024

Food Chemistry: Molecular Sciences 10 (2025) 100236 

Available online 24 December 2024 
2666-5662/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:kevin.vanneste@sciensano.be
www.sciencedirect.com/science/journal/26665662
https://www.sciencedirect.com/journal/food-chemistry-molecular-sciences
https://doi.org/10.1016/j.fochms.2024.100236
https://doi.org/10.1016/j.fochms.2024.100236
https://doi.org/10.1016/j.fochms.2024.100236
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


destined for food or feed purposes, whether as a living strain or asso-
ciated recombinant DNA, requires prior authorization in line with EU
regulations (EC 1830/2003). Currently, no authorizations have been
granted for GMM intended for the food or feed chain on the EU market.
Thus, a GMM that was used to generate a fermentation product must be
absent from the final product destined for consumption. To ensure
traceability and food safety, a qPCR-based GMM detection strategy was
developed for enforcement laboratories to support the competent au-
thorities. Within this scope, qPCR assays targeting the unnatural asso-
ciations of several GMM constructs were designed, enabling their
identification in the final product (Fraiture, Deckers, et al., 2020a;
Fraiture, Deckers, et al., 2020b; Fraiture, Deckers, et al., 2020c; Fraiture,
Gobbo, et al., 2021; Fraiture, Marchesi, et al., 2021; Fraiture, Papazova,
& Roosens, 2021). As these identification assays focus on the transgenic
construct rather than the host strain of the GMM, it cannot be ruled out
that different host strains, carrying a similar (episomal) plasmid
construct, may be present in different samples. Moreover, GMM con-
structs for which no qPCR assay is available, will be missed entirely.

Using these qPCR-based screening methods, previous research has
demonstrated GMM contaminations in a variety of food enzyme (FE)
products, leading to 18 RASFF notifications since 2019 (https://ec.euro
pa.eu/food/safety/rasff-food-and-feed-safety-alerts/rasff-portal_en).
Additionally, a viable genetically modified (GM) Bacillus velezensis strain
was isolated from several FE products, and characterized by whole-
genome sequencing (WGS) (D’aes et al., 2021; Fraiture, Bogaerts,
et al., 2020). This strain, designated GMM ‘protease1’, harbored the
high-copy plasmid vector pUB110 carrying two AMR genes encoding
kanamycin/neomycin (aadD1) and bleomycin (bleO) resistance, along-
side an insertion of a protease-encoding gene. The GMM host strains
found in the various FE samples were phylogenetically closely linked
and probably descended from the same strain, indicating a shared origin
of the contaminations in different commercial samples (D’aes et al.,
2021). In a subsequent study (D’aes et al., 2022), four alpha-amylase
and protease FE products were subjected to metagenomic high-
throughput sequencing (HTS), resulting in the characterization of two
additional GM strains, which could not be isolated from any of the
products. Firstly, a GMM ‘amylase1’ was characterized that carried the
same high-copy pUB110 vector with an insertion of an alpha-amylase
encoding gene (amyA) derived from B. amyloliquefaciens. As the trans-
genic construct was located on a plasmid, the metagenomic approach
could not unequivocally determine its host, although results indicated
that it was most likely a B. amyloliquefaciens strain. Secondly, a novel
GMM ‘amylase2’ was detected and characterized, constituting a
B. licheniformis strain carrying a chromosomally integrated transgenic
construct comprising an AMR gene encoding resistance to chloram-
phenicol (catA) and an alpha-amylase encoding gene (amyS) derived
from its B. licheniformis host. Both the B. amyloliquefaciens and
B. licheniformis GM strains exhibited signs of genetic modifications in
sporulation genes, consisting of deletions that presumably rendered the
strains asporogenic. This would make them incapable of long-term
survival in the product, which could explain why it was impossible to
obtain viable isolates.

Preliminary findings, based on whole-genome comparison of the
metagenome-assembled genomes (MAGs) retrieved in the previous
study (D’aes et al., 2022), suggested the possibility of a shared origin of
the unculturable GMM contaminations. A phylogenetic comparison of
the strains found in different FE samples was however not explored,
since viable isolates could only be obtained for one of the three detected
GMM strains, and performing source tracing based on metagenomics
data for the two other GMM strains, constitutes a much more complex
challenge. For instance, B. velezensis and B. amyloliquefaciens are closely
related species and cannot always be distinguished in metagenomic
samples using ‘standard’ metagenomic methods, e.g. metagenomic de
novo assembly (Fan et al., 2017).

The goal of the present study was to determine the feasibility of a
metagenomic approach to gain insight into the contamination origin of

microbial fermentation products, which is of crucial importance to allow
the competent authorities to take appropriate actions. More specifically,
this study aimed to compare microbial contaminants in microbial
fermentation products at the strain level, with special emphasis on
GMM, to identify any common origin or relationship among them
through SNP-based phylogenomic comparisons.

2. Material and methods

2.1. DNA extraction from FE matrix

From each FE product, collected on the EU market (Table 1), a
sample of 200 mg was used for genomic DNA extraction using the Quick-
DNA™ HMW MagBead Kit (ZymoResearch, Freiburg, Germany) ac-
cording to the manufacturer’s instructions. Extracted DNA was visual-
ized by capillary electrophoresis using the Tapestation 4200 device with
the associated genomic DNA Screen Tape and reagents (Agilent, Santa
Clara, USA). Each DNA concentration was measured by spectropho-
tometry using the Nanodrop® 2000 (ThermoFisher, Dilbeek, Belgium),
and each DNA purity was evaluated using the A260/A280 and A260/
A230 ratios.

2.2. qPCR assays

DNA from FE products was analyzed using qPCR methods specific to
the Bacillus subtilis group (BSG) (Fraiture et al., 2022), a GM B. velezensis
producing protease (GMM protease1) (Fraiture, Bogaerts, et al., 2020), a
second GMM with a transgenic construct encoding a protease (GMM
protease2) (Fraiture, Gobbo, et al., 2021), a GM B. amyloliquefaciens
producing alpha-amylase (GMM alpha-amylase1) (Fraiture, Marchesi,
et al., 2021), and a GM B. licheniformis producing alpha-amylase (GMM
alpha-amylase2) (Fraiture et al., 2024). qPCR assays were performed in
duplicate as described before (D’aes et al., 2022).

