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Abstract: Over the past few decades, there has been a resurgence in the clinical use of honey as a
topical wound treatment. A plethora of in vitro and in vivo evidence supports this resurgence,
demonstrating that honey debrides wounds, kills bacteria, penetrates biofilm, lowers wound
pH, reduces chronic inflammation, and promotes fibroblast infiltration, among other beneficial
qualities. Given these results, it is clear that honey has a potential role in the field of tissue
engineering and regeneration. Researchers have incorporated honey into tissue engineering
templates, including electrospun meshes, cryogels, and hydrogels, with varying degrees of success.
This review details the current state of the field, including challenges which have yet to be overcome,
and makes recommendations for the direction of future research in order to develop effective tissue
regeneration therapies.

Keywords: tissue engineering; tissue regeneration; electrospinning; cryogel; hydrogel; Manuka
honey; chronic wound; Inflammation

1. Introduction

Honey has been used as a wound treatment by indigenous cultures around the globe for thousands
of years. Archeological findings and early written works indicate that wounds were treated with honey
by the ancient Egyptians, Greeks, and Romans, among others [1]. With the advent of antibiotics in the
1940s, honey fell out of favor as a wound treatment [2]. However, with the increasing prevalence of
antibiotic-resistant bacteria, as well as new in vitro and in vivo data supporting honey’s effectiveness
in treating wounds and as a natural broad-band antibacterial agent, it has recently made a comeback
in clinical medicine. Additionally, honey’s ability to aid in situ cellularization and regeneration of
implanted acellular tissue-engineered structures indicates its potential as a tissue engineering additive.

Honey is a natural substance produced by a variety of honeybee species around the world.
First, the bees collect nectar from flowering foliage. This nectar is processed in an internal pouch called
the crop, where a variety of enzymes break down sugars. The resulting solution is regurgitated by the
bees into honeycomb within their hives, where liquid evaporation is enhanced by air currents created
by the fanning of bee wings. The product is a highly concentrated viscous solution of floral sugars and
proteins, enzymes, and amino acids derived from the bee crops [3]. These sugars are primarily fructose
and glucose, with smaller amounts of maltose, sucrose, and isomaltose, and comprise approximately
80% of honey components, with water comprising <18% [4–6]. Glucose oxidase from the bee crop
slowly breaks down glucose into gluconic acid, which lowers the pH of honey, and hydrogen peroxide,
which helps kill bacteria [7]. In a wound site, the lower pH of honey (3.5–4) reduces protease activity,
increases oxygen release from hemoglobin, and stimulates the activity of macrophages and fibroblasts,
while the hydrogen peroxide content sterilizes the wound and stimulates vascular endothelial growth
factor (VEGF) production [7]. Invertase, another enzyme from the bee crop, slowly divides sucrose into

Bioengineering 2018, 5, 46; doi:10.3390/bioengineering5020046 www.mdpi.com/journal/bioengineering

http://www.mdpi.com/journal/bioengineering
http://www.mdpi.com
https://orcid.org/0000-0003-0917-8203
http://www.mdpi.com/2306-5354/5/2/46?type=check_update&version=1
http://dx.doi.org/10.3390/bioengineering5020046
http://www.mdpi.com/journal/bioengineering


Bioengineering 2018, 5, 46 2 of 27

glucose and fructose, increasing the strength of the osmotic potential. In addition, flavenoids derived
from the floral nectar sources neutralize free radicals created by the hydrogen peroxide [7]. Bees can also
make honey from honeydews, a loose term which includes plant secretions and plant-sucking insect
excretions [8]. These honeydew honeys have lower glucose and fructose content and higher levels
of oligosaccharides [9]. Some research has also shown that honeydew honeys contain higher levels
of phenolic contents, which have been shown to reduce MMP-9 expression in keratinocytes [10,11].
These findings indicate that honeydew honey may be a beneficial future focus of wound healing and
tissue engineering research. However, as most honey used in tissue engineering research thus far
originates with floral nectar, this review will focus on these nectar-based honeys.

Although some honey varieties have been shown to have beneficial effects in a wound site,
most modern research has focused on a particular variety produced in New Zealand from the nectar
of the Leptospermum Scopartum shrub, called Manuka honey. This honey contains the components of
other honey varieties, but its unique component, methylglyoxal, acts as an additional antibacterial
agent [12–15]. Several companies collect, pool, filter, and sterilize Manuka honey for clinical use,
including ManukaGuard (located in New Zealand) and Medihoney (a subsidiary of Derma Sciences,
Princeton, NJ, based in the United States). This collection and pooling of the honey helps limit
batch-to-batch variability between hive locations and times of the year, while the filtration removes
wax, dirt, and pollen particulates from the honey to reduce the potential to cause an allergic reaction.
Although honey has been demonstrated to have antibacterial properties, these products are still
sterilized via gamma irradiation or pasteurization to doubly ensure that no live bacteria or spores
are present.

Honey performs several other functions as a wound covering. As a viscous fluid, its thick
consistency forms a barrier between the wound and the external environment, protecting against
bacteria and keeping the wound hydrated [16]. Its high concentration of sugars and other solutes
creates a strong osmotic gradient that pulls fluid up through the subdermal tissue [17]. The water
activity of honey, a measure of its osmotic potential, has been reported to range from 0.53 to 0.64 aw
(activity of water, unitless) [18,19]. For reference, the water activity of distilled water is 1 aw,
and substances with a lower water activity create a higher osmotic potential with water flowing from
areas of high to low water activity. Water activity values below 0.91 aw inhibit bacterial growth [20].
The low water activity of honey causes fluid flow which flushes bacteria, debris, slough, and necrotic
tissue out of the wound, and carries nutrients and oxygen from the deep tissue into the wound
area. Additionally, the low pH of the honey increases tissue oxygenation, while the flavonoids and
aromatic acids scavenge free radicals, preventing tissue damage and controlling inflammation [7,21].
The high sugar content of honey also provides an additional source of glucose for proliferating cellular
components (i.e., fibroblasts and endothelial cells) in the area [16].

