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Abstract
Centenarians	(exceptionally	long-lived	individuals—ELLI)	are	a	unique	segment	of	the	
population,	exhibiting	long	human	lifespan	and	healthspan,	despite	generally	practic-
ing	similar	lifestyle	habits	as	their	peers.	We	tested	disease-associated	mutation	bur-
den	 in	ELLI	genomes	by	determining	 the	burden	of	pathogenic	variants	 reported	 in	
the	ClinVar	and	HGMD	databases	using	data	 from	whole	exome	sequencing	 (WES)	
conducted	 in	a	cohort	of	ELLI,	 their	offspring,	and	control	 individuals	without	ante-
cedents of familial longevity (n	=	1879),	all	descendent	from	the	founder	population	of	
Ashkenazi	Jews.	The	burden	of	pathogenic	variants	did	not	differ	between	the	three	
groups.	Additional	 analyses	 of	 variants	 subtypes	 and	 variant	 effect	 predictor	 (VEP)	
biotype	frequencies	did	not	reveal	a	decrease	of	pathogenic	or	loss-of-function	(LoF)	
variants	 in	 ELLI	 and	 offspring	 compared	 to	 the	 control	 group.	Case–control	 patho-
genic	variants	enrichment	analyses	conducted	in	ELLI	and	controls	also	did	not	iden-
tify significant differences in any of the variants between the groups and polygenic 
risk	scores	failed	to	provide	a	predictive	model.	Interestingly,	cancer	and	Alzheimer's	
disease-associated	variants	were	significantly	depleted	in	ELLI	compared	to	controls,	
suggesting	slower	accumulation	of	mutation.	That	said,	polygenic	risk	score	analysis	
failed to find any predictive variants among the functional variants tested. The high 
similarity	 in	 the	burden	of	pathogenic	 variation	between	ELLI	 and	 individuals	with-
out	familial	longevity	supports	the	notion	that	extension	of	lifespan	and	healthspan	in	
ELLI	is	not	a	consequence	of	pathogenic	variant	depletion	but	rather	a	result	of	other	
genomic,	epigenomic,	or	potentially	nongenomic	properties.
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1  |  INTRODUC TION

Exceptionally	 long-lived	 individuals	 (ELLI)	are	a	unique	segment	of	
the	population	who	exhibit	 not	only	 long	human	 lifespan	but	 also	
long	healthspan,	and	seemingly	often	overcome	 the	adverse	envi-
ronmental	effects	on	their	physiological	health	 (Ismail	et	al.,	2016;	
Milman	&	 Barzilai,	 2015;	 Sebastiani	 et	 al.,	 2013).	 For	 this	 reason,	
they	represent	an	extreme	phenotype	of	successful	aging	(Tesi	et	al.,	
2018).	 The	 prevalence	 of	 centenarians	 is	 estimated	 to	 be	 approx-
imately	 1/3000	 individuals	 in	 the	 United	 States	 (US)	 and	 Europe	
(Teixeira,	Araújo,	Jopp,	&	Ribeiro,	2017),	and	this	rare	group	is	stud-
ied	 all	 around	 the	 globe	 (Nebel	&	 Schreiber,	 2004;	 Teixeira	 et	 al.,	
2017)	 with	 the	 aim	 of	 identifying	 the	 biological	 mechanisms	 for	
healthy aging.

