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Purpose. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been reported to be overexpressed in non-small-cell lung
cancer (NSCLC) and to correlate with malignant proliferation. However, the mechanism of high MTHFD2 expression in
NSCLC has not been clarified. Methods. qPCR, western blot, and immunofluorescence experiments were used to measure the
expression of related mRNAs and proteins. Cell apoptosis was measured by flow cytometry and TUNEL assays. The CCK-8
assay was used to determine cell viability. Flow cytometry was used to analyze the cell cycle. ROS, H2O2, MDA, SOD, and
NADPH/NADP+ were evaluated by relevant assay kits. Transfection of siRNA or vectors was used to downregulate or
upregulate gene expression. Dual-luciferase reporter gene assays were used to evaluate the regulated relationship between
MTHFD2 and ATF4 or MYC. Results. MTHFD2 was highly expressed in NSCLC cells. Knockdown of MTHFD2 inhibited
proliferation and increased apoptosis. Furthermore, oxidative factors significantly increased, while antioxidant factors
significantly decreased in NSCLC cells with MTHFD2 knockdown, indicating that MTHFD2 was involved in NSCLC
progression through the redox pathway. Although MTHFD2 was downregulated with ATF4 silencing, the dual-luciferase
reporter assay suggested that ATF4 did not directly mediate MTHFD2 transcription. Further studies revealed that MYC had a
transcriptional effect on MTHFD2 and was also regulated by ATF4. PCR, and western blotting experiments with ATF4
knockdown and MYC overexpression as well as ATF4 overexpression and MYC knockdown proved that ATF4 stimulated
MTHFD2 through MYC mediation. Conclusions. ATF4 promoted high expression of MTHFD2 in NSCLC dependent on MYC.

1. Background

Metabolic reprogramming has been regarded as a common
characteristic of various cancers, and studying its features
and regulated mechanism will benefit the interpretation of
cancer biological processes and anticancer therapy [1].
Among the most noticeable reprogrammed metabolic path-
ways in cancer cells, one-carbon metabolism has been
greatly involved in cancer initiation and progression [2, 3].

One-carbon metabolism involves cytoplasmic and mito-
chondrial biosynthetic reactions that bring one-carbon units
into various cellular activities. One-carbon units are
involved in multiple cellular activities, including nucleotide
synthesis, methylation modification, and the production of
reducing molecules, which greatly support the malignant
phenotype of cancer cells [4]. In recent years, an increasing
number of researchers have focused on investigating the
changes and roles of the one-carbon pathway in cancer [5, 6].
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The role of one-carbonmetabolism in cancer has received great
attention, and studies targeting one-carbon metabolism for
cancer treatment have been well developed.

Among the enzymes mediating one-carbon metabolism,
methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is
markedly upregulated in many tumors. Among the 1454
enzymes examined in the work of Nilsson et al., MTHFD2
was the most consistently overexpressed [7]. Moreover, the
role of high expression MTHFD2 has been well studied in
breast cancer [8–11], acute myeloid leukemia [12–14], lym-
phoma [15], glioma [16–21], hepatocellular cancer [22],
pancreatic cancer [23], renal cell carcinoma [24, 25], colo-
rectal cancer [26–28], lung cancer [29–35], head and neck
squamous cell cancer [36, 37], gastric cancer [38], esopha-
geal cancer [39, 40], bladder cancer [41], prostate cancer
[42], ovarian cancer [43], and other cancers [44–46]. Upreg-
ulated MTHFD2 was reported to support multiple tumor
phenotypes, including proliferation [11–16, 20, 24–30,
33–35, 41–43, 45], migration [10, 13, 22, 25, 27, 28, 33,
34], invasion [10, 13, 16, 22, 25], metastasis [26, 34, 43], drug
resistance [17, 32, 35, 36, 38, 45], immune evasion [46], met-
abolic reprogramming [8, 12, 24], self-renewal [30, 32], and
poor prognosis of patients [9, 17, 18, 21–23, 25, 26, 31,
33–35, 37, 39, 40, 42].