In addition to these other attributes, honey also has multiple antibacterial effects. These effects
include the inhibition of bacterial growth as well as the direct killing of bacteria [22–25]. The osmotic
potential of the honey crenates bacteria at the top of the wound, destroying them [15,26]. Although
this osmotic potential was thought by some groups to be the main source of honey’s antibacterial
activity, studies have shown that honey maintains its antibacterial activity even when diluted by
wound exudate [27,28]. An in vitro study by Cooper et al. found that dilutions of honey by factors of 7
to 14 maintain their bacterial inhibition, long past the dilution point where the osmotic potential of
the solution would cease to be bactericidal [29]. It should be noted that this study lacked mechanistic
controls of concentrated sugar solutions with equal water activity to honey, weakening their results.
This lack of mechanistic controls is a general issue for some studies of honey’s antibacterial effects,
making it difficult to measure the contribution of each attribute to the overall antibacterial nature
of honey. Nevertheless, honey has been shown to contain other components which contribute to
its bactericidal effect. As mentioned above, honey contains hydrogen peroxide, with levels in the
range of 12–72 µg/mL depending on the dilution of the honey and variety of the honey (it should be
noted that some varieties of honey do not contain measurable levels of hydrogen peroxide, discussed
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further below) [22]. Hydrogen peroxide easily gives up one of its oxygen atoms to the surrounding
environment, creating a free radical that causes oxidative damage to bacterial cell walls. Additionally,
the presence of bee defensin-1 has been shown in some honey varieties, although the levels of this
protein vary based on hive location [30,31]. Like other defensins, bee defensin-1 permeabilizes bacteria
and inhibits their RNA, DNA, and protein synthesis [32]. As mentioned above, the glucose oxidase
content of honey lowers its pH, which can also kill some bacteria [30]. Manuka honey, in particular,
contains methylglyoxal, a compound which has been shown to damage bacteria flagella and thus limit
their mobility and ability to adhere to surfaces [33]. However, Manuka honey has been shown to lack
the defensin-1 content of other honey varieties, possibly due to decreased secretion by bees during
the formation process [30,34]. The methylglyoxal content of Manuka honey has also been shown to
inactivate defensin-1 when it is added to the honey, eliminating its contribution to the antibacterial
effect [34]. Additionally, methylglyoxal crosslinks glucose oxidase, destroying its enzymatic activity
and eliminating the hydrogen peroxide content in Manuka honey [35]. These studies utilized
mechanistic controls of methyglyoxal alone or added to non-methylglyoxal-containing honeys to isolate
the effect of the methylglyoxal on the other honey components. In at least one other study, however, the
methylglyoxal component of honey has been neutralized to determine whether it is the sole contributor
to the antibacterial effects of Manuka honey. Although this methylglyoxal-neutralized honey had
decreased activity against Staphylococcus aureus and Bacillus subtilis, it did not have reduced activity
against Escherichia coli or Pseudomonas aeruginosa. As such, other components besides methylgyoxal
must contribute to the antibacterial activity of Manuka honey [22]. Manuka honey has been shown
to be especially useful against antibiotic-resistant bacteria [12,36]. The many functions of Manuka
honey thus not only clear wound debris, maintain hydration, control inflammation, and stimulate
healing, but also sterilize the wound. Although a large number of groups researching honey as
a wound treatment or in tissue-engineered templates have focused on Manuka honey, there are
some notable studies which have examined other honey varieties and found them to have beneficial
effects comparable to those of Manuka honey. Accordingly, while this paper includes a great deal of
information about Manuka honey, its scope has been widened to include pertinent research into other
varieties of honey.

As the focus of this review is on the use of honey in tissue engineering templates, it is not
a comprehensive discussion of the components of honey, their contribution to its wound-healing
mechanisms, or the entire body of research into honey’s effects as a wound additive. Rather, these
topics are summarized as they relate specifically to the incorporation of honey into tissue
engineering templates. For more in-depth research into the components of honey, the reader
should seek out “The components of honey and their effect on its properties: a review” by
Thawley or “Major components of honey analysis by near-infrared transflectance spectroscopy” by
Garcia-Alvarez et al. [37,38]. For a review of the anti-bacterial mechanisms of honey and quantitative
studies of their contributions to the overall anti-bacterial nature of honey, readers should obtain
“How honey kills bacteria” by Kwakman et al. or “Antibacterial components of honey” by Kwakman
and Zaat [6,30]. If a more comprehensive review of the mechanisms of honey that contribute to wound
healing is desired, the authors suggest “Honey: a potent agent for wound healing?” by Lusby et al. or
“The evidence and the rationale for the use of honey as a wound dressing” by Molan [39,40].

2. In Vitro and In Vivo Evidence of the Beneficial Effects of Honey in Wounds

2.1. Antibacterial and Antibiofilm Effects of Honey

Studies have examined the anti-bacterial action of Manuka honey against a variety of pathogens.
Sherlock et al. used agar plate well diffusion assays and a spectrophotometric minimum inhibitory
concentration assay to demonstrate antibacterial effects. These effects were quantified for both
Manuka honey and Ulmo honey, a strain from Chile. The results of these experiments, shown
in Table 1, demonstrated that both Manuka and Ulmo honey significantly inhibited the growth of
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E. coli, P. aeruginosa, and methicillin-resistant S. aureus (MRSA). Interestingly, the Ulmo honey was
more effective against MRSA, although slightly less effective against E. coli and P. aeruginosa [41].
Jenkins et al. also reported that Manuka honey inhibits the growth of MRSA, and showed that the
presence of honey causes a downregulation of universal stress protein A (UspA) in the MRSA, reducing
its stress stamina response [12]. In addition to its effectiveness against MRSA, Cooper et al. showed
that Manuka honey also inhibits the growth of at least seven different strains of vancomycin-resistant
enterococci [15]. Manuka honey also has been shown to be effective against Helicobacter pylori, the cause
of most stomach ulcers [42]. Research by Watanabe et al. in 2014 showed that Manuka honey inhibits
influenza viral replication, enhancing the effects of antiviral drugs [43]. This work has been replicated
with varicella and rubella viruses, indicating an exciting new avenue for the clinical use of Manuka
honey [44,45].

Table 1. Honeys inhibit bacterial growth. Zones of inhibition (diameter, in mm) of different
concentrations of Ulmo and Manuka honey against various strains of MRSA. Standard deviations are
shown in parentheses. “-” indicates no inhibition at that concentration. “*” indicates a clinical isolate.
Reproduced with permission from Sherlock et al. Complementary and Alternative Medicine; published by
BMC, 2010.