Exceptional	 longevity	and	healthy	aging	were	shown	to	be	he-
reditary	 in	 many	 familial	 studies	 (Atzmon	 et	 al.,	 2010;	 Beekman	
et	al.,	2013;	Brooks-Wilson,	2013;	Erikson	et	al.,	2016).	First-degree	
relatives	of	ELLI,	including	their	offspring,	demonstrate	longer	lifes-
pan	 and	 decreased	 susceptibility	 to	 age-related	 diseases,	 such	 as	
cardiovascular	disease,	dementia,	and	cancer,	compared	to	the	gen-
eral	population	(Atzmon	et	al.,	2010;	Balistreri	et	al.,	2014;	Barzilai,	
Gabriely,	 Gabriely,	 Iankowitz,	 &	 Sorkin,	 2001;	 Gubbi	 et	 al.,	 2017;	
Sebastiani,	 Nussbaum,	 Andersen,	 Black,	 &	 Perls,	 2015).	 However,	
the genetic mechanisms facilitating the hereditary advantage have 
not	yet	been	firmly	established.	Although	a	few	longevity-associated	
genetic	signatures	and	individual	gene	variants	have	been	identified,	
fewer	have	been	replicated	(Broer	et	al.,	2014;	Deelen	et	al.,	2011;	
Joshi	et	al.,	2016;	Pilling	et	al.,	2016;	Sebastiani	et	al.,	2012).	Several	
studies	have	noted	that	ELLI	may	carry	pathogenic	mutations	that	in-
crease	the	risk	for	cancer	or	Alzheimer's	disease	(Freudenberg-Hua	
et	 al.,	 2014;	Holstege	et	 al.,	 2014;	Stevenson	et	 al.,	 2015;	Tindale	
et	al.,	2015).	These	observations	have	led	to	the	hypothesis	that	ELLI	
carry protective gene variants that “buffer” the effects of patho-
genic	variants	(Bergman,	Atzmon,	Ye,	MacCarthy,	&	Barzilai,	2007).	
Interestingly,	somatic	mutations	are	also	known	to	accumulate	with	
age	(Milholland,	Auton,	Suh,	&	Vijg,	2015;	Ye	et	al.,	2013),	challeng-
ing the physiological homeostasis and relative health observed in 
ELLI.	Consequently,	it	could	be	hypothesized	that	one	would	expect	
to	find	a	higher	number	of	pathogenic	variants	in	ELLI	than	in	unre-
lated	controls.	A	contradicting	hypothesis	is	that	ELLI	possess	"the	
perfect	genome,"	containing	a	lower	burden	of	pathogenic	variation	
compared	to	the	general	population	(Freudenberg-Hua	et	al.,	2016;	
Milman	&	Barzilai,	2015;	Stevenson	et	al.,	2015;	Ye	et	al.,	2013).	Both	
hypotheses	 require	gathering	of	additional	evidence	 in	 support	or	
contradiction of them.

We	aimed	to	test	the	hypothesis	of	whether	the	ELLI	genomes	
are relatively depleted of coding pathogenic variants compared to 
individuals	without	genetic	predisposition	to	exceptional	 longevity	
in	a	cohort	of	ELLI,	offspring	of	ELLI,	and	unrelated	controls	with-
out	familial	longevity,	using	a	cohort	(differing	from	the	above	men-
tioned)	from	a	founder	population	of	Ashkenazi	Jews	(Table	1).	Using	
a population with a strong founder effect increases statistical power 
to identify genetic factors responsible for traits of interest (Carmi 

et	al.,	2014;	Freudenberg-Hua	et	al.,	2014;	Lencz	et	al.,	2018).	The	
Ashkenazi	Jewish	population	in	the	United	States	is	among	the	larg-
est	founder	populations	in	the	world,	and	as	such,	it	has	substantial	
potential for natural variation and offers sufficient genetic and phe-
notypic	diversity	(Carmi	et	al.,	2014;	Lencz	et	al.,	2018).	The	coding	
disease-associated	 variants	 that	 were	 investigated	 were	 sourced	
from	two	well-established	databases,	ClinVar	(Landrum	et	al.,	2017),	
and the Human Gene Mutation Database (HGMD®)	(Stenson	et	al.,	
2017).	ClinVar	is	a	publicly	available	database	that	compiles	and	ag-
gregates interpretations of clinically relevant genetic variants. It is 
one of the largest publicly available databases for clinically relevant 
variation and provides a reliable and updated source for analyses of 
pathogenic variation burden in genomic samples. HGMD is a curated 
commercial database that catalogues genetic variation reported as 
associated	 with	 human	 diseases.	 We	 chose	 to	 assess	 pathogenic	
variants	since	it	was	demonstrated	that	higher	burden	of	disease-as-
sociated	variants	 is	 correlated	with	higher	disease	 risk	 (Bick	et	al.,	
2012;	Milholland	et	al.,	2015;	Patel	et	al.,	2017).	Together,	the	vari-
ants from both databases comprise a comprehensive list of patho-
genic	variants	and	were	used	 to	assess,	using	various	approaches,	
the	 difference	 in	 disease-causing	 mutation	 load	 (defined	 as	 the	
amount	of	potentially	harmful	mutations	per	individual)	between	the	
three groups in our cohort.

2  |  RESULTS

2.1  |  Annotation of pathogenic exome variants

A	 total	 of	 777,023	 coding	 variants	 (623,003	 in	 ELLI,	 656,599	 in	
offspring,	and	609,864	in	controls,	Figure	S1)	passed	the	QC	stage	
(Figure	S2)	and	were	queried	using	the	compiled	list	of	disease-as-
sociated variants. The dispersion of the groups was homogenous as 
can	be	seen	in	Figure	S3.	The	three	groups	had	a	large	portion	of	var-
iants	in	common.	Among	all	the	variant	identified	64.9%	(504,861)	of	
the variants were shared between all 3 groups and among the patho-
genic	variants	annotated	74.5%	(6262)	of	the	variants	were	shared	
between	all	3	groups	 (Figure	S1	and	Figure	1,	diagrams	generated	
using	VennDiagram	R	 package	 (62)).	 The	 total	 number	 of	 variants	
recognized	by	Ensemble	VEP	was	7288	 in	ELLI,	7470	 in	offspring,	
and	7062	 in	controls.	The	distributions	of	variants	by	biotype	and	
coding	consequences	were	very	similar	between	the	cohort	groups	
(Figures	S4	and	S5).	The	frequencies	of	VEP	biotypes	also	did	not	
differ	by	group	(Figure	S8).