2.3. DNA library preparation and sequencing

For some samples (Table S1), metagenomic Illumina sequencing data
was already available (D’aes et al., 2022). For the remaining samples,
one short-read DNA library per sample was prepared using the Nextera
XT DNA library preparation kit (Illumina, California, USA) according to
the manufacturer’s instructions. Sequencing was carried out on an
Illumina MiSeq system with the V3 chemistry, obtaining 250 bp paired-
end reads. For most samples, approximately seven FE sample libraries
were analyzed together on a MiSeq, in equimolar quantities. Addition-
ally, an entire independent MiSeq run had been previously devoted to
sequencing the A3 sample library to obtain a super-high depth
sequencing coverage (D’aes et al., 2022).

For some samples (Table S1), ONT sequencing data was already
available (D’aes et al., 2022), which was included in this study, while for
sample A12 ONT sequencing was performed in this study. One DNA li-
brary per sample was prepared using the ligation sequencing kit (SQK-
LSK109; Oxford Nanopore Technologies, Oxford, UK) according to the
manufacturer’s instructions. The FE sample library was loaded on an
individual R9 MinION flow cell and sequenced for 48 h. The ONT reads
were basecalled with Guppy 5.0.7 in GPU mode, with the
dna_r9.4.1_450bps_sup model, and with q-score based filtering disabled.

2.4. Metagenomic approach to characterize and compare microbial
contaminations

To characterize and compare the microbial contamination in the
samples, different complementary approaches were used (Fig. 1), a
detailed description of which is provided in Supplementary text S1.

2.4.1. Raw read preprocessing and analysis
The overall microbial composition of the short-read samples was
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profiled with Kraken2 (Wood et al., 2019), with a database composed of
RefSeq assemblies (retrieved on 24/02/2023) from archaea, bacteria,
fungi, protozoa and viruses, complemented with the human genome
(Fig. 1). The Kraken2 relative abundance estimates were corrected with
Bracken 2.8 (Lu et al., 2017), and visualized with the Python package
Seaborn (Waskom, 2021).

Since k-mer-based classifiers such as Kraken2 can potentially be
subject to false positive identifications, especially at low abundance
levels (Meyer et al., 2022), a complementary read-mapping analysis was
performed for every species reported at a relative abundance of at least
1 %. Following read preprocessing with Trimmomatic 0.38 (Bolger
et al., 2014), short and long reads were mapped with Bowtie2 2.4.1
(Langmead & Salzberg, 2012), or minimap2 2.26 (Li, 2018), respec-
tively, after which the alignments were analyzed with samtools 1.17 (Li
et al., 2009) to calculate the depth and breadth of coverage.

The presence of a species in a sample was considered as confirmed if
it was detected by short- and/or long-read mapping to the reference
genome of the species with a depth of coverage of at least 5 and a
breadth of coverage of at least 80 %, and/or if it was represented by a de
novo metagenome assembled genome (MAG) that was at least 50 %
complete and contained maximum 10 % contamination (2.4.2,
Table S3), i.e. the MAG quality cutoff for reliable taxonomic classifica-
tion suggested by Chaumeil et al. (2020).

2.4.2. Metagenomic assembly and characterization
In case both Illumina and ONT reads were available for a sample,

metagenomic hybrid assembly was carried out with OPERA-MS 0.9.0
(Bertrand et al., 2019), with SPAdes 3.13.0 (Bankevich et al., 2012),
Samtools 0.1.19, BWA 0.7.10-r789 (Li & Durbin, 2009), Blasr 5.1,
minimap2 2.11-r797, Racon 0.5.0 (Vaser et al., 2017), Mash 2.2 (Ondov
et al., 2016), MUMmer 3.23 (Kurtz et al., 2004), and Pilon 1.22 (Walker
et al., 2014) as dependencies. If only Illumina reads were available,
short-read metagenomic assembly was performed with SPAdes 3.15.3
(Nurk et al., 2017), followed by binning with MetaBAT2 2.15 (Kang
et al., 2019).

Completeness and contamination rates of bacterial MAGs were
estimated with CheckM 1.1.3 (Parks et al., 2015), with Prodigal 2.6.3
(Hyatt et al., 2010) and pplacer 1.1.alpha19 (Matsen et al., 2010) as
dependencies. For bacterial taxonomic classification, GTDB-Tk 1.5.1
(Chaumeil et al., 2020) was employed, with FastANI 1.33 (Jain et al.,
2018), FastTree 2.1.11 (Price et al., 2009), Mash 2.2, Prodigal 2.6.3,
pplacer 1.1.alpha19, and HMMER 3.2.1 as dependencies. Quality con-
trol of fungal MAGs was done with BUSCO 5.4.3 (Manni et al., 2021),
with as dependencies Augustus 3.3.3 (Stanke et al., 2008), Metaeuk 6
(Levy Karin et al., 2020), SEPP 4.5.2 (Warnow, 2013), BBtools 38.34
(Bushnell et al., 2017), Prodigal 2.6.3, HMMER 3.2.1, and BLAST+
2.13.0 (Camacho et al., 2009). To obtain a taxonomic classification of

Table 1
Overview of samples included in this study.