Concentration 50% v/v 25% v/v 12.5% v/v 6.3% v/v

Isolates Ulmo Manuka Ulmo Manuka Ulmo Manuka Ulmo Manuka

MRSA ATCC 43300 30 (1.7) 24 (1.5) 26 (0.6) 19 (2.1) 18 (0.6) 13 (1.0) 10 (0.6) -
MRSA 0791 * 34 (1.5) 23 (1.2) 29 (1.7) 17 (1.7) 22 (2.1) - 14 (2.5) -
MRSA 28965 * 24 (1.0) 17 (1.7) 19 (1.5) 15 (2.0) - - - -
MRSA 01322 * 28 (5.8) 22 (1.0) 23 (4.2) 18 (0.6) 17 (2.9) - 11 (2.0) -
MRSA 0745 * 23 (2.7) 20 (1.7) 19 (2.1) 13 (1.7) 11 (2.7) - - -

P. aeruginosa ATCC 27853 14 (2.3) 16 (7.8) 11 (1.0) 14 (6.9) - - - -
E. coli ATCC 35218 14 (1.5) 15 (2.5) 11 (1.7) 12 (2.9) - - - -

Investigators have also examined the ability of various honey types to inhibit biofilm formation
or kill biofilm-embedded bacteria. Marckoll et al. tested the effects of Manuka honey and
Norwegian Forest honey on biofilm-embedded MRSA, methicillin-resistant S. epidermidis (MRSE),
extended-spectrum β-lactamase (ESBL) Klebsiella pneumoniae, and P. aeruginosa. This study found that
the active components of the honey diffused through established biofilm matrices of all bacterial types
and killed bacteria in a dose-dependent manner, with minimum concentrations between 6 and 12% of
Manuka honey and 12 to 25% of Norwegian Forest honey killing biofilm-embedded bacteria depending
on the bacterial type. While the presence of a biofilm did provide some protection to the MRSA, MRSE,
and ESBL Klebsiella, no protection was observed in the P. aeruginosa biofilm [46]. Similarly, Bardy et al.
tested the ability of Manuka honey and an Australian non-methylglyoxal-containing honey, Capilano
honey, to inhibit biofilm formation of S. aureus strains isolated from clinical patients. Biofilm inhibition
was found to be related to methyglyoxal content, with a minimum level of 0.53 mg/mL methyglyoxal
in Manuka honey solution necessary for biofilm-cidal activity (a 33% w/v level of Manuka honey).
By itself, the Capilano honey solutions did not inhibit biofilm formation, but when at least 1.05 mg/mL
methylglyoxal was added they were able to become biofilm-cidal [47]. The difference in minimum
methylglyoxal levels necessary to inhibit biofilm formation between these two honey types indicates
that while methylglyoxal content is important, there is an additional unknown biofilm-cidal component
present in Manuka honey that is not present in the Capilano variety.

Likewise, Alandejani et al. demonstrated the effectiveness of Manuka honey and Sidr honey,
another methylglyoxal-containing variety, against biofilms of MRSA, methicillin-susceptible S. aureus
(MSSA), and P. aeruginosa. Both honeys were tested at a 1:2 dilution level and found to inhibit the
growth of most samples of each bacterial strain. However, no attempt was made to test further
dilutions of these honeys or any non-methylglyoxal-containing honey variety [48]. In another attempt,
Okhiria et al. tested concentrations of 0%, 20%, and 40% w/v Manuka honey on biofilms formed
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by six cultures of P. aeruginosa and found that biofilm shrinking only occurred at the 40% w/v
level [49]. A more thorough study by Sojka et al. utilized a multispecies wound biofilm model
containing S. aureus, Streptococcus agalactiae, Enterococcus faecalis, P. aeruginosa and K. pneumoniae to test
non-diluted Manuka honey, Honeydew honey, and an artificial honey prepared from fructose, glucose,
maltose, and sucrose (mechanistic control). While the artificial honey was somewhat effective against
P. aeruginosa, decreasing the number of colony-forming units from around 106 c.f.u./mg to around
104 c.f.u./mg over a period of 48 h, it did not significantly kill or inhibit the other three bacterial strains.
In contrast, both honey varieties significantly decreased S. aureus growth from around 106 c.f.u./mg
to around 103 c.f.u./mg and decreased S. agalctiae and P. aeruginosa growth to around 0 c.f.u./mg
over a 48-h period. This difference in bactericidal activity between the honey varieties and artificial
honey indicates that while the osmotic pressure of the honeys plays a role in some anti-biofilm activity,
it does not account for all of this activity in the honey. None of the natural or artificial honey types
had an effect on E. faecalis growth, indicating that this bacterial strain was not susceptible to the
antibacterial effects of the honey. The resilience of this strain to honey should be noted for future
clinical application [50].

There is also in vivo evidence of the antibacterial effects of honey in wounds. A 2010 study
by Moghazy et al. followed the treatment of 30 diabetic foot ulcers with commercial honey over a
three-month period. A number of microorganisms were isolated from the ulcers at the beginning
of the study, including Staphylococcus aureus, E. coli, Proteus, Klebsiella, and Providencia. All of these
microorganisms were eradicated by the end of the three-month study. Staphylococcus epidermidis,
a benign pathogen commonly found on human skin and thought to provide a reservoir of resistance
genes to other infections, was isolated from 28 of the patients at the end of the study [51,52].
The presence of healthy S. epidermidis is a sign of healing in these wounds. While the results of
this study are encouraging, it would have benefited from a non-honey treatment control group to
establish an effective comparison to the current gold-standard treatments. In another study, Efem et al.
used topical commercial honey treatment to treat 59 cases of non-healing ulcers. Swabs from 51
of the wounds before treatment indicated the presence of P. pyocyanea, E. coli, S. aureus, Proteus
mirabilis, Klebsiella, S. faecalis, and Streptococcus pyogenes, while swabs performed after one week of
honey treatment indicated the eradication of these microorganisms [53]. In addition to treatments
with commercial store-bought honey, some studies have focused specifically on treatment with
medical-grade Manuka honey. Gethin et al. compared Manuka honey treatment with a commercially
available hydrogel dressing in 108 patients with sloughy infected venous leg ulcers. MRSA was
identified in 16 of the wounds, 10 of which were treated with the honey while six were treated with
the commercially available hydrogel. After four weeks of treatment, MRSA was eradicated in seven of
the ten honey-treated wounds but only one of the six hydrogel-treated wounds [54]. These studies
provide evidence supporting the use of Manuka honey as an anti-bacterial wound sterilizing agent.