TA B L E  1   Group age information

Group Mean age SD Min age
Max 
age

Control 74 8.7 43 94

Offspring 70 7.87 43 94

ELLI 97.7 3.43 95 110
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2.2  |  Case–control association analysis

In order to identify candidate pathogenic variants that were differ-
entially	enriched	 in	any	of	the	groups,	we	performed	case–control	
association tests. These tests did not reveal any variants that were 
significantly	associated	with	ELLI	status	(Figures	S3,	S6-S8	and	Table	
S1).

2.3  |  Mutation load

The median mutation load per individual of all pathogenic variants 
(Table	S2)	was	not	significantly	different	between	the	three	groups	
for	both	heterozygous	and	homozygous	variants	 (KW	p = 0.2 and 
0.29,	 for	hetero-	and	homozygous	variants,	 respectively,	Table	S3,	
Figure	2	and	Figure	S9).

Interestingly,	the	difference	between	ELLI	and	controls	was	sig-
nificant	 for	 common	heterozygous	 age-associated	disease	 suscep-
tibility	variants	(KW	p	=	0.009,	Dunn	test	p	=	0.0046)	with	controls	
carrying	slightly	more	such	variants	(160	vs.	157	per	individual,	Table	
S3,	 Figure	 2	 and	 Figure	 S9).	 Analysis	 of	 disease-specific	 suscepti-
bility	 variants	 categorized	 by	 disease	 type	 revealed	 that	 the	 ELLI	
carried	 a	 significantly	 lower	 burden	 of	 heterozygous	 variants	 for	
cancer	and	Alzheimer's	disease	(KW	p	=	0.027	for	cancer	and	0.019	
for	Alzheimer's,	and	Dunn	test	p	=	0.014	between	ELLI	and	control	
and p	=	0.008	between	ELLI	and	offspring,	Table	S4	and	Figure	3),	
although the mean numbers of variants are very similar (106 vs. 105 
heterozygous	 variants	 for	 cancer	 and	22	vs.	 21	 in	Alzheimer's	 for	
control	and	ELLI	respectively).	No	significant	differences	in	mutation	

load	were	noted	for	the	remainder	of	age-associated	disease	suscep-
tibility	variants	between	ELLI	and	controls.	Further,	using	the	strict	
filtering of pathogenic 2* ClinVar variants and HGMD high confi-
dence	disease-causing	variants	 (Table	S5)	did	not	yield	any	signifi-
cant	differences	between	the	groups	(Table	S3	and	Figure	S10).	An	
additional	categorization	of	the	strict	filtering	into	autosomal	reces-
sive	 (AR),	autosomal	dominant	 (AD),	and	both	autosomal	recessive	
and	dominant	 (AR/AD)	modes	of	 inheritance	did	not	highlight	any	
differences	between	the	groups	either	(Table	S6).	These	results	did	
not vary by gender.

2.4  |  Variant effect predictions, eQTL 
characterization, and polygenic risk scores

MAFs	 (Minor	Allele	 Frequency)	were	 evaluated	 in	 order	 to	 assess	
the	frequency	of	rare	variants	between	the	three	groups,	revealing	
no	statistically	significant	differences	between	ELLI,	offspring,	and	
controls	 (Figures	 S11	 and	 S12).	 To	 gain	 deeper	 biological	 insights	
alluding	 to	 possible	 molecular	 function	 of	 variants,	 variant	 effect	
predictions	and	biotypes	were	queried	and	 found	almost	 identical	
between	the	three	groups	(Figure	S5).	The	pathogenic	variants	that	

F I G U R E  1   Pathogenic	Variants.	Venn	diagram	showing	the	
number of pathogenic variants present in each group and in the 
unions between them

F I G U R E  2   Comparison	of	age-associated	disease	variants	in	
the	3	groups.	The	bold	horizontal	line	in	each	box	represents	the	
median	value	of	individual	age-associated	disease	variants	in	the	
respective distribution. The area between the top and bottom 
lines	is	the	IQR	(a)	Heterozygous	age-associated	disease	variants	
per	individual	by	group.	(b)	Homozygous	age-associated	disease	
variants per individual by group
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were	present	 in	the	eQTL	collections	also	did	not	show	significant	
differences	between	the	three	groups	with	1192	shared	eQTL	posi-
tions	and	only	1-4	unique	variants	per	group	in	the	SCAN	database,	
and	949	shared	and	0-1	unique	positions	 in	 the	GRASP	database.	
Polygenic	 risk	 scores	 showed	 low	predictive	 value	of	 SNPs	 in	 our	
data set. The highest R2 values were all below 0.025 indicating very 
low	predictive	value	for	the	longevity	phenotype	(Figures	S13-S15	
and	Table	S7).