The expression and function of MTHFD2 in non-small-
cell lung cancer (NSCLC) has also been widely reported.
MTHFD2 showed high expression in NSCLC cells and tis-
sues from NSCLC patients [29–35]. High MTHFD2 expres-
sion promoted lung cancer cell proliferation [29, 30, 33–35]
and was significantly correlated with poor prognosis of
NSCLC patients [33–35]. This effect of MTHFD2 on lung
cancer was closely associated with modulating ROS and
NADPH [30]. In addition, another study reported that
MTHFD2 sustained the properties of stem cells and gefitinib
resistance in lung cancer [32]. Moreover, high expression of
circ-MTHFD2 showed clinical significance in the diagnosis,
pathological staging, and prognosis of NSCLC [31]. Recently,
MTHFD2 was also involved in the character of metastasis
[34] and pemetrexed chemoresistance [35] in NSCLC. Based
on these studies, we concluded that MTHFD2 played an
important role in the development of NSCLC. However, the
regulated mechanism of high MTHFD2 expression in NSCLC
has not been clarified.

In our work, we investigate the MTHFD2 expression and
its role maintaining reductive oxidative homeostasis in
NSCLC. Furthermore, we studied the regulated effects of
the transcriptional factors ATF4 and MYC on MTHFD2
and found that MYC rather than ATF4 directly mediates
MTHFD4 expression. Moreover, our findings also clarified
that ATF4 promotes MTHFD4 expression in a MYC-
dependent manner.

2. Materials and Methods

2.1. Cell Culture. Human bronchial epithelial cell lines HBE
and BEAS-2B and NSCLC cell lines A549, H358, H1299, and
HCC827 were used in this study. These cells were incubated
in DMEM (A549, H358, and HCC827) or RPMI-1640 media
(HBE, BEAS-2B, and H1299) supplemented with fetal

bovine serum (FBS, 10%), L-glutamine (2mM), penicillin
(100U/ml), and streptomycin (100μg/ml) at 37°C/5%
CO2/95% humidity in culture chambers (Thermo Scientific).

2.2. qPCR Experiment. cDNA synthesis and qPCR were per-
formed according to our previous protocols [47]. RNA from
cells was isolated using the total RNA Kit I (Takara, R6834-
02) according to the manufacturer’s protocol. cDNA was
synthesized using PrimeScript RT reagent kit (Takara,
RR047A) with random primers for RT priming. qPCR was
performed using SYBR Green (Bio-Rad, RR820A) according
to the manufacturer’s instructions. The primers used in this
study are listed in Table S1.

2.3. Western Blot. Whole cell lysates were obtained by resus-
pending cell pellets in RIPA buffer (Beyotime, P0013E) with
a freshly added protease inhibitor tablet (Thermo Scientific,
88265). The whole cell protein extracts (30μg/well) were
separated by 10% SDS-PAGE and then blotted onto polyvi-
nylidene difluoride membranes (BioRad, USA). The mem-
branes were immunoblotted with primary antibodies
against α-TUBULIN (Proteintech, 11224-1-AP), GAPDH
(Proteintech, 10494-1-AP), HSP90 (Proteintech, 60318-1-
Ig), MTHFD2 (Proteintech, 12270-1-AP), MYC (Protein-
tech, 10828-1-AP), and ATF4 (Proteintech, 60035-1-Ig)
overnight at 4°C and then additionally incubated with horse-
radish peroxidase-conjugated secondary antibodies (1 : 2,000;
Beyotime, China) at room temperature for 2h. For quantifica-
tion, the band intensity of the blot was analyzed by Quantity
One software (BioRad, USA).

2.4. Immunofluorescence Staining. For the immunofluores-
cence experiments, cells were cultured in plates for 48 h.
Then, the sections from implanted cells were fixed and incu-
bated with primary antibody of MTHFD2 or ATF4, followed
by incubation with the corresponding secondary antibodies
(Invitrogen, USA). The nuclei were counterstained with 4′,
6-diamidino-2-phenylindole (DAPI, Beyotime, China). The
expression of MTHFD2 and ATF4 was observed by confocal
fluorescence microscopy.