As honey is cheaper than many antibiotics and has not yet been shown to induce resistant bacteria,
it is likely to become a useful alternative to antibiotics in the field of wound care. However, it should be
noted that biofilms of certain bacteria, such as E. faecalis, are resistant to the antibacterial effects of honey,
which could complicate its use in clinical practice. Additionally, the literature concerning honey’s
efficacy against biofilms suggests that high concentrations (at least 33% w/v) of honey are necessary.
This is complicated by cytotoxicity concerns discussed later in this review. Thus, care will have to
be taken to tailor the amount and dilution of honey to specific situations in clinical practice. Larger,
undiluted amounts of honey may be appropriate when fighting persistent infection, while smaller,
more dilute amounts of honey are likely optimal when treating inflammation and inducing tissue
infiltration and regeneration.

An additional benefit of using honey in therapeutic products is that these natural antibacterial
properties give it an extremely long shelf life. In sealed containers, honey remains stable for hundreds
or even thousands of years, and it is often used to increase the shelf life of other food products [55–59].
Many antibiotics have limited shelf lives even under refrigeration—for example, penicillin in solution
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has a shelf life of twelve months at 10 ◦C [60]. In contrast, honey’s robust thermal stability allows
it to go un-refrigerated and still maintain its properties indefinitely [61]. This is a major advantage,
as it eliminates the need for a “cold chain” of constant refrigeration and, therefore, reduces costs
substantially. The elimination of the cold chain is a particular benefit in rural areas or developing
countries where there is less access to refrigeration and power interruptions can be frequent [62,63].

2.2. Immunomodulatory Effects of Honey

A number of studies have examined the effects of honey on the immune response, with results
that paint an intriguing but incomplete picture. Tonks et al. tested the monocyte response to several
honey types, including Manuka honey, and observed that all honey types tested caused an increase
in the release of the inflammatory mediators tissue necrosis factor α (TNF-α), interleukin 6 (IL-6),
and interleukin 1 (IL-1) over a 24-h culture period, as shown in Figure 1 [64]. Of the three honey
varieties tested (all 1% v/v in culture medium), Manuka honey caused the lowest release of these
three inflammatory cytokines, but these levels were still significantly higher than in the non-honey
controls. Specifically, Manuka honey caused an increase of about 2000 pg/mL in TNF-α release, about
100 pg/mL in IL-1 release, and about 700 pg/mL in IL-6 release over 18 h of culture as measured
relative to non-honey controls. This finding would seem to indicate that these honey varieties elicit an
inflammatory reaction, in direct contrast to the studies discussed below.

Figure 1. Honeys induce monocyte inflammation response. IL-6, IL-1, and TNF release from peripheral
blood monocytes over 18 h in the presence of artificial honey (syrup control), Manuka honey, Pasture
honey, and Jelly Bush honey. “*” indicates statistical significance (p < 0.001, analyzed by ANOVA with
a Tukey pair-wise comparison). Reproduced with permission from Tonks et al., Cytokine; published by
Elsevier, 2003.

In another study, Leong et al. examined the effect of 21 New Zealand honey types, including
varieties of Manuka honey, on neutrophil superoxide production. Their results indicate that all
honey types tested reduced superoxide production in a dose-dependent manner, and this decrease
in superoxide production was independent of the methylglyoxal content of the honey samples.
Cytotoxicity testing revealed that at the 50% inhibitory concentrations (IC50, ranging from 3.1 mg/mL
to 44.4 mg/mL depending on the honey variety) of honey on superoxide production, none of the honey
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varieties caused significant amounts of neutrophil death [13]. However, honey treatments in wounds
typically involve direct application of honey to the wound at much higher concentrations than these
IC50s, throwing doubt into the relevance of this finding to wound treatment. This study also involved
an in vivo murine test which measured the effect of topical application of these honey varieties on
neutrophil recruitment to the site of arachidonic acid (inflammatory stimulus) application in a murine
ear model. The results showed that several honey varieties, including Manuka honey, significantly
decreased neutrophil recruitment to the site [13]. These results indicate an overall anti-inflammatory
effect of Manuka honey on neutrophils, reducing their inflammatory superoxide production and
attenuating their recruitment to a site of inflammation and, thus, correlate more closely than the results
of the previous study with the clinical data showing that Manuka honey resolves inflammation [65,66].

Other in vivo evidence points to an anti-inflammatory effect of honey. In one example, rabbit
wounds were treated with topical honey (type of honey not specified) and studied for 21 days.
Histological examination of the wounds at 14 days revealed well-vascularized tissue with organized
fibroblasts and collagen fibers with few inflammatory cells still present in the honey-treated group,
while the non-honey group showed necrosis, uneven epithelialization, and a large neutrophil
presence [66]. In a different study, Medhi et al. used a rat ulcerative colitis model to study the efficacy
of rectally-applied Manuka honey to treat ulcerative colitis. Rats were administered intra-colonic
2,4,6-trinitrobenzene sulfonic acid (TBS) to induce colitis and then treated with Manuka honey at
5 g/kg body weight through a rubber tube inserted rectally. After 14 days, rats were sacrificed,
and excised tissue was morphologically assessed. Histological sections of colon tissue were graded
on a scale from 0 (no inflammation) to 3 (intensive inflammation). Treatment with Manuka honey
decreased the sample scoring from approximately 1.8 (mean TBS control score) to approximately 0.2
(mean Manuka honey score), indicating almost no inflammation in the honey-treated samples [67].
This study indicates another promising use for Manuka honey in treating ulcerative colitis and other
internal inflammatory diseases, and provides evidence of the general anti-inflammatory properties
of honey which make it such an effective wound treatment. Clinical evidence also indicates that
honey exhibits anti-inflammatory properties. For instance, in the 2010 diabetic foot ulcer study by
Moghazy et al. that was discussed above, significantly decreased inflammation was observed in 27 of
the 30 patients during and after the three-month honey treatment [51].