3  |  DISCUSSION

ELLI	are	a	group	of	special	interest	due	to	their	unique	phenotype	that	
is	characterized	by	exceptional	longevity	and	frequently	preserved	
good	health	(Andersen,	Sebastiani,	Dworkis,	Feldman,	&	Perls,	2012;	
Puca,	Spinelli,	Accardi,	Villa,	&	Caruso,	2018;	Sebastiani	et	al.,	2015).	
In	 an	 effort	 to	 explore	 factors	 that	may	 be	 responsible	 for	 these	
unique	 characteristics,	we	 conducted	a	 study	 to	 test	whether	 the	
genomes	of	ELLI	are	depleted,	or	not,	of	pathogenic	variants	com-
pared	to	individuals	without	familial	exceptional	longevity.	For	this	
purpose,	we	analyzed	whole	exome	sequencing	(WES)	data	in	order	
to	examine	functional	coding	variants	and	focus	on	pathogenic	vari-
ants from two established databases. In accordance with other stud-
ies	(Freudenberg-Hua	et	al.,	2014;	Holstege	et	al.,	2014;	Stevenson	
et	al.,	2015;	Tindale	et	al.,	2015),	we	identified	many	pathogenic	vari-
ants	among	the	ELLI.	Further,	our	results	also	indicate	that	the	ELLI	
carry a similar burden of pathogenic variation compared to control 
individuals	from	the	same	population	without	exceptional	longevity.	
The	similarity	 in	amounts	of	variants	was	striking	 to	us,	especially	
given	the	expectation	of	somatic	mutation	accumulation	previously	
reported	 (Milholland	et	al.,	2015;	Ye	et	al.,	2013).	Keeping	 in	mind	
the	chronological	age	gap	between	our	cohort	groups,	a	similar	mu-
tation	accumulation	between	ELLI	and	controls	suggests	a	different	
aging	rate	for	the	ELLI.	Very	low	polygenic	risk	scores,	obtained	using	
longevity	as	the	trait	tested,	indicate	no	predictive	value	and	elude	
away	from	a	gene	coding	interaction	underlying	the	exceptional	lon-
gevity	phenotype.	With	490–503	variants	included	in	the	analyses,	
there was no prediction of the longevity phenotype among our func-
tional	variants.	These	findings	suggest	that	exceptional	lifespan	and	
healthspan are not attributable to a relative depletion of pathogenic 
gene variants.

Noteworthy	 are	 two	 significant	 differences	 we	 observed.	 (1)	
When	looking	into	specific	age-associated	diseases,	we	found	that	
the	ELLI	group	carried	less	pathogenic	variants	associated	with	can-
cer	 and	with	 Alzheimer's	 disease,	 in	 contrast	 to	 our	 expectations	
based	on	Milholland	et	al.	(2015)	and	Ye	et	al.	(2013).	This	result	is	
intriguing in light of the vast evidence linking somatic mutation accu-
mulation	and	those	two	age-associated	diseases	(Dapeng,	Wang,	&	
Di,	2016;	Lodato	&	Walsh,	2019;	Milholland	et	al.,	2015;	Park	et	al.,	
2019).	Further,	 it	 is	possible	that	the	mutation	accumulation	in	our	
ELLI	 group	 is	 slower	 than	 the	 accumulation	 in	 the	 control	 group;	
however,	 this	 rate	was	 not	 examined	 in	 this	 study.	 That	 said,	 the	

similarity in amounts of pathogenic variants and the specific signif-
icance	in	difference	in	the	cancer	and	Alzheimer's	disease	variants	
hint	at	this	and	can	provide	a	lead	for	a	follow-up	study.

In	 the	context	of	other	 findings,	 this	 result	 is	not	 surprising.	
A	 smaller	 study	based	on	whole	genome	sequencing	of	44	ELLI	
from	 our	 cohort	 identified	 130	 “Pathogenic/Likely	 Pathogenic”	
coding	variants	 (Freudenberg-Hua	et	 al.,	 2014).	A	 similar	obser-
vation	was	reported	by	Stevenson	et	al.	who	investigated	disease	
variants'	burden	in	the	Long	Life	Family	Study	and	found	no	sig-
nificant	 differences	 in	 the	 genetic	 risk	 for	major	 age-associated	
diseases	 among	 ELLI	 participants,	 the	 ELLI's	 offspring,	 and	 the	
offspring's	 spouses,	 who	 served	 as	 a	 control	 group	 (Stevenson	
et	al.,	2015).	These	results	are	also	consistent	with	another	study	
that	 characterized	 the	 whole	 exome	 of	 a	 pair	 of	 ELLI	 brothers	
and did not find any significant difference between them and the 
population	genome	(Tindale	et	al.,	2015).	The	consistency	of	our	
results	with	these	studies	steers	away	from	the	"perfect	genome"	
hypothesis.