2.5. Cellular Transfection Experiments. Each group of cells
was seeded and cultured for 24 hours prior to transfection.
Specific small interfering RNA (siRNA) targeting MTHFD2,
ATF4, and MYC (Table S2) or scrambled siRNA (the final
concentration of siRNA was 20 nM) from GenePharma
(China) or ATF4 and MYC vectors from Vector Builder
(China) were transfected into the cells using Lipofectamine
RNAiMAX or Lipofectamine 3000 (Invitrogen, USA)
according to the manufacturer’s instructions. The cells
were collected after 72 h.

2.6. Cell Growth Assay. Cells were plated in 96-well plates
(5000 cells per well with 100μl of growth medium) and
transfected 24h later. Cell viability was determined 72 h after
transfection. The cell viability assay was carried out with the
Cell Counting Kit-8 (CCK-8, Dojindo, Kumamoto, Japan)
according to the manufacturer’s instructions and deter-
mined at 450 nm by a 96-well plate spectrophotometer
(Multiskan GO, Thermo Scientific, USA).
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Figure 1: MTHFD2 expression in NSCLC cell lines (a) mRNA and protein levels of MTHFD2 in HBE, H358, A549, H1299, and HCC827
cells (compared to HBE cells). (b) Immunofluorescence observation of MTHFD2 expression in HBE, A549, and H1299 cells. All the data
were from three individual tests. Statistical analyses between groups were performed with ANOVA followed by LSD post hoc test
(∗p < 0:05, compared with HBE cells). (c) Heat map of MTHFD2 expression levels among NSCLC cell lines from the CCLE database. (d)
The expression of MTHFD2 mRNA levels in tumor and normal tissues of NSCLC patients from the TCGA database.

3Disease Markers



Annexin V-FITC

PI

NC si-3si-2si-1

siMTHFD2

A
54

9
H

12
99

Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0

Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0
Comp-FL1-A :: FL1-A

Co
m

p-
FL

2-
A

 ::
 F

L2
-A

107

106

105

104

103

103 104 106

102

0

0

5

10

15

20

25

A
po

pt
ot

ic
 ce

lls
 (%

)

P < 0.05
P < 0.05

NC si-1 si-2 si-3

A549

0

5

10

15

A
po

pt
ot

ic
 ce

lls
 (%

)

P < 0.05

P < 0.05

NC si-1 si-2 si-3

H1299

(a)

A
54

9

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

NC

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

Si-1

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

Si-2

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800
Co

un
t

Si-3

siMTHFD2

H
12

99

0 1.0 M 2.0 M 3.0 M 4.0 M
FL2-A :: FL2-A

0

200

400

600

800

Co
un

t

P < 0.05

P < 0.05

NC si-1 si-2 si-3
0

20

40

60

80

100

G
1 

ph
as

e (
%

)

A549

NC si-1 si-2 si-3
0

20

40

60

80

100
G

1 
ph

as
e (

%
)

P < 0.05

P < 0.05

P < 0.05
H1299

(b)

Figure 2: Continued.
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2.7. Cell Cycle Assay. Cell cycle analysis was performed using
an Accuri 6 flow cytometer (Accuri Cytometers, Inc., Ann
Arbor, MI, USA) and Cell Quest software following the
manufacturer’s protocols. Cells were collected, centrifuged,
and fixed with 70% ethanol. The samples were analyzed by
flow cytometry.

2.8. Cell Apoptosis Assay. Cell apoptosis was measured by an
Annexin V-fluorescein isothiocyanate apoptosis detection
kit (Keygen Biotech, Nanjing, China). Cells were collected,
centrifuged, washed with phosphate-buffered saline, and
counted with an electronic cytometer (Beckman Coulter,
Miami, FL). Approximately 1:0 × 105 cells were resuspended
in 190μl of Annexin V-fluorescein isothiocyanate-binding
buffer, and subsequently, 5μl of Annexin V-fluorescein iso-
thiocyanate and 5μl of propidium iodide were added and
incubated for 10min with the samples in the dark at room
temperature. The fluorescence of the cells was detected,
and the results were analyzed by flow cytometry.