Together, this evidence seems to contradict the Tonks et al. study discussed above that showed
that honey increases release of the inflammatory mediators TNF-α, IL-1, and IL-6 by monocytes.
However, it should be noted that there are many other inflammatory and anti-inflammatory cytokines
involved in the healing response that were not tested in the Tonks et al. study, and it only tested
one concentration of honey rather than the gradient of honey concentrations present in a wound.
Nevertheless, it is possible that these honeys cause a temporary increase in inflammatory cytokines in
a wound site before later resolving that inflammation, or that by increasing inflammation the honey
“shocks” the wound environment into quickly clearing infections to allow for inflammation resolution.
Ultimately, future studies examining more honey concentrations and more of the relevant cytokines
will be necessary to bridge the gap between these in vitro and in vivo findings. In addition, detailed
time courses must be examined in order to understand the difference between how honey affects the
different stages of inflammation in the wound site, especially the vast differences between the effects
on the acute and chronic phases.

2.3. Wound Closure Effects of Honey

Studies have demonstrated that multiple varieties of honey promote wound closure. Ranzato et al.
showed low concentrations (0.1% v/v) of a variety of honey types, including Manuka honey, increase
closure rate in a keratinocyte scratch assay and promote fibroblast migration in a transwell insert
chemotaxis assay. Specifically, 0.1% Manuka honey increased keratinocyte closure rate by 180%,
and increased fibroblast migration by 150–240% (higher honey concentrations were not tested) [68].
It should be noted that this study did not make use of a sugar solution control, so it is unknown how
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much of this migration effect was caused by the sugar content of the honey as opposed to its other
components. In the 21-day rabbit wound model study described above, faster and improved wound
closure was observed in the honey-treated wounds. After 14 days, the non-honey wounds were covered
by scabs and imperfect epithelialization, while skin repair in the honey-treated rabbits was perfect and
detection of the injured area was difficult. Samples of the healed skin were excised and mechanically
tested after 21 days, and the honey-treated rabbit skin had a significantly higher tensile yield strength
(3.3 MPa) and ultimate strength (3.4 MPa) than that of the non-honey wounds (1.2 MPa and 2.3 MPa,
respectively) [66]. Likewise, honey treatment in a rat dorsal wound model had similar effects. Topical
application of honey to these wounds caused a 107% increase in salt-soluble collagen, a 117% increase in
acid-soluble collagen, and a 109% increase in insoluble collagen after seven days relative to non-treated
controls. Introduction of radiolabeled hydroxyproline one day before sacrifice allowed measurement
of the collagen synthesis rate over a 24-h time period, and indicated a 124% increase in the acid-soluble
collagen production rate and a 105% increase in the insoluble collagen production rate during this
sixth day after wound creation relative to control, suggesting that the healing rate is increased at this
time point by the honey treatment. The acid-soluble collagen extracted from honey-treated rats had a
122% increase in aldehyde content relative to that extracted from non-treated rats, indicating a higher
degree of crosslinking in the wounds that were honey-treated. This was confirmed by an 11% drop in
the solubility of the insoluble collagen of the honey-treated rats in the presence of urea. Interestingly,
experimental groups of rats with honey administered orally and intraperitoneally showed higher
degrees of collagen synthesis and crosslinking than the topical-administration group [69]. Although the
administration of honey via the oral and intraperitoneal routes for wound healing has not been widely
studied, these findings suggest it may, in fact, be more beneficial than the current topical administration
model. The authors of this study suggest that the oral administration of the honey allows for greater
nutrient uptake, which is an unsatisfactory explanation for these results as those nutrients would be
processed and dispersed systemically and, thus, be unlikely to have a greater effect on the wound than
topical administration. More exploration of the benefits of these routes of administration, including
repeating this study, may be beneficial to confirm or disprove these potentially impactful findings.

Clinical evidence has also shown honey to improve wound closure. Numerous case studies
have demonstrated beneficial effects of Manuka honey in the closure of various types of infected
non-healing ulcers [70–74]. In the 2010 study by Moghazy et al. described earlier, ulcer size decreased
in 28 of the 30 patients treated with honey, with complete healing in 13 of the patients after three
months [51]. Likewise, in the study by Efem et al., it was described that the honey treatment caused
more rapid wound debridement, promoted rapid epithelialization, and reduced edema, causing a
faster healing rate and reduced morbidity. The author reports that within one week, sloughs, necrotic,
and gangrenous tissues were separated from the ulcers enough to be lifted away by forceps without
pain to the patients, while weeping ulcers were dehydrated and foul-smelling wounds were rendered
odorless [53]. Unfortunately, while the progress of the wounds is described, no objective measurements
of wound size or condition are included in this study, only general clinical observations of the wounds
over time. In contrast, Jull et al. conducted an expansive review published in 2015 of 26 randomized
or quasi-randomized trials evaluating honey as a treatment for a variety of wound types. As many
of the trials examined in this review suffered from small sample sizes or reported insufficient data,
few conclusions could be drawn. However, the authors did conclude that honey improves healing
rates in partial thickness burn wounds relative to current gold-standard treatments, shortening healing
time by about 4–5 days. They also found moderate evidence showing honey is more effective than
standard antiseptic treatments in treating infected surgical wounds. However, there was insufficient
evidence to make conclusions about the effects of honey in other wound types as of the publication of
this review in 2015. More studies are necessary moving forward to statistically confirm the beneficial
effects of honey in other varieties of wounds, such as chronically-inflamed wounds, pressure ulcers,
Fournier’s gangrene, and venous leg ulcers [75].
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3. Cautionary Evidence of Cytotoxicity