The findings of this study support phenotypic and lifestyle stud-
ies	 performed	by	 us	 and	 others,	 describing	 a	 slower	 aging	 rate	 in	
our	unique	cohort.	 Since	ELLI	maintain	 their	healthspan	and	 lifes-
pan despite a similar burden of pathogenic germline variants com-
pared	 to	 individuals	 without	 familial	 longevity,	 then	 it	 is	 possible	
that their genomes could be enriched for protective gene variants or 
regulatory variation that buffer the negative impact of pathogenic 
variants.	This	theory	was	proposed	by	Bergman	et	al.	 (2007),	with	
support	 for	 it	accumulating.	While	 the	 “buffer”	effect	 tones	down	
the	effect	of	pathogenic	variation,	it	does	not	modulate	the	accumu-
lation	of	mutation.	Thus,	we	believe	that	 in	ELLI	genomes	the	rate	
of	mutation	accumulation	slows	down,	resulting	in	a	similar	amount	
of	 pathogenic	mutations	 between	 ELLI	 and	 controls.	We	 recently	
established	a	younger	DNA	methylation	profile	in	ELLI	in	a	smaller	
cohort	of	ELLI	and	unrelated	controls,	demonstrating	DNA	methyla-
tion	clocks	under-estimating	the	phenotypic	age	of	ELLI,	supporting	
the	slower	rate	of	the	aging	process	 in	ELLI	 (Gutman	et	al.,	2020).	
This	hypothesis	requires	additional	in	depth	assessment	and	testing,	
not presented in our current study.

The	 use	 of	whole	 exome	 sequencing	 data	 for	 this	 analysis	 al-
lowed for the comparison of both common and rare functional cod-
ing	variants	in	a	large	cohort	of	ELLI,	offspring,	and	controls	from	the	
same	founder	population,	strengthening	the	genetic	homogeneity	of	
this	study.	Thus,	the	lack	in	pathogenic	variant	differences	between	
the study groups is unlikely to be confounded by differences among 
ELLI	and	controls.	Additionally,	focusing	on	the	“Pathogenic/Likely	
Pathogenic”	ClinVar	variants	together	with	HGMD	variants	and	fur-
ther	subjecting	these	to	annotation	by	the	Enselmbl	VEP,	allowed	us	
to screen for the genetic variants of greatest clinical relevance po-
tential	while	considering	mode	of	inheritance,	yet	no	differences	be-
tween	ELLI	and	controls	were	identified.	The	unpredictive	polygenic	
risk scores show absence of polygenic interactions in this pheno-
type;	 hence,	we	 suggest	 possibly	 investigating	 noncoding	 interac-
tions	next.	Despite	the	many	strengths	of	our	study,	one	limitation	
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of	 our	 analysis	 is	 due	 to	 the	 fact	 that	we	 focused	 on	 sequencing	
of	 the	 coding	 regions,	 and	 thus,	 other	 functional	 regions,	 such	 as	
flanking and intronic regions that may contain genetic regulatory el-
ements,	cannot	be	analyzed	for	variation	differences.	These	should	
be	 explored	 in	 future	 studies	 that	 utilize	whole	 genome	 sequenc-
ing for thorough investigations of regulatory genomic regions and 
the	 variance	 of	 those	 regions	 across	 similar	 cohorts.	 Additionally,	
the	presence	and	prevalence	of	the	disease-associated	phenotypes	
in relationship to the identified pathogenic variants in our cohort 
should	be	further	characterized.

The lack of significant differences in the burden of patho-
genic	 gene	 variants	 between	 the	 ELLI	 and	 controls	 does	 not	
support	 the	 notion	 that	 ELLI	 have	 a	 “perfect”	 genome	 that	 is	
depleted	of	pathogenic	variants.	Some	significant	values	in	het-
erozygous	 somatic	 cancer	 and	 Alzheimer's	 disease-associated	
variants that suggest a slower rate of mutation accumulation are 
intriguing	 but	 not	 sufficient	 to	 explain	 the	 phenotypic	 differ-
ences.	However,	 as	our	 approaches	 and	methods	 at	 predicting	
pathogenic	variants	advance,	it	may	become	necessary	to	revisit	
this	question	again	in	the	future.	With	the	ever-increasing	inter-
est	 and	 knowledge	 in	 epigenetics	 and	 gene–gene	 interactions,	
these	 concepts	 should	 be	 further	 pursued	 as	well,	 in	 order	 to	
gain better insights and understanding of the genetic underpin-
nings of the aging process.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study population