2.9. TUNEL Assay. Sections from implanted cells were fixed
in 4% paraformaldehyde, permeabilized in methanol, and
stained using a TdT-mediated dUTP nick-end labeling
(TUNEL) reaction mixture. Apoptotic cells in sections were
determined with an in situ cell death detection kit (Roche)
according to the manufacturer’s instructions.

2.10. Determination of ROS, H2O2, MDA, SOD, and
NADPH/NAPD+ Levels. The levels of cellular ROS were
determined by flow cytometry using a ROS assay kit
(S0033, Beyotime, China). The levels of cellular H2O2,
MDA, SOD, and NADPH/NAPD+ were determined by a
microplate reader using Beyotime assay kits (S0038,
S0131S, S0101S, and S0179).

2.11. Luciferase Promoter Assay. Cells were plated into a 24-
well plate to achieve 50% confluence on the day of transfec-
tion. A dual luciferase reporter assay system (Promega,
Madison, USA) was used according to the manufacturer’s
protocol. Briefly, a mixture containing Lipofectamine LTX
reagent (Invitrogen, Carlsbad, USA), luciferase MTHFD2
promoter (~2000 bp upstream of the start site) vector, and
vector control or ATF4 (MYC) vector (Vector Builder,
China) was added to each well. Luciferase and Renilla signals
were measured 72 h after transfection according to the rec-
ommended protocol.

2.12. Statistical Analysis. Statistical analysis was carried out
using SPSS 19.0 software. The experiments were analyzed
using independent t-tests. Data are presented as the mean ±
SD, and a value of p < 0:05 was assumed to indicate a statisti-
cally significant result. All experiments were independently
carried out in triplicate.
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Figure 2: Effect of MTHFD2 knockdown on cell viability, cell cycle, and apoptosis in A549 and H1299 cells. Percentage of apoptotic cells
(a), percentage of G1 phase (b), and cell viability (c) in A549 and H1299 cells and TUNEL assays of A549 cells (d) were performed under
MTHFD2 knockdown. All the data were from three individual tests. Statistical analyses between groups were performed with ANOVA
followed by LSD post hoc test (∗p < 0:05, compared with the negative control (NC)).
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3. Results

3.1. Increased MTHFD2 Expression in NSCLC Cells. To
investigate the role of MTHFD2 in non-small-cell lung
cancer, we firstly evaluated the expression of MTHFD2 in
several NSCLC cell lines. As shown in Figure 1(a), A549,
H1299, and HCC827 cells showed higher MTHFD2 mRNA
and protein levels than HBE cells. The expression of
MTHFD2 in NSCLC cells also showed similar results com-
pared to BEAS-2B cells (Figure S1), consistent with previous
work [29]. Moreover, the immunofluorescence assay also
proved that A549 and H1299 cells displayed increased

MTHFD2 expression compared with HBE cells (Figure 1(b)).
Noticeably, the CCLE database showed common expression
of MTHFD2 in NSCLC cells (Figure 1(c)), implying that
MTHFD2 is a signature among NSCLC cells. Furthermore,
the overexpression of MTHFD2 in NSCLC (including
adenocarcinoma and squamous cell carcinoma) was also
supported by The Cancer Genome Atlas database
(Figure 1(d)). These results demonstrate that MTHFD2 is
overexpressed in NSCLC cells.

3.2. Effects of MTHFD2 Silencing on the Biological Activities
of NSCLC Cells. To evaluate the function of MTHFD2 in
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Figure 3: Effect of MTHFD2 knockdown on oxidative factors in A549 and H1299 cells. The levels of ROS (a), H2O2 (b), and MDA (c) in
A549 and H1299 cells were determined under MTHFD2 knockdown. All the data were from three individual tests. Statistical analyses
between groups were performed with ANOVA followed by LSD post hoc test (∗p < 0:05, compared with the negative control (NC)).
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NSCLC, we established MTHFD2-targeted specific siRNAs
and measured their inhibition rates (Figure S2). Then, we
performed experiments to observe the effect of MTHFD2
on cell viability, cell cycle, and apoptosis. The results of
flow cytometry and TUNEL assays showed that MTHFD2
knockdown could promote the apoptosis of NSCLC cells
(Figures 2(a) and 2(d)). Moreover, MTHFD2 silencing
increased the percentage of NSCLC cells in the G1 phase
and arrested cell proliferation (Figure 2(b)). In addition,
the CCK-8 experiments indicated that knockdown of
MTHFD2 inhibited the growth of A549 and H1299 cells
(Figure 2(c)). These results suggest that MTHFD2 plays an
important role in maintaining NSCLC proliferation.