Sample Brand Labeled enzymes Labeled producer organism GMM alpha-
amylase1

GMM alpha-
amylase2

GMM
protease1

RASFF

A1 A alpha-amylase Bacteria ++ ++ ++ RASFF2020.2846
A2 B alpha-amylase Unknown ++ ++ ++ RASFF2020.2577
A3 C alpha-amylase Unknown ++ ++ ++ RASFF2020.2577
A4 D alpha-amylase Bacteria ++ ++ - RASFF2020.2579
A5 E alpha-amylase Bacillus licheniformis ++ ++ + RASFF2019.3332
P1 E protease Bacillus subtilis ++ ++ ++ RASFF2019.3332
A6 F alpha-amylase Bacillus licheniformis - + - RASFF2020.2576
A7 G alpha-amylase Bacillus licheniformis + + - /
M1 E protease, cellulase, xylanase,

alpha-amylase, beta-glucanase
Aspergillus oryzae, Bacillus subtilis,
Trichoderma reesei, Trichoderma
longibrachiatum

++ ++ ++ RASFF2019.3332

P2 H protease Bacillus licheniformis + - + /
A8 I alpha-amylase Unknown + + - /
A9 G alpha-amylase Bacillus subtilis ++ + - /
A10 G alpha-amylase Bacillus amyloliquefaciens ++ - - /
A11 J alpha-amylase Unknown ++ - - RASFF2020.2570
A12 K alpha-amylase Bacillus subtilis ++ - - /
A13 unknown alpha-amylase Unknown ++ - - RASFF2019.3332

qPCR results with a Cq below 25 were interpreted as ‘highly contaminated’ (++), below 35 as ‘contaminated‘ (+), and above 35 as ‘negative’ (-). GMM protease2 was
not detected in any of the samples. Exact Cq values are provided in Table S1. Sample names and brands were replaced with aliases for confidentiality reasons. Sample
aliases starting with A, P, or M refer to alpha-amylase, protease or mixed enzyme products, respectively. The Rapid Alert System for Food and Feed (RASFF) entries
indicate EU-level notifications of potential health risks derived from food or feed.

Fig. 1. Overview of workflow to characterize and compare microbial con-
taminations in food enzyme samples, with reference to the related re-
sults sections.
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the fungal MAGs, the top hits of a web-based blastn search with default
parameters were examined manually.

2.4.3. StrainGE analysis
To investigate a potential shared origin of the GMM contaminations,

a strain-level analysis with StrainGE (van Dijk et al., 2022), using the
short read datasets, was performed for the Bacillus species. Additionally,
StrainGE was run for the Enterococcus genus, because this was the main
microbial contamination in multiple samples, allowing to obtain insight
into the potential shared origin of these samples. The main similarity
metric reported by StrainGE is the average callable nucleotide identity
(ACNI), which is measured as the percentage of positions with strong
evidence for the reference allele, comparable to the Average Nucleotide
Identity (ANI), taking into account regions of the genome for which
variants cannot be called due to the presence of other strains that are
very similar or due to insufficient depth of coverage. van Dijk et al.
(2022) proposed a threshold for the ACNI of 99.95 % to delineate
strains, which was retained in this study.

2.4.4. Phylogenetic tree construction
As a complementary approach to StrainGE, an in-house workflow

was developed, based on a pipeline developed by Bogaerts et al. (2024),
to perform read mapping, variant calling and construction of SNP-based
phylogenetic trees, combining both Illumina and the available ONT
sequencing data, which was applied to the three Bacillus GMM host
strains. This workflow depended on the CFSAN SNP pipeline 2.0.2
(Davis et al., 2015), Bowtie 2.3.4.3, minimap2 2.17, BamTools 2.5.15
(Barnett et al., 2011), Clair3 v0.1-r6 (Zheng et al., 2022), bcftools 1.13
(Danecek et al., 2021), Gubbins 3.1.4 (Croucher et al., 2015), PHASTER
(Arndt et al., 2016), BEDtools 2.27.1 (Quinlan& Hall, 2010), and MEGA
10.0.4 (Kumar et al., 2008). The resulting phylogenetic trees were
visualized with iTOL (Letunic & Bork, 2024) (main figure) or with Fig-
Tree (Rambaut, 2016) (supplementary figures).

2.5. Genotypic detection of AMR and virulence genes

Genotypic AMR detection with KMA (Clausen et al., 2018) on unfil-
tered short reads was performed as described by Bogaerts et al. (2021),
with minor modifications, i.e. only hits with ≥90 % identity and ≥ 90 %
target coverage were retained, and instead of the ResFinder database, the
National Database of Antibiotic Resistant Organisms (NDARO) (retrieved
on 2023-02-05) was used, complemented with an in-house Bacillus-spe-
cific AMR gene (catA, CP023729.1:2725109–2,725,759), which was not
present in NDARO. To account for the differences in sample size, the ob-
tained values were normalized by calculating the obtained depth per
million unfiltered read pairs. The presence of full-length AMR genes on
single raw long reads was assessed with genotypic AMR detection with
BLAST+ 2.6.0 according to Bogaerts et al. (2021), with the same modifi-
cation of the database as described above for the KMA-based gene detec-
tion workflow. The unfiltered long-read data, converted to fasta format,
was used as query, with the % identity and coverage cutoffs set to 90 %
and 95 %, respectively. To investigate whether the open reading frames of
genes detected at an identity and/or coverage below 100 % were likely to
be structurally intact or not, gene detection with GAMMA 2.1 (Stanton
et al., 2022) with default settings was additionally run on the assemblies
with the NDARO database.

Genotypic virulence gene detection on unfiltered short-read datasets
with KMAwas performed as for the AMR genes, with the VFDB-Core as a
database (retrieved on 2022-04-20) (Liu et al., 2022) and the % identity
and coverage cutoffs set to 90 %.

2.6. Data availability

Raw data and metagenomic assemblies are available in the European
Nucleotide Archive under Project accession numbers PRJEB79645 and
PRJEB53495.