While there are many studies that have demonstrated the potential benefits of honey in wound
healing, less attention has been given to the counterproductive cytotoxic effects of high concentrations
of honey. However, a few groups have studied these cytotoxic effects in various cell and animal
models, and their data provides a cautionary window into the dangers of using high concentrations
of honey in wounds or other therapeutic applications. An in vitro study by Sell et al. found that
honey concentrations of 5% v/v or above were cytotoxic, killing almost 100% of the cells tested
in fibroblast, pulmonary microvascular endothelial, and macrophage cultures after one day [65].
For reference, the Sherlock et al. study referenced earlier showed little inhibition of MRSA, E. coli,
or P. aeruginosa growth at concentrations in the range of 6–12% v/v or below [41]. Marckoll et al. also
found a minimum inhibitory concentration of Manuka and Norwegian Forest honey on a variety
of bacterial biofilms to range between 6–12% for Manuka honey and 12–25% for Norwegian Forest
honey. The cytotoxicity of honey has also been studied in vivo. A study in which 50% v/v Manuka
honey was applied to chinchilla ears found that it caused severe inflammation and ototoxicity. Eight
chinchillas had the honey solution applied to the round window membrane and the cochlea of one
ear while the other ear received a sham treatment of normal saline solution. All eight chinchillas
developed a head tilt and facial paralysis on the side of the experimental ear within 0–48 h of honey
application, with a corresponding loss of balance and nystagmus. Extraction of the osseous bullae and
cochleae showed that the honey-exposed bullae were soft and brittle and the cochleae were darker,
compared to the control bullae and cochleae which were normal in color and consistency. Histological
examination revealed a scarcity of cells and the creation of new vacuoles within the honey-exposed
spiral ligaments, with damage to the organ of Corti and an excess of inflammatory cells found in the
honey-exposed cochleae, whereas the saline-treated organs had normal appearance, architecture, and
cellularity. Scanning electron microscope (SEM) images showed severe damage to the spiral ganglion
and cochlear hair cells in the experimental ears, with no damage to the control ears, as shown in
Figure 2 [76]. Possible causes of this damage are the low pH of the honey and its high osmolarity,
although further testing with other acidic and hypertonic solutions will be necessary to confirm this
theory. In a similar in vivo effort, Paramasivan et al. flushed ovine frontal sinuses with methylglyoxal
concentrations ranging from 0.5 to 7.2 mg/mL, or with 16.5% w/v Manuka honey enriched with
methylglyoxal in the same concentration range, twice daily for 14 days. Animals were sacrificed, and
the tissue was analyzed by histology and tested for S. aureus biofilms which had been intentionally
developed in the ovine sinuses before the study. The results indicated both the methylglyoxal alone
and 16.5% Manuka honey enriched with methylglyoxal above 0.9 mg/mL eradicated the S. aureus
biofilms, while honey/methylglyoxal treatment with less than or equal to 1.8 mg/mL methylglyoxal
was non-irritating to the mucosa. However, methylglyoxal and honey/methylglyoxal treatment with
methylglyoxal levels above 1.8 mg/mL caused cilia denudation and squamous metaplasia, indicating
tissue damage [77]. These results point to methylglyoxal as a culprit of Manuka honey’s cytotoxicity,
although more testing in a variety of cell and animal models should be done to confirm this finding.
If accurate, however, these results could indicate that other honey varieties without methylglyoxal
may be optimal for applications in which a high honey concentration would be required.

The results of these papers provide compelling evidence of the cytotoxicity of Manuka honey
at higher concentrations, and should prompt a re-assessment of the current use of Manuka honey in
wound treatment. Since most clinical honey treatment involves directly applying undiluted honey
to the wound, it is likely that honey’s beneficial effects are at least somewhat counteracted by its
cytotoxicity. Even accounting for dilution of the honey by wound exudate and excess liquid pulled
from the deeper tissue by honey’s high solute osmolarity, cells within the wound likely encounter honey
concentrations at or above the 5% v/v cytotoxic concentration found by Sell et al. [65]. When designing
tissue regeneration templates, this cytotoxicity must be accounted for to avoid killing infiltrating cells
and impeding tissue ingrowth. Even in applications where tissue ingrowth is not necessary, such
as a bone screw, care must be taken to avoid causing necrosis in the surrounding area. Thus, it is
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paramount that these tissue templates and devices that incorporate honey do so in a way that allows
a low-level, controlled release to avoid cytotoxicity while prolonging the beneficial effects of the
honey. However, as described above, higher levels of honey are necessary to impede or destroy
bacterial biofilms. Therefore, in situations where a bacterial biofilm has been established, it may be
necessary to first treat the wound with undiluted honey to eradicate this biofilm. Once the biofilm
has been eliminated, a template can be applied that releases lower levels of honey over time to
reduce inflammation and induce tissue regeneration and infiltration. It should be noted that certain
beneficial effects discussed earlier, such as immunomodulation and promotion of wound closure,
occur at honey concentrations below the cytotoxic level. However, the data does not currently exist
to definitively state a therapeutic window for each of the beneficial effects of the honey discussed
earlier. As such, the authors recommend that testing for cytotoxicity and desired therapeutic effects
(fibroblast infiltration, immunomodulation, etc.) be performed for each honey-incorporating template
using assays that take into account the expected microenvironment of the template upon implantation.

Figure 2. Undiluted honey damages cilia. (Top) SEM of saline-exposed chinchilla cochlea, in which
normal inner and outer hair cells are observed. (Bottom) SEM of honey-exposed chinchilla cochlea in
which the inner and outer hair cells have been damaged. Reproduced with permission from Aron et al.,
Otolaryngology—Head & Neck Surgery; published by BMC, 2012.

4. Honey in Tissue Engineering

Given the amount data supporting the use of honey as a wound treatment, the logical next step
is to apply these findings to the field of tissue engineering and biomaterials. The implantation of a
biomaterial within the body necessitates the creation of a wound, and the presence of these biomaterials
provides a potential site for bacteria to deposit and fester after implantation. The antibacterial
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effects of honey, especially Manuka honey, could significantly reduce the rates of infection in
biomaterials. Additionally, given the evidence showing that Manuka honey reduces inflammation and
promotes fibroblast migration and collagen deposition, it is likely that it could promote tissue-material
integration/regeneration and accelerate healing of the surrounding wound site [13,65,66,68,69].
An important consideration will be how to apply the honey to the biomaterial or incorporate it
into the biomaterial to deliver appropriate concentrations of honey and achieve these optimal effects.
It is likely that in most applications in which a bacterial biofilm is not present, a controlled-release
profile will be desirable to avoid cytotoxic effects and prolong the presence of the honey in the region of
interest/need. Thus, research has been focused into incorporating the honey throughout biomaterials
to achieve this type of release. In the past decade, there have been numerous studies incorporating
honey into a variety of biomaterial tissue templates for tissue regeneration.