DNA	 samples	 from	 515	 ELLI	 (mean	 age	 =	 97.7	 years	 old,	 range	
95–110),	832	offspring	of	ELLI	 (offspring),	and	532	controls	 (with-
out	familial	longevity)	all	of	Ashkenazi	Jewish	descent	(described	in	
Table	1),	were	collected	as	part	of	the	Longevity	Genes	Project	and	
the	LonGenity	studies	at	the	Albert	Einstein	College	of	Medicine	as	
previously	described	 (Barzilai	et	al.,	2001;	Gubbi	et	al.,	2017).	The	
studies	were	approved	by	the	Institutional	Review	Board	(IRB)	of	the	
Albert	Einstein	College	of	Medicine.	Written	informed	consent	was	
obtained	from	all	subjects	or	their	proxies	prior	to	participation.

4.2  |  Sequencing and alignment, variant 
identification, and genotype assignment

Whole	 exome	 sequencing	 (WES)	 of	 the	 cohort	was	 performed	 in	
collaboration	with	the	Regeneron	Genetics	Center	(RGC)	following	
methods	 previously	 described	 (Strauss	 et	 al.,	 2018).	 Briefly,	 high-
quality	 genomic	 DNA	 was	 fragmented	 and	 then	 exome-captured	
using	a	modified	version	of	the	xGen	design	available	from	Integrated	
DNA	 Technologies	 (Coralville,	 Iowa,	 USA).	 Captured	 paired-end	

F I G U R E  3  Disease-related	pathogenic	variants	in	each	group.	The	bold	horizontal	line	in	each	box	represents	the	median	value	of	
individual	disease-associated	variants	in	the	respective	distribution.	The	area	between	the	top	and	bottom	lines	is	the	IQR.	(a)	Heterozygous	
variants	per	individual	by	group	by	disease.	(b)	Homozygous	variants	per	individual	by	group	by	disease
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libraries	were	sequenced	on	the	Illumina	HiSeq	2500	platform	using	
v4	 chemistry,	 achieving	 an	 average	 coverage	 of	 >85%	of	 bases	 at	
20×	or	greater.	To	limit	batch	effects,	ELLI,	their	offspring,	and	unre-
lated	controls	were	sequenced	in	the	same	batch.	Upon	completion	
of	sequencing,	raw	data	were	processed	through	the	RGC's	cloud-
based	pipeline	that	uses	standard	tools	for	mapping,	alignment,	and	
variant	calling.	Sequence	data	were	mapped	to	the	human	genome	
reference	GRCh38	using	BWA-mem	(Li	&	Durbin,	2009).	The	result-
ant	 BAM	 files	were	 processed	 and	 finished	 after	 initial	 alignment	
using	 a	 combination	 of	 SAMtools,	 Picard	 (Wysoker,	 Tibbetts,	 &	
Fennell,	2013),	and	GATK	for	sorting,	duplicate	marking,	and	small	
INDEL	 realignment.	 Variant	 calling	 of	 single-nucleotide	 variants	
(SNVs)	and	intraread	INDELs	was	performed	using	GATK	to	produce	
single-sample	VCF	files.	Following	completion	of	cohort	sequencing,	
a	project-level	VCF	(pVCF)	was	compiled	for	downstream	analyses,	
utilizing	GLnexus	(Lin	et	al.,	2018)	by	jointly	calling	genotypes	across	
all samples in the cohort.

4.3  |  Quality control for case–control 
association analysis

To	remove	potentially	false-positive	variant	and	genotype	calls,	we	
performed	standard	quality	control	(QC)	filtering	to	remove	variant	
calls	in	regions	that	are	reported	to	have	poor	mapping	quality,	with	
low-read	depth,	allelic	 imbalance,	or	 subthreshold	genotype	quali-
ties.	 Specifically,	 we	 removed	 variants	 with	 call	 rate	 <0.98,	 num-
ber	 of	 alleles	 >2,	 Hardy–Weinberg	 Equilibrium	 (HWE)	 p	 <	 0.001,	
or	Fisher's	exact	HWE	p	<	0.001	(Anderson	et	al.,	2010).	We	then	
removed	variants	with	GATK	 tags	 that	are	 relevant	 to	 sequencing	
data	quality:	qual	by	depth	(QD)	<3,	Variant	Quality	Score	(VQSLOD)	
<0,	 or	 Mapping	 Quality	 Zero	 Read	 1.	 After	 QC	 filtering,	 we	 ob-
tained	 total	of	841,702	nonredundant	variants	 for	 the	 full	 cohort.	
We	continued	with	777,023	autosomal	only	variants	with	minimum	
allele	 count	 (MAC)	of	1	 that	were	divided	 into	 three	 sets	 for	ELLI	
(N	=	623,003	variants),	offspring	(N	=	656,599	variants),	and	controls	
(N	=	609,864)	(Figure	S1)	some	of	which	are	unique	to	each	group,	
or shared by 2 of 3 groups. These variant sets were used to compare 
against a master pathogenic dataset (comprised of HGMD variants 
and	ClinVar	variants	as	described	below)	for	downstream	analyses.