3. Results

3.1. qPCR demonstrates cross-contamination of food enzyme products
with multiple GMM

16 commercial food enzyme (FE) products from 11 different brands
were selected from previous studies (D’aes et al., 2021; Fraiture et al.,
2022; Fraiture, Deckers, et al., 2020a; Fraiture, Deckers, et al., 2020b;
Fraiture, Deckers, et al., 2020c; Fraiture, Gobbo, et al., 2021; Fraiture,
Marchesi, et al., 2021), based on their level of GMM contamination
observed with qPCR (Table 1, Table S1). For confidentiality reasons, the
names of the samples and brands were anonymized with aliases
(Table 1) that were used throughout the manuscript to refer to the
samples. The FE samples included 13 alpha-amylase FE products (A1-
A13), 2 protease products (P1, P2), and 1 mixed product (M1),
composed of several enzymes including alpha-amylase and protease
(Table 1 qPCR indicated that all samples were contaminated with at
least one GMM strain/construct, i.e. GMM protease1, GMM amylase1,
and/or GMM amylase2, while none of the samples tested positive for
GMM protease2. In general, the dominant contamination reflected the
labeled enzyme(s) of the product, although some products appeared to
be highly contaminated (Cq < 25) with all three GMM. However, since
the qPCR assays target the transgenic construct of the GMM, it is possible
that the host strain carrying the construct was not the same in every
sample, particularly if the GMM construct resides on a free plasmid.
Consequently, qPCR alone did not allow to confirm the presence of the
same GMM, i.e. same construct and host strain, and it was therefore not
possible to determine whether the contaminations could have shared the
same origin based on qPCR results (Table 1). qPCR indicated that all
samples were contaminated with at least one GMM strain/construct, i.e.
GMM protease1, GMM amylase1, and/or GMM amylase2, while none of
the samples tested positive for GMM protease2. In general, the dominant
contamination reflected the labeled enzyme(s) of the product, although
some products appeared to be highly contaminated (Cq < 25) with all
three GMM. However, since the qPCR assays target the transgenic
construct of the GMM, it is possible that the host strain carrying the
construct was not the same in every sample, particularly if the GMM
construct resides on a free plasmid. Consequently, qPCR alone did not
allow to confirm the presence of the same GMM, i.e. same construct and
host strain, and it was therefore not possible to determine whether the
contaminations could have shared the same origin based on qPCR
results.

3.2. Metagenomics allows strain-level detection and phylogenomic
investigation of relationships of GMM host strains in FE samples

3.2.1. Detection of GMM host species in metagenomic FE samples
Section 2.4 and Fig. 1 provide an outline of the metagenomic

workflow and tools used to characterize the samples. Fig. 2 presents the
most abundant microbial contaminations detected in the samples at
species level (Fig. S1 provides a taxonomic profile at genus level). For all
samples, Kraken2 indicated the presence of one or more Bacillus spp.,
which was confirmed by read mapping and/or de novo assembly for
samples A1-A8, A12, P1,P2 and M1, but not for samples A9, A10, A11
and A13. The detected species were generally in line with the expected
GMM host species based on qPCR (Table 1, Table S1), with
B. licheniformis (GMM amylase2) and/or B. amyloliquefaciens (GMM
amylase1) representing the most abundant GMM contaminations in
alpha-amylase products (A), while B. velezensis (GMM protease1) was
the main GMM host species contamination of the protease (P) products.
An exception is P2, in which Kraken2 detected B. velezensis (GMM pro-
tease1) at the highest abundance, in accordance with its product label-
ing, but in contrast with the qPCR result indicating that GMM amylase1
was more abundant. In the mixed enzyme product M1, all three GMM
host species were detected by qPCR, in accordance with its product
labelling as well as with the results of Kraken2, although read mapping
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and/or assembly did not confirm the presence of B. amyloliquefaciens.

3.2.2. GMM contaminations are associated with closely related host strains
Fig. 3 shows the StrainGE results for the most relevant Bacillus spp.

contaminations, i.e. the GMM host, as well as a B. cytotoxicus strain that
was detected in multiple samples (discussed in section 3.3.3). For the
three GMM host strains, the average callable nucleotide identity (ACNI)
with the strain in the samples was at least 99.96 % in almost all cases.
According to the threshold for the ACNI proposed by van Dijk et al.
(2022) to delineate strains (99.95 %), these results indicated that the
same GMM host strains were present in the different samples.

In 10 out of 16 samples, the presence of the same GMM amylase1
host strain was confirmed, albeit at a rather low relative abundance,
reaching a maximum of 13.42 % for sample A4. A notable exception was
P2, for which, although its closest reference was the GMM amylase1 host
strain, the ACNI was only 99.93 %, falling below the threshold set to
confirm strain identity. In this sample, GMM protease1 (B. velezensis)
was the dominant GMM contamination, while GMM amylase1
(B. amyloliquefaciens) was only present in a minor quantity. Concerning
the other two GMM, the same GMM amylase2 host strain was detected in
10 out of 16 samples, with a relative abundance ranging from 0.57 % in
A8 to 87.16 % in A6. With the exception of P1, GMM amylase2 was the
most abundant GMM host strain contamination in those samples. Seven
samples were contaminated with the GMM protease1 host strain, with

the relative abundance varying between 0.54% in A2 and 65.47% in P1.
GMM protease1 was the main GMM host strain contamination of the
protease products. In total, seven samples were contaminated with two
or even three different GMM strains, including M1, in which both GMM
protease1 and GMM amylase2 were found, in line with its mixed enzyme
composition. However, the result for M1 is not in agreement with the
qPCR assays, which also detected a contamination with GMM amylase1,
albeit at a lower level than the contamination with GMM protease1 and
GMM amylase2 (Table 1). In several alpha-amylase samples, two
distinct alpha-amylase production strains were detected, i.e. GMM
amylase1 and GMM amylase2, suggesting that the FE products were
composed of mixtures of alpha-amylase extracts obtained with different
production strains.