4.1. Electrospun Templates

One of the first attempts to incorporate Manuka honey into an electrospun template was
published in 2012 by Vadodaria et al. In this study, Manuka honey was combined with polyethylene
oxide (PEO) into solutions which were then electrospun. SEM images showed that increasing
Manuka honey content caused thicker, merged fibers, although these morphological changes could
be somewhat compensated for by reducing the solution feed rate and increasing the applied voltage.
Fourier-transform infrared spectroscopy (FTIR) revealed peaks indicating the presence of both PEO and
Manuka honey in the fibers, while differential scanning calorimetry (DSC) indicated that increasing the
Manuka honey content lowered the melting point of these templates [78]. This study did not include
any experiments examining biocompatibility or cell behavior on the templates and did not include a
honey release profile. Nevertheless, it established the basic parameters necessary for electrospinning
Manuka honey into nanofibrous templates for use as delivery vehicles.

In another early study, Maleki et al. electrospun poly(vinyl alcohol) (PVA) templates containing
various concentrations of Iran-Tabriz honey and dexamethasone, an anti-inflammatory drug.
Both honey and dexamethasone decreased the fiber diameters of the templates in a dose-dependent
fashion. Dexamethasone release studies showed a large burst release of dexamethasone within the
first 10 min of soak due to the swelling of the PVA fibers, with no difference between the honey and
non-honey dexamethasone templates [79]. Like the Vadodaria et al. paper, this effort did not conduct
any cellular studies or bacterial inhibition assays, but it does indicate that honey can be incorporated
into electrospun templates along with other additives. Unfortunately, although this paper did have
release profiles of the dexamethasone from the templates, no honey release profile was included.

A more in-depth study of Manuka honey in electrospun templates was published by
Minden-Birkenmaier et al. in 2015. In this study, solutions of poly(ε-caprolactone) (PCL), 1,1,1,3,3,3-
hexafluoro-2-propanol (HFP), and various concentrations of Manuka honey were electrospun into
fibrous templates which were then characterized with regards to fiber morphology, water vapor
transmission rate (WVTR), permeability, mechanical properties, honey release, fibroblast response,
and bacterial inhibition. Templates were also created replacing the Manuka honey with equivalent
amounts of water to use as morphological controls. By sonicating the Manuka honey in the HFP
before adding the PCL, and then electrospinning the resulting solution within 24 h, templates were
created with equivalent fiber diameters, varying from 2 µm to 3.5 µm in diameter, up to a 20% v/v
honey content. The water vapor transmission rate after a one-hour soaking period increased with
increasing honey content, as did template permeability. Honey incorporation caused a decrease in
the elastic moduli and peak stress of the templates, but there was no significant change in these
properties over a 28-day soaking period. Glucose assays indicated that while up to 80% of the honey
content of the templates was lost during a one-hour ethanol disinfection soak, the templates retained
enough honey that they released significant amounts of honey over the following 24-h period of
soaking, proportional to the amount incorporated into the scaffold. Fibroblast chemotaxis assays
showed no effect of honey content in inducing chemotaxis towards the templates, indicating that
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the honey left in the templates to be released after the disinfection step is probably too low of an
amount to induce chemotaxis. However, the 20% honey templates caused a significant increase in
fibroblast proliferation and infiltration over PCL controls, indicating the potential of Manuka honey
to improve template-tissue integration and regeneration (Figure 3). Bacterial inhibition studies of
E. coli and S. agalactiae showed significant inhibition of both bacterial types by the 10% and 20% honey
templates as expected due to the antibacterial properties discussed earlier, although this inhibition
was significantly less than that of a sterile disc swabbed with pure Manuka honey. Together, these
findings indicate the potential benefit of Manuka honey in improving cellular proliferation, cellular
ingrowth, and bacterial inhibition associated with a tissue template [80]. However, the fact that 80%
of the incorporated Manuka honey was removed during ethanol disinfection indicates that future
studies may consider investigating core-shell electrospinning to protect the honey from leaching out
during disinfection and provide for a more long-term, controlled release period. Other disinfection
or sterilization methods, like gamma irradiation, should also be investigated as alternatives that may
remove less of the incorporated honey.

Figure 3. Honey induces fibroblast infiltration. (A) Representative images of H and E-stained honey
templates and water controls after 28 days of fibroblast culture. (B) Cellular infiltration depth of the
furthest 60 cells on each image. Reproduced with permission from Minden-Birkenmaier et al., Journal
of Engineered Fibers and Fabrics; published by INDA, 2015.

The physical properties detailed in the Minden-Birkenmaier et al. study also indicate that the
majority of the honey is likely sequestered to the fiber surface during the electrospinning process,
where it is easily released once rehydrated, allowing for greater template permeability, but maintaining
mechanical strength due to the PCL fiber core [80]. As expected, this morphology makes the templates
hygroscopic, allowing them to soak up water, but changing their physical properties as they are
exposed to ambient humidity or liquid water (as demonstrated by the water vapor transmission rate
data discussed above). It will be important to take this hygroscopidity and the associated processing
issues into account when producing and packaging honey-laden templates for clinical use. For instance,
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production and packaging in a low-humidity environment may be necessary to improve the shelf-life
of future commercial honey-laden templates.

In a more recent effort, Balaji et al. combined Malaysian Tualang honey and papaya
extract (PA) (also reported to have antimicrobial and anti-inflammatory properties [81,82]) into a
N,N-dimethylformamide (DMF) solution along with polyurethane (PU), which was then electrospun
into templates. Fiber diameter measurements showed that the honey and papaya extract reduced
the template fiber diameter, from a mean diameter of 434 nm for PU controls down to 190 nm for
the PA/honey templates; however, porosity only experienced a minor decrease. FTIR confirmed
the presence of both the honey and the PA along with the PU in the fibers. Water absorption tests
revealed that the presence of both honey and PA in the templates caused a three-fold increase in
water uptake, indicating a potential benefit of these hydrophilic substances in absorbing wound
exudate. Hemocompatibility studies demonstrated that the PA/honey templates had significantly
greater adsorption of albumin, but significantly less adsorption of fibrinogen relative to PU controls,
indicating a resistance to clotting. Activated partial thromboplastin (APTT) and prothrombin time (PT)
assays likewise demonstrated that the PA/honey templates took longer to activate thromboplastin
and prothrombin than the PU controls, 180 s (honey) versus 152 s (control) for APTT and 45 s (honey)
versus 37 s (control) for PT. The PA/honey templates also had a decrease in the hemolytic percentage
from the PU controls (2.7% for PU control and 0.9% for the honey template) indicating a reduction
in red blood cell lysis. This hemocompatibility suggests a possible use of the template in vascular
tissue engineering [83]. While the results of this study are impressive, particularly with regards to
hemocompatibility, it would have been beneficial for separate templates containing different amounts
of honey or PA to be tested, as the effects of the honey and the PA on hemocompatibility could have
been isolated from each other. This separation of honey and PA would have allowed for a more robust
study to indicate the true hemocompatibility potential of the honey and the PA alone.