3.3. MTHFD2 Is Involved in Regulating NSCLC Redox
Homeostasis. Given the results above, we investigated the
mechanism by which MTHFD2 supported NSCLC pro-
gression. Because the physiological function of MTHFD2
is catalyzing 5,10-methyl-lenetetrahydrofolate to 10-
formyltetrahydrofolate along with NAD(P)+ to NAD(P)H,
we proposed that MTHFD2 could promote NSCLC pro-
gression by regulating reductive/oxidative (redox) processes.
With MTHFD2 knockdown, we observed that oxidative fac-
tors, including ROS, H2O2, and MDA, significantly increased
(Figure 3). Conversely, antioxidative factors, including SOD

and NADPH/NADP+, showed a marked reduction in NSCLC
cells (Figure 4). These results indicate that high MTHFD2
expression promotes antioxidative capacity in NSCLC.

3.4. ATF4 Indirectly Mediates MTHFD2 Expression in
NSCLC. Based on the high expression of MTHFD2 in
NSCLC, we clarified the regulated process of this character-
istic in following. From a previous report, we inferred that
ATF4 could regulate the expression of MTHFD2 [48]. Then,
the expression levels of ATF4 in NSCLC cells were detected,
and the results of qPCR, western blotting, and immunofluo-
rescence experiments showed that these cells displayed sig-
nificantly higher expression than HBE cells (Figure 5(a)).
Knockdown of ATF4 induced a noticeable decrease in
MTHFD2 expression in A549 and H1299 cells (Figure 5(b)
and Figure S3). However, MTHFD2 luciferase promoter
activity did not exhibit a significant change with ATF4
vector transfection (Figure 5(c)). These results imply that
ATF4 indirectly, but not directly, promotes MTHFD2 in
NSCLC.

3.5. MYC Transcriptionally Regulates MTHFD2 Expression
in NSCLC. Recent studies reported that MYC mediated
MTHFD2 transcriptional expression in tumors [12, 26],
and we further investigated the regulated role of MYC on
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Figure 4: Effect of MTHFD2 knockdown on antioxidative factors in A549 and H1299 cells. The levels of SOD (a) and NADPH/NADP+ (b)
in A549 and H1299 cells were determined under MTHFD2 knockdown. All the data were from three individual tests. Statistical analyses
between groups were performed with ANOVA followed by LSD post hoc test (∗p < 0:05, compared with the negative control (NC)).
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Figure 5: The regulated effect of ATF4 on MTHFD2 in A549 and H1299 cells. (a) mRNA and protein levels of ATF4 in HBE, H358, A549,
H1299, and HCC827 cells (compared to HBE cells). Immunofluorescence observation of ATF4 expression in HBE, A549 and H1299 cells.
(b) Levels of MTHFD2 mRNA and protein in A549 and H1299 cells with ATF4 knockdown (compared to NC). (c) Relative MTHFD2
luciferase promoter activity with ATF4 overexpression in A549 and H1299 cells (compared to the control vector). ∗p < 0:05.
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Figure 6: The regulated effect of MYC on MTHFD2 in A549 and H1299 cells. (a) mRNA and protein levels of MYC in BEAS-2B, A549, and
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MTHFD2 expression in NSCLC. Compared with HBE cells,
A549 and H1299 cells presented distinctly higher levels of
MYC (Figure 6(a)). MTHFD2 significantly decreased under
MYC silencing in A549 and H1299 cells (Figure 6(b) and
Figure S4). Furthermore, MTHFD2 luciferase promoter
activity displayed a significant increase with MYC vector
transfection (Figure 6(c)). These results indicate that MYC
transcriptionally regulates MTHFD2 expression in NSCLC.