In some samples, the presence of more than one B. licheniformis strain
was suggested (Table S4), most notably a B. licheniformis strain for which
viable isolates were obtained from A3 and A5 in previous studies (D’aes
et al., 2022; Deckers, Vanneste, et al., 2020). However, the GMM
amylase2 host strain was always the most abundant B. licheniformis
strain, except for P2, for which StrainGE indicated the presence of a
B. licheniformis strain at 7.2 % relative abundance, while GMM amylase2
was absent from this sample (Table S4). Additionally, in one sample
(A11), a low-abundance contamination with a B. paralicheniformis strain
was detected (Table S4). This contradicts the results of the Kraken2-
based taxonomic profile in which the presence of a B. paralicheniformis

Fig. 2. Taxonomic profile of samples indicating the species detected with Kraken2. Values show the relative abundance obtained with Bracken for species
detected with a read abundance of at least 0.5 % (corrected for unclassified reads), and for which detection was confirmed by metagenomic assembly and/or read
mapping in at least one sample. Boxed fields indicate that the presence of the species was confirmed in that sample by either read mapping or the presence of a MAG
(an empty green lined box represents a MAG that was not detected with Kraken2). The green shading indicates a measure of the relative abundance. The relative
abundances per sample do not sum to a hundred because not all reads were classified at species level, and because the presence of a species detected by Kraken2 was
not always confirmed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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contamination was supported by short-read mapping for sample A3
instead. Finally, five samples were contaminated with B. cytotoxicus (see
section 3.3.3).

3.2.3. SNP-based phylogenomic analysis supports the close relatedness of
GMM host strains in different samples

For all three GMM, the FE metagenomic samples typically clustered
together with their respective host strains with high bootstrap support,
thereby supporting the close relatedness of the GMM strains in the
different samples (Fig. 4, Fig. S2, and Fig. S3). As this approach included
a filtering step to retain only regions considered as ‘callable’ by StrainGE
for the respective host strains, the retained region for this analysis did
not include the full genome. For this analysis, the retained genome
fractions were 55 %, 68 %, and 68 % for GMM amylase2, GMM
amylase1, and GMM protease1, respectively, thus taking into account at
least half of the genome, which still amounts to several Mbp. In terms of
absolute SNP distances (based on the retained genome fractions), the
largest distance between the GMM amylase2 host strains in the FE
samples was 494 SNPs, while for GMM amylase1, and GMM protease1,
the largest absolute SNP distances were 11 and 15, respectively
(Table S5, Table S6, Table S7). The relatively large maximal SNP dis-
tance between the GMM amylase2 strains is partly due to sample A6,
which appeared to differ slightly from the GMM amylase2 strains in
other samples. Excluding A6, the remaining maximal SNP distance be-
tween the GMM amylase2 host strains was 271. The presence of multiple
B. licheniformis strains in some of the samples (Table S4) may have
inflated the number of SNPs. For instance, in the phylogenetic tree for
GMM amylase2 (Fig. 4), P2 clustered distantly from the other FE sam-
ples, since no GMM amylase2 contamination was detected in the sample,
while another B. licheniformis strain was present according to StrainGE
(3.2.2).

3.3. Microbial contamination profiles yield further insights in the
composition and origin of the samples

3.3.1. Contamination with presumed production organisms
For seven out of the 16 FE samples, the production organism was

unknown or described generically as ‘bacteria’ (Table 1). Of the
remaining nine samples, 6 were alpha-amylases and two were proteases,
for which the production organism was described as B. licheniformis (A5,
A6, A7, P2), B. amyloliquefaciens (A10), or B. subtilis (A12, A9, P1). The
ninth sample, M1, constitutes an enzyme mix of protease, cellulase,
xylanase, alpha-amylase, and beta-glucanase, and several production
organisms were listed, including B. subtilis.

Concerning P2, a B. licheniformis strain was indeed detected, but the
major Bacillus contaminant was B. velezensis (GMM protease1), in line
with its enzymatic composition. In A12 and A9, B. amyloliquefaciens
(GMM amylase1) was present instead of B. subtilis, and was presumably
the producer organism, while in P1 B. velezensis (GMM protease1) was
the most likely producer organism, although the GMM amylase1 and
amylase2 were also detected. Conversely, multiple alpha-amylase sam-
ples, i.e., A1, A2, A3, and A4, were cross-contaminated with GMM
protease1 strains. Finally, in M1, the mixed enzyme sample,
B. licheniformis (GMM amylase2) and B. velezensis (GMM protease1)
were detected. Together, these results indicate that the labeling of the
production organism as B. subtilis for A12, A9, P1, and M1, and the la-
beling as B. licheniformis for P2, is correct when considered at a higher
level, since the detected species are part of the B. subtilis group, to which
e.g. B. licheniformis, B. amyloliquefaciens, and B. velezensis belong.

In addition to GMM amylase2 and GMM protease1, the listed pro-
duction organism Trichoderma reesei was detected in M1. It is note-
worthy that the contamination with T. reesei was so extensive that a
nearly complete assembly of the 43 Mbp genome could be recovered,
showing nearly 100 % nucleotide identity to strain QM6a (Table S3).
Hyperproducing mutants derived from this strain by random mutagen-
esis are one of the most widely used microbial producers of cellulase (Le

Crom et al., 2009).

3.3.2. Contamination with micro-organisms unrelated to the fermentation
products

In seven samples (A1, A2, A3, A4, A5, P1, A6), the microbial
contamination was primarily classified as Bacillus (from 96 to 99 %
according to Bracken, cfr. Fig. S1), and strongly associated with the
GMM contamination, with little or no presence of other microbial spe-
cies (Fig. 2). Several other contaminations were however observed with
Kraken2 for other evaluated FE samples. In these samples, Bacillus often
constituted only a minor fraction of the contamination, while other
species dominated the microbial contamination profile (Fig. 2).