GRCh38	ClinVar	database	(downloaded	April	7,	2019	from	ftp://
ftp.ncbi.nlm.nih.gov/pub/clinv	ar/)	 was	 filtered	 by	 clinical	 signifi-
cance and only “likely pathogenic” or “pathogenic” annotations were 
retained. Variants containing conflicting evidence were removed 
(Landrum	 et	 al.,	 2017).	 These	 variants	 were	merged	 according	 to	
chromosome and position with HGMD variants filtered for “High” 
confidence	and	“DM”	(disease-causing)	classifications.	This	merged	
list	contained	225,492	pathogenic	variants.	After	extraction	of	these	
variants	from	our	exome	data,	we	obtained	a	dataset	of	8853	patho-
genic variants that was used for all analyses and will be referred to 
as	“pathogenic	variants”	(Table	S2).

Datasets	 for	 case–control	 association	 analysis,	 containing	only	
autosomal	 chromosomes,	 were	 prepared	 for	 each	 pair	 of	 groups.	

Within	each	set	of	case–control	pair,	we	performed	extended	sample	
and	variant	QC,	according	to	Anderson	et	al.	(2010).	First,	samples	
in	 the	 case–control	 pairs	 were	 filtered	 based	 on	 sample	 missing-
ness	 (>5%),	 cryptic	 relatedness	 using	 Identity-By-Descent	 analysis	
(pi_hat	>	0.1785)	 and	outliers'	 removal	using	Eigensoft	 smartPCA.	
The	two	latter	analyses	were	performed	on	a	LD-pruned	subsets	of	
variants	with	minor	allele	 frequency	 (MAF)	>	1%	 (Anderson	et	al.,	
2010).	 Since	we	 sampled	159	direct	offspring	of	ELLI,	we	wanted	
to check whether including them would affect the analyses; there-
fore,	we	filtered	the	offspring–ELLI	pair	for	cryptic	relatedness	with	
a	 less	 stringent	 pi_hat	 (0.43),	 removing	only	 first-degree	 relatives.	
The	variants	in	the	case–control	pairs	were	filtered	by	missingness	
(>10%),	MAF	>	0.1%,	differential	missingness	between	case	and	con-
trol (p	<	0.00001),	and	departure	from	Hardy–Weinberg	equilibrium	
in the control data (p	<	0.000001).	This	QC	resulted	in	1084	samples	
and	459,589	variants	 for	 the	 control–offspring	pair,	 1011	 samples	
and	 454,588	 variants	 for	 the	 control–ELLI	 pair,	 820	 samples	 and	
483,075	variants	 for	 the	offspring–ELLI	pair	 (stringent	relatedness	
filter),	 and	 986	 samples	 and	 502,776	 variants	 for	 the	 second	 ver-
sion	of	 the	offspring–ELLI	 pair	 (looser	 relatedness	 filter).	 Principal	
Component	Analysis	 (PCA)	 of	 all	 variants	 from	 case–control	 pairs	
was	performed	using	smartPCA	by	Eigensoft	with	default	settings	
(Price	 et	 al.,	 2006)	 in	 order	 to	 characterize	 population	 substruc-
ture prior to proceeding with statistical and bioinformatic analyses 
(Figure	S3).

The	 final	 preparation	 for	 the	 case–control	 association	 analysis	
was	the	extraction	of	the	pathogenic	variants	from	our	case–control	
pairs.	This	extraction	resulted	in	7288,	7470,	and	7062	variants	for	
ELLI,	offspring,	and	controls,	respectively.	Case–control	association	
analysis	using	allelic	model	in	Plink	1.9	software	(Chang	et	al.,	2015;	
Marees	et	al.,	2018)	was	conducted	on	the	resulting	pairs.	Inflation	
was	tested	using	Q-Q	plots	(Clayton,	2020)	revealing	a	slightly	de-
flated	genomic	 inflation	 factor	with	 small	 variation	 from	expected	
distribution	 (0.832–1.03)	 that	 likely	 resulted	 from	 the	 inclusion	 of	
rare	 variants	 in	 the	 analysis	 (MAF	>	0.1%)	 (Figure	 S6).	Manhattan	
plots	were	created	using	the	R	package	qqman	(Turner,	2014).