3.6. ATF4 Regulates MTHFD2 Expression through MYC in
NSCLC. From the results above, we inferred that both
ATF4 and MYC are involved in MTHFD2 expression in
NSCLC. However, the relationship between ATF4 and
MYC in NSCLC has not been reported. Therefore, we
observed the expression of MYC with ATF4 knockdown in
A549 and H1299 cells. The result showed that MYC was
downregulated with ATF4 silencing (Figure 7).

To investigate whether ATF4 promoted MTHFD2
through MYC in NSCLC, we transfected ATF4 vectors and
MYC vectors simultaneously into A549 and H1299 cells
and observed the expression levels of ATF4, MYC, and
MTHFD2. The results indicated that ATF4, MYC, and
MTHFD2 were upregulated under ATF4 vector transfection
(Figures 8(a) and 8(b)). And the expression of MYC and
MTHFD2 without ATF4 showed marked increase under
MYC vector transfection (Figures 8(c) and 8(d)). These
results indicate that ATF4 upregulates MTHFD2 by MYC.
To further validate the regulated process, we transfected
ATF4 vectors with MYC knockdown and MYC vectors with
ATF4 knockdown simultaneously in A549 and H1299 cells
and detected the expression levels of ATF4, MYC, and
MTHFD2. The results indicated that MYC and MTHFD2

without ATF4 were downregulated under ATF4 vector
transfection with MYC knockdown (Figures 9(a) and 9(b)).
The expression of ATF4, MYC, and MTHFD2 all showed
marked decrease under MYC vector transfection and ATF4
knockdown (Figures 9(c) and 9(d)). These experiments pro-
posed that ATF4-regulated MTHFD2 expression is depen-
dent on MYC in NSCLC.

4. Discussion

MTHFD2 is a key enzyme in mitochondrial one-carbon
metabolism and promotes the conversion of 5,10-methyle-
netetrahyderofolate to 10-formyl-tetrahydrofolate [49]. Dur-
ing this process, the one-carbon formyl groups are substrates
for nucleotide synthesis, and NADPH generated from
NADP+ displays antioxidative ability, which could promote
malignant tumor progression. Moreover, MTHFD2 could
induce oncogene expression by regulating DNA replication,
RNA translation, and epigenetic modification [24, 50]. Mul-
tiple studies mentioned above support the hypothesis that
MTHFD2 facilitates the initiation and progression of diverse
original tumors by these pathways, which was summarized
by Zhu and Leung [51]. Therefore, MTHFD2 has been
widely recognized as a potential therapeutic target for tumor
treatment [52, 53]. In recent years, several groups have
developed studies of MTHFD2 inhibitors, some of which
have presented potential antitumor efficacy in experiments
in vitro and in vivo [54–58].

The role of one-carbon metabolism was firstly reported
in NSCLC in 2012 [59]. Previous studies and our experi-
ments have proven the high expression and tumor-
promoting effect of MTHFD2 in NSCLC [29–35]. And in
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Figure 7: The regulated effect of ATF4 on MYC in A549 and H1299 cells. Levels of MYC mRNA and protein in A549 and H1299 cells with
ATF4 knockdown. All the data were from three individual tests. Statistical analyses between groups were performed with ANOVA followed
by LSD post hoc test (∗p < 0:05, compared to NC).
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Figure 8: Expression of ATF4, MYC and MTHFD2 in A549 and H1299 cells with overexpression ATF4 or MYC. mRNA (a) and protein (b)
expression of ATF4, MYC, and MTHFD2 after transfection with 1 μg ATF4 vector. mRNA (c) and protein (d) expression of ATF4, MYC,
and MTHFD2 after transfection with 1 μg MYC vector. ∗p < 0:05, compared to the control (control vector). All the data were from three
individual tests. Statistical analyses between groups were performed with ANOVA followed by LSD post hoc test.