The contamination profile of A7 was made up of roughly equal
fractions Bacillus and Tetragenococcus halophilus, a halophilic lactic acid
bacterium commonly employed in the fermentation processes of soy
sauce, miso, fish sauce and salted anchovies (Justé et al., 2014). The
most notable contamination in the P2 sample, next to Bacillus, was
Nakaseomyces glabratus, previously known as Candida glabrata, which is
the dominant microbial producer for the chemical compound pyruvic
acid (Luo et al., 2020). It is also an opportunistic fungal pathogen that
currently ranks as the second most common cause of candidiasis
(Carreté et al., 2019). Additionally, P2 was contaminated with Acine-
tobacter nosocomialis, known as a Gram-negative opportunistic pathogen
(Knight et al., 2018), and Enterobacter asburiae,which is ubiquitous, with
studies reporting a range of potentially beneficial as well as detrimental
effects on plants, animals, and humans (Francis et al., 2020; Horinouchi
et al., 2022; Oh et al., 2018; Xue et al., 2021). A8 was contaminated with
a diverse range of micro-organisms, including Bacillus cytotoxicus,
Escherichia coli, Enterococcus cecorum, Enterococcus faecalis, and several
Clostridium spp., a genus with important applications in diverse domains
of industrial biotechnology. Although Bracken classified 53 % of the
entire sample as Clostridium at genus level (Fig. S1), the read-based and
assembly-based taxonomic classifications were not in agreement con-
cerning the species, which illustrates its status as a ‘problematic’ genus
for classification (Cruz-Morales et al., 2019). The metagenomic assem-
bly (Table S3) indicated the presence of the thermophilic species
C. tepidum, while read-mapping supported the Kraken2-detected species
C. cochlearium.

The five remaining samples (A9, A10, A11, A12, A13) presented a
similar microbial contamination profile, in which the dominant con-
taminations were Enterococcus spp., E. coli/Shigella flexneri, and Lacto-
coccus garvieae. Furthermore, according to StrainGE (Fig. 3), four out of
five samples were contaminated with a low-abundant presence of
B. cytotoxicus, which belongs to the B. cereus group and is a potentially
pathogenic species. Besides these common contaminations, A9 was also
contaminated with Lactococcus petauri and Proteus mirabilis, while A11
contained Kurthia sp. 11kri321. E. coli is known for its use in biotech-
nological processes, but contains pathogenic members as well, while
S. flexneri is predominantly known to be pathogenic. E. coli and
S. flexneri are closely related, which may explain the read-based taxo-
nomic classification supporting the detection of E. coli, while the
assembly-based classification supported the detection of S. flexneri (Jin
et al., 2002). L. garvieae and L. petauri are the etiological agents of
Lactococcosis, an emerging disease affecting many fish species, leading to
economic losses (Vendrell et al., 2006). All samples were contaminated
with three Enterococcus species, i.e. E. faecalis, E. faecium, and/or
E. cecorum, with the exception of sample A13, in which the presence of
E. cecorum was indicated by Kraken2, but not confirmed by meta-
genomic assembly nor read mapping. The species E. faecium and
E. faecalis encompass both clinical strains as well as non-pathogenic
strains that are commonly used in microbial fermentation processes or
in probiotic applications (Franz & Holzapfel, 2004), while E. cecorum is
mainly associated with poultry infections (Jung et al., 2018).
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3.3.3. Five samples likely share common Enterococcus and B. cytotoxicus
strains

For samples A9, A10, A11, A12, and A13 a similar microbial
contamination profile was observed (Fig. 2, Figs. 3, 3.3.2). Additionally,
sample A8 also exhibited a similar contamination profile with several
Enterococcus spp., but also some differences such as the absence of

E. faecium and L. garvieae, and the presence of B. cytotoxicus at a higher
relative abundance. To investigate a potential shared origin of these
samples, the Enterococcus and B. cytotoxicus strains in the six samples
were analyzed with StrainGE. This indicated that for both species, the
strains in the samples were different from the strains in the underlying
reference database. To highlight that they did not match any of the

Fig. 3. Overview of strain-deconvolution results for the most relevant detected Bacillus strains with StrainGE. The values represent the relative abundance of
the strain in the sample as detected by StrainGST. For values highlighted in blue the average callable nucleotide identity (ACNI) of the strain in the sample to the
strain in the database was at least 99.95 % (or for B. cytotoxicus to the strain in the sample with the highest relative reported relative abundance for this strain),
indicating that they are the same strains. The blue shading reflects the relative abundance of the strain in the sample. Conversely, if the ACNI was below 99.95 %, the
value is highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. SNP-phylogenetic tree for GMM amylase2. The scale bar is expressed as average substitutions per site in the SNP matrix. Node values represent bootstrap
support values (as decimals). Blue colored names correspond to samples included in this study (Table 1). Some samples were sequenced with both Illumina (Miseq)
and ONT technology, as denoted with the suffix. The SNP-phylogenetic trees for GMM amylase1 and GMM protease1 are presented in Fig. S2 and Fig. S3. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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database strains, the strains were designated provisional names, e.g.
E. cecorum A (Fig. 5). The results suggested that multiple Enterococcus
strains were shared among samples A9, A10, A11, A12, and A13, while
this was not observed for sample A8. Likewise, the results indicated that
A10, A11, A12 and A13 were contaminated with the same B. cytotoxicus
strain, while in A8 it appeared to be another strain (Fig. 3).

The highly similar overall microbial contamination profile, together
with the suspicion of a shared origin of multiple Enterococcus strains and
the B. cytotoxicus strain, supported a common origin of samples A9, A10,
A11, A12, and A13. Furthermore, these results indicated that the
B. cytotoxicus and Enterococcus strains, with exception of E. faecalis C, in
A8 differed from those in the other five samples. Together with the
additional conspicuous differences in its microbial contamination pro-
file (see above), this suggested the contaminations in A8 to be unrelated
to these five other samples.