Several studies have investigated combinations of silk fibroin and honey in electrospun templates.
Kadakia et al. electrospun silk fibroin templates from HFP containing either poloxamer 407 (P407),
a hydrophilic polymer used to improve cell adhesion, or Manuka honey. Fiber diameter measurements
taken from SEM images revealed that the incorporation of P407 at either a 1:1 or 3:1 silk:P407 ratio
(total polymer concentration of 10% w/v) significantly decreased fiber diameters (from 2.2 µm down
to 1.8 µm), while 1% honey increased fiber diameters (from 4.4 µm up to 5.8 µm) and 5% honey
decreased fiber diameters (down to 3.6 µm). Mechanical testing showed that increasing P407 and
honey concentrations decreased the elastic moduli of the templates relative to silk control templates
when dry. However, when the templates were hydrated, the honey templates had elastic moduli in the
range of 5–9 MPa, above the 2–3 MPA range of the silk controls, indicating that the honey increased
elasticity. While no difference was observed in the swelling of the silk/P407 templates and pure
silk controls, the honey templates swelled to a significantly higher degree, with a swelling ratio of
about 350% after four hours, while the silk fibroin control had a swelling ratio of approximately 240%.
The water vapor transmission rate was observed to decrease from approximately 1750 g/m2/day for
the silk control template to approximately 1550 g/m2/day with the incorporation of 1% honey and
approximately 1400 g/m2/day with the incorporation of 5% honey. Water contact angle measurements
showed that the incorporation of p407 decreased the water contact angle from about 70◦ to about 45◦

for 3:1 silk:P407 and about 11◦ for 1:1 silk:P407. Surprisingly, the incorporation of honey increased
the water contact angle from around 61◦ to approximately 67◦ for 1% honey and approximately 78◦

for 5% honey. Fibroblast experiments showed no increase in proliferation in the 1% honey templates,
and impeded proliferation on the 5% honey templates, indicating a degree of cytotoxicity of the
honey as discussed earlier in this review. However, fibroblasts infiltrated fully into all template types
after 28 days, with no differences between groups, and no significant difference in hydroxyproline
production was observed between the groups [84]. This study would have benefited from a glucose
release assay to ascertain the amount of honey released during disinfection and subsequent culture.
Given the cytotoxicity observed in the fibroblast culture experiments, it is speculated that templates
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with lower amounts of loaded honey or a lower, persistent release of honey over time would have
performed better in the cellular studies.

In a similar effort, Yang et al. electrospun solutions of silk fibroin and poly(ethylene oxide) (PEO)
with concentrations of 0%, 10%, 30%, 50%, and 70% w/v Manuka honey into nanofibrous templates.
FTIR showed the presence of the Manuka honey in the fibers, and SEM images showed an increasing
fiber diameter with honey concentration, from an average of 484 nm without honey to an average of
2229 nm with 70% w/v honey, as shown in Figure 4. Bacterial inhibition tests using E. coli, S. aureus,
P. aeruginosa, and MRSA indicated that the templates retained the antimicrobial effects of the Manuka
honey. Specifically, bacterial inhibition over 24 h of all four bacterial strains was approximately zero
for the non-honey template, but increased to around 50% inhibition of E. coli, about 28% inhibition of
S. aureus, about 57% inhibition of P. aeruginosa, and about 40% inhibition of MRSA for the 70% w/v
honey template. Templates were also used to treat a mouse dorsal wound model over a 12-day period,
and showed complete healing of the wounds treated with the 70% honey template, whereas wounds
treated with a non-honey silk template or a commercial AquacelAg wound dressing had only around
a 90% reduction in wound size over this timeframe [85]. The most novel part of this study was the
use of deionized water and hydrophilic polymers in the electrospinning process, as opposed to the
organic solvents used in the previously described studies. This water-based solution could potentially
eliminate the sequestering of the honey to the outside of the fibers, reducing the mechanical strength of
the template, but delaying the release of the honey over time. As such, this study would have benefited
from a glucose release experiment showing the release profile of honey from the template to indicate if
this delayed, controlled release is present.

4.2. Cryogels

Cryogels, fabricated by freezing a crosslinked polymer solution, have been investigated as
templates for bone tissue engineering due to their porosity, elasticity, and ability to retain their
three-dimensional architecture. As bone fractures or defects are often sites of biofilm formation
and bacterial infection due to their open nature, the eradication of bacteria is of utmost importance.
Thus, research has focused on incorporating honey into cryogels as an antimicrobial agent. In a 2017
study, Hixon et al. incorporated Manuka honey into cryogels formed from either gelatin or silk fibroin.
While the silk cryogels had larger pores (average pore diameter 25–40 µm) than the gelatin cryogels
(average pore diameter 17–20 µm), the incorporation of Manuka honey significantly decreased these
pore diameters in the silk cryogels, but not in the gelatin cryogels. Honey decreased the swelling
ratios of the gelatin cryogels, but not the silk ones. Ultimate compression testing indicated that honey
significantly decreased the average peak stress in both cryogel types, and decreased the modulus of
the gelatin cryogels, which could make the honey-incorporated cryogels less feasible in load-bearing
bone tissue applications. Manuka honey incorporation had no significant effect on the proliferation of
seeded MG-63 osteosarcoma cells, but increased cellular infiltration in the highest (10% v/v) honey
concentration silk cryogel samples. Similar to the results observed in the electrospun honey templates
discussed above, glucose release tests showed the bulk of the incorporated honey was released within
the first hour of hydration, however, after this bulk release there was a consistent release of 0.03 mg/mL
glucose per day throughout the 14-day soak period for both the gelatin and silk cryogels. The peracetic
acid sterilization procedure also was shown to remove most of the incorporated honey from both
polymer types. Thus, it may be beneficial to use other sterilization methods, such as gamma radiation,
in the future to avoid leaching out the honey from these