11Disease Markers



ATF4+NC
ATF4+MYC si-1
ATF4+MYC si-2
ATF4+MYC si-3

1.8

H1299

P < 0.05
P < 0.05

P < 0.05 P < 0.05
P < 0.05
P < 0.05

1.2

0.6

0.0
ATF4 MYC MTHFD2

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n

A549

P < 0.05
P < 0.05

P < 0.05 P < 0.05
P < 0.05
P < 0.05

ATF4 MYC MTHFD2

1.8

1.2

0.6

0.0

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n

(a)

ATF4

MYC

MTHFD2

HSP90

H
12

99
-A

TF
4+

si-1NC si-2 si-3
MYC

si-1NC si-2 si-3

A
54

9-
A

TF
4+

MYC

ATF4

MYC

MTHFD2

HSP90

MYC MTHFD2ATF4
0.0

0.5

1.0

1.5

2.0
H1299

Re
la

tiv
e p

ro
te

in
 ex

pr
es

sio
n P < 0.05 P < 0.05

P < 0.05

P < 0.05P < 0.05

P < 0.05

MYC MTHFD2ATF4
0.0

0.5

1.0

1.5

2.0
A549

Re
la

tiv
e p

ro
te

in
 ex

pr
es

sio
n P < 0.05

P < 0.05 P < 0.05

P < 0.05

P < 0.05P < 0.05

ATF4+MYC si-1
ATF4+NC ATF4+MYC si-2

ATF4+MYC si-3

(b)

Figure 9: Continued.

12 Disease Markers



our study, silence of MTHFD2 increased oxidative capacity
and decreased antioxidative capacity, which could induce
cellular damage and growth inhibition, which indicated that
knockdown of MTHFD2 could promote cell cycle arrest by
increasing oxidative factors.

Moreover, the potential regulated mechanism of
MTHFD2 expression in NSCLC has not been explained.
mTOR complex I (mTORC1) is a central coordinator of
metabolic processes [60], and Ben-Sahra et al. demonstrated

that mTORC1 regulated MTHFD2 expression dependent on
activating transcription factor 4 (ATF4) in normal and can-
cer cells [48]. They hypothesized that ATF4 could directly
regulate MTHFD2 expression. However, our experiments
indicated that MTHFD2 was indeed adjusted by ATF4 but
not directly. Moreover, the transcription factor MYC is a
master regulator of cell metabolism. Our study suggested
that MYC could bind to the promoter region of MTHFD2
and transcriptionally regulate MTHFD2 in NSCLC,
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Figure 9: The regulated effect of ATF4 and MYC on MTHFD2 in A549 and H1299 cells. mRNA (a) and protein (b) expression of ATF4,
MYC, and MTHFD2 in A549 and H1299 cells transfected with 1μg ATF4 vector and MYC knockdown (compared to the ATF4 vector and
siRNA negative control groups). mRNA (c) and protein (d) expression of ATF4, MYC, and MTHFD2 in A549 and H1299 cells transfected
with 1μg MYC vector and ATF4 knockdown (compared to the MYC vector and siRNA negative control groups). ∗p < 0:05. All the data
were from three individual tests. Statistical analyses between groups were performed with ANOVA followed by LSD post hoc test.
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consistent with previous experiments in acute myeloid leu-
kemia [12] and colorectal cancer [26]. Furthermore, the
results of our experiments also found that MYC could be
downregulated under ATF4 knockdown and that ATF4 reg-
ulated MTHFD2 expression through MYC instead of direct
mediation (Figure 10). In addition, miR-30a-3p was recently
reported to target MTHFD2 in small cell lung cancer [61].
Although miR-30a-3p showed increased expression in
NSCLC, it did not participate in MTHFD2 regulation (data
not shown).

5. Conclusion

High expression of MTHFD2 was identified to be involved
NSCLC progression by regulating redox homeostasis. More-
over, ATF4/MYC regulated high MTHFD2 expression in
NSCLC, which provides a comprehensive understanding of
MTHFD2 in NSCLC.
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