3.4. Presence of AMR genes in the samples is strongly associated with
GMM contamination

Finally, to further assess the potential public health risk associated
with the microbial contaminations in the FE products, the presence of
AMR and virulence genes in the samples was investigated. The AMR
profile of the samples (Fig. 6), clearly highlighted that the GMM
contamination was the primary source of AMR genes in the samples.
aadD1 and bleO originate from the pUB110 vector, which was used to
generate the transgenic constructs of GMM amylase1 and GMM prote-
ase1. catA is part of the catA-amyS transgenic construct that was chro-
mosomally integrated in GMM amylase2, while blaP is a naturally
occurring gene from the GMM amylase2 host strain B. licheniformis.
Moreover, in samples for which long-read data was available, full-length
copies of these genes were detected on single raw long reads. In several
samples, a variety of other AMR genes was detected, in line with their
varied microbial contamination profiles, although most of these genes
were detected at much lower depths compared to the GMM-associated
AMR genes. Likewise, the virulence gene profile of the samples
(Fig. S4) indicated the presence of a wide variety of virulence genes in
certain samples, specifically those with a more varied microbial
contamination profile, although in the majority of samples, not a single
virulence gene was detected.

4. Discussion

Microbially produced food enzymes, such as alpha-amylase and
protease, are widely used in the food industry, especially in bakeries
where they are e.g. added to the dough to improve bread quality, but
also for starch liquefaction, in breweries, as digestive aid, etc.
(Raveendran et al., 2018). The use of GM strains for food enzyme (FE)
production is widespread, frequently leading to product contamination

with recombinant DNA or living GMM. Recent pilot surveillance studies
indicated that a significant fraction of the FE products, collected from
the EU market, were contaminated with recombinant DNA of one or
multiple GMM (Deckers et al., 2022; Fraiture et al., 2024). Fraiture et al.
(2024), employing newly developed qPCR methods, found that 55 %
(22/40) of the FE samples was GMM-contaminated, of which 59 % (13/
22) at a high contamination level (Cq < 25). Similar contamination is-
sues are likely also present outside of the EU, considering the global
nature of the food enzyme market. However, to our knowledge, no
similar studies concerning GMM contamination of microbial fermenta-
tion products outside of the EU are available.

Currently, qPCR constitutes the state-of-the-art approach to screen
samples for the presence of GMM contaminations (Barbau-piednoir
et al., 2015; Fraiture et al., 2022; Fraiture et al., 2024; Fraiture,
Bogaerts, et al., 2020; Fraiture, Deckers, et al., 2020b; Fraiture, Deckers,
et al., 2020c; Fraiture, Gobbo, et al., 2021; Fraiture, Marchesi, et al.,
2021). Because the qPCR assays typically target the GMM construct,
qPCR alone cannot always confirm the presence of the same GMM in
different samples, e.g. if the GMM construct resides on an episomal
plasmid as different host strains could potentially harbor the same
plasmid construct. Furthermore, development of a qPCR assay requires
prior knowledge concerning the intended target, and only allows to
detect the targeted species, strain or construct. Separate assays must also
be designed and validated for each GMM construct, requiring a sub-
stantial amount of lab work Similarly, performing the different assays on
each sample implies a significant amount of hands-on labor.

Metagenomics constitutes an attractive alternative approach because
of several advantages. With a shotgun metagenomics approach, detec-
tion and characterization of the GMM constructs and their host strains
becomes feasible, although it does not allow to link episomal GMM
constructs to their host directly (Buytaers et al., 2021; D’aes et al.,
2022). It can also allow detection and characterization of GMM con-
structs in species that cannot be cultured for subsequent isolate WGS.
Since metagenomics-based screening is not restricted to the envisaged
species or strains, it can even reveal the presence of previously
uncharacterized GMM or other unexpected contaminations (D’aes et al.,
2022). Lastly, metagenomic data allows to screen simultaneously for all
GMM sequences that have been previously identified and characterized,
which could account for a substantial decrease in the amount of hands-
on work required. However, the data analysis and results interpretation
currently still requires substantial bioinformatics expertise.

Strain-level deconvolution and phylogenomic investigation in met-
agenomic samples to perform source tracing of contaminations,
including GMM, remains a significant challenge. In a previous study,
source tracing of GMMwas demonstrated for isolates of GMM protease1
(D’aes et al., 2021). However, viable isolates of GMM amylase1 and
GMM amylase2 could however not be obtained, possibly due to knock-
outs in several sporulation genes, precluding the use of a WGS-based

Fig. 5. Overview of strain-deconvolution results for detected Enterococcus strains with StrainGE in samples A8, A9, A10, A11, A12, and A13. The values
represent the relative abundance of the strain in the sample as detected by StrainGST. The strains were labeled with A, B, and C to distinguish them from each other as
well as from the strains in the reference database. Values highlighted in blue indicate that the average callable nucleotide identity (ACNI) of the strain in the sample
was at least 99.95 % to the reference sample (i.e. the sample with the highest reported relative abundance for this strain), indicating that they are the same strains.
The blue shading reflects the relative abundance of the strain in the sample. Conversely, if the ACNI was below 99.95 %, the value is highlighted in yellow. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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approach for source tracing of these GMM (D’aes et al., 2022). Although
findings of the latter study hinted at the close similarity of the GMM
amylase1 and GMM amylase2 strains in different FE samples, the
employed methodology did not allow performing source tracing on the
host strains of the GMM contaminations. A considerable range of short-
read based strain deconvolution tools exists, including both reference-
based tools relying on a database as well as reference-free de novo
methods. Although long-read sequencing approaches could potentially
improve accuracy, long-read tools tailored to strain deconvolution and
phylogenomics in metagenomics samples remain scarce. Based on a
preliminary investigation (unpublished results), StrainGE was selected
for this study as it appeared to provide robust results (Lindstedt et al.,

2022; Salamzade et al., 2023; van Dijk et al., 2022). Moreover, although
it is a reference-basedmethod, it is capable of identifying and comparing
strains that are not represented in the provided database, representing a
substantial added value, especially with regard to the detection of
uncharacterized GMM contaminations. However, StrainGE is tailored to
processing paired Illumina data, and does not allow to perform a SNP-
based phylogenetic analysis of the detected strains. To the best of our
knowledge, currently no bioinformatics tools are available that allow
strain-aware SNP-based reconstruction of phylogenetic trees using both
long and short-read metagenomic data. Therefore, we developed a
custom SNP-based tree reconstruction workflow, compatible with both
short and long-read data, in which we exploited the ability of StrainGE

Fig. 6. Overview of AMR gene load in the samples. The values represent the relative abundance, normalized per million read pairs, of the gene in the short-read
samples. Only genes that were considered potentially functional with GAMMA are shown (i.e., not marked as ‘truncated’ or ‘contig edge’), with the green shading
reflecting the relative abundance of the gene in the sample. Genes with mutations compared to the database reference are highlighted in yellow. Genes associated
with the GMM contaminations are shown in bold. Genes for which full-length copies were detected on single raw long reads (only available for samples A2, A3, A4,
P1 and A12) are boxed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to define genomic regions with sufficient intra-strain variability to allow
strain deconvolution. This workflow was run on several target strains of
interest, allowing to combine and compare both short- and long-read
data.