4.4  |  Variant annotation

Overlapping variants between each of our group variant sets and 
the	pathogenic	variants	were	further	annotated	using	Variant	Effect	
Predictor	(VEP)	by	Ensembl	(Yates	et	al.,	2016)	(release	94,	https://
www.ensem	bl.org/Tools/	VEP)	 to	 obtain	 predictions	 and	 annota-
tions	 of	 variants	within	 groups.	 Coding	 consequence	 and	 biotype	
categories were of special interest due to their possible clinical 
consequences.

4.5  |  Mutation load and eQTL characterization

This	analysis	was	performed	on	 the	 three	groups'	 (ELLI,	offspring,	
and	 control)	 data	 that	 were	 filtered	 only	 for	 autosomal	 variants	

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/
https://www.ensembl.org/Tools/VEP
https://www.ensembl.org/Tools/VEP
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and	MAC	=	1.	We	tested	mutation	load	in	3	sets	of	our	pathogenic	
variants	data:	 (1)	 the	 full	 pathogenic	variants	dataset,	 (2)	 common	
age-associated	disease	(T2D,	Stroke,	Cancer,	CVDs	and	myocardial	
infarction,	Alzheimer's,	Parkinson,	Dementia,	and	COPD)	suscepti-
bility	variants,	which	were	filtered	for	out	of	the	pathogenic	variants	
set	(Table	S8),	and	(3)	a	more	strict	filter	of	pathogenic	variants	in-
cluding	only	pathogenic	variants	with	at	least	2	literature	reports	(2*)	
for	ClinVar	and	only	high	confidence	disease-causing	variants	from	
HGMD	(Table	S5).	The	age-associated	diseases	(2)	analysis	was	per-
formed for all diseases together and for each disease separately. The 
strict	filtered	variants'	(3)	analyses	were	performed	both	as	a	whole	
set	and	as	a	categorized	set	considering	mode	of	inheritance	(auto-
somal	recessive,	autosomal	dominant,	and	both	autosomal	recessive	
and	 dominant	modes).	 For	 analyses	 1-3,	 hetero-	 and	 homozygous	
variants	were	counted	in	each	group;	median	and	interquartile	range	
(IQR)	were	 calculated	 for	 the	 number	 of	 variants	 and	 statistically	
significant differences between the groups were evaluated using 
the	nonparametric	Kruskal–Wallis	 (KW)	test.	 In	cases	of	statistical	
significance,	the	analysis	was	followed	by	the	nonparametric	Dunn	
test	(Daniel,	1990)	(post	hoc	pairwise	comparison),	with	Bonferroni	
correction. In order to evaluate the difference in the presence of 
known	eQTLs	between	the	groups,	we	further	queried	the	patho-
genic	variants	from	each	group	in	2	large	eQTL	(SCAN	(Zhang	et	al.,	
2015)	and	GRASP	(Eicher	et	al.,	2015;	Leslie,	O'Donnell,	&	Johnson,	
2014))	collections.	These	collections	are	freely	available	and	contain	
lists	of	 reported	eQTLs	 from	various	 studies.	The	SCAN	database	
was	queried	using	Rs	numbers	of	the	variants	(Rs	numbers	obtained	
from	Kaviar	annotation	tool	(Glusman,	Caballero,	Mauldin,	Hood,	&	
Roach,	2011)),	and	the	GRASP	was	queried	using	chromosomal	posi-
tions.	This	query	was	conducted	in	aim	to	search	for	known	eQTL	
influencing variants in attempt to gain more biological insight on 
variants that may modulate the differences between the groups.

4.6  |  Polygenic risk score analysis

PRS	 was	 conducted	 using	 PRSice	 software	 (Euesden,	 Lewis,	 &	
O'Reilly,	2015)	and	 longevity	as	 the	 tested	 trait.	Training	data	ob-
tained	 from	 the	CHARGE	 (Cohorts	 for	Heart	 and	Aging	Research	
in	 Genomic	 Epidemiology)	 consortium,	 using	 the	 “90th	 percentile	
cases all controls” file available at https://www.longe vityg enomi 
cs.org/downl	oads.	For	the	test	data,	we	used	the	case–control	anal-
yses outputs containing the full dataset containing all variants (be-
fore	filtering	nonpathogenic	variants),	as	indicated	in	PRSice-2	(Choi	
&	O'Reilly,	2019)	instructions.	A	total	of	490,	493,	and	503	variants	
were	used	for	the	analyses	in	controls–ELLI,	control–offspring,	and	
offspring–ELLI,	respectively.
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