Overall, the results obtained with StrainGE were in agreement with
qPCR results, as well as with previous findings indicating that this tool
produces reliable results, and can be of added value to screen microbial
fermentation products for the presence of GMM and other microbial
contaminants at strain level. Additionally, StrainGE allowed to compare
the Bacillus GMM strains in different samples, supporting the presence of
the same GMM host strains in multiple samples (Fig. 3). Similarly,
StrainGE indicated that several strains of Enterococcus contaminations
were shared among five different samples (Fig. 5), allowing to derive
suspicion concerning a common origin of these samples. The SNP-based
phylogenomic analysis confirmed that the Bacilli GMM host strains were
very closely related (Fig. 4, Fig. S2, Fig. S3), differing only maximum 11
and 15 SNPs for amylase 1 and protease1, respectively, whereas the
amylase2 host strains displayed larger variation with up to 271 SNPs.
The results from the short- and long-read data for a given sample were in
good agreement, indicating that this analysis approach allows to
combine data obtained with different sequencing platforms. The results
of the SNP-based phylogenomic analysis were generally in line with
those of StrainGE, although in some cases, the insights provided by
StrainGE were needed to correctly interpret the phylogenetic trees. For
instance, a B. licheniformis strain distinct from GMM amylase2 was
detected in P2 by StrainGE, resulting in P2 clustering distantly from the
other FE samples in the GMM amylase2 tree. This illustrates a limitation
of this approach, as accurate placement in the tree requires that the
targeted strain, e.g. in this case GMM amylase2, is the dominant strain of
the species in the sample. The results of the SNP-based tree recon-
struction may hence be inaccurate if multiple strains of the same species
are present in the sample. Consequently, StrainGE and the SNP-based
phylogenomic analysis supported that in most samples, the GMM
amylase1, GMM amylase2, and GMM protease1 host strains were
derived from the same parental GMM strain. To our knowledge, this is
the first time that source tracing of GMM contaminations is achieved
based on a cultivation-independent, metagenomic approach. Insight
into the contamination source is of crucial relevance to allow the
competent authorities to take appropriate actions.

According to the qPCR results, twelve out of the sixteen samples
included in this study were highly contaminated (Cq < 25) with at least
one GMM (Table 1). This study additionally demonstrated the presence
of single DNA molecules carrying complete copies for all GMM-derived
AMR genes that were detected in the samples for which long-read data
was available. According to the copy number estimates obtained with
the short-read data, these AMR genes were present at a high abundance
(Fig. 6). Therefore, there exists a potential risk for horizontal gene
transfer of these genes, leading to spreading to other microorganisms,
even if the contamination is no longer associated with a living GMM
(Arnold et al., 2022). It is currently not clear to what extent such a
transfer of AMR genes from a GMM-contaminated product to other
microorganisms is feasible, or even possible. More research is needed to
investigate this, and will yield valuable results concerning the evalua-
tion of the risk involved in such contaminations.

Overall, most of the additional microbial contaminations on top of
the Bacilli in the samples hinted at an origin in the production envi-
ronment. Some of the detected species were associated with microbial
fermentations, such as T. halophilus, Clostridium, and T. reesei, while
other species are well known as causal agents of diseases common in
livestock, e.g. E. cecorum, L. garvieae, and P. larvae. The origins of these
contaminations in the food enzyme products are uncertain, and can only
be speculated upon. Some of them could have been present as contam-
inants of the substrate for the fermentation, while in other cases cross-
contaminations with producer strains from other fermentation pro-
cesses taking place in the same reactor or managed by the same oper-
ator, may have occurred. Accidental contaminations with naturally

occurring strains is also a possibility during the entire production pro-
cess of the food enzymes. Based on comparing the microbial contami-
nation profiles obtained with Kraken2 and StrainGE, a shared origin was
suggested for at least five samples. Although the samples represent at
least three different brands (the brand of sample A13 is unknown), this
indicates that they likely originate from the same production facility.
Irrespective of the source(s) of the contaminations, their presence sig-
nals issues with the imposed sanitation measures at the production fa-
cility. However, it is not possible to assess the public health risk
associated with these contaminations without further work to determine
if some of these strains are viable and/or potentially pathogenic.
Although the results for the 16 samples analyzed in this study cannot be
extrapolated to draw conclusions regarding FE products or microbial
fermentation products in general, the metagenomic approach developed
in this study could be applied within a wider scope to characterize the
microbial contamination profile of other types of products, in particular
with (genetically modified) microbial producer strains.

5. Conclusion

In this study, GMM contaminations in a range of commercial food
enzyme products from different brands were characterized and
compared with a metagenomic approach without the need for microbial
isolation. The results highlighted the potential of metagenomics to
investigate unculturable contaminations, taking advantage of the
untargeted nature of metagenomics to gain insight into the microbial
composition and origin of the samples, allowing source tracing of GM
strains directly on metagenomic data. Additionally, the results show-
cased the added value of long-read sequencing to detect the presence of
full-length copies of AMR genes in the samples. In this case study, most
of the AMR gene load detected in the samples originated from the GMM
contaminations, highlighting the potential public health risk associated
with such contaminations in products destined for the food and feed
industry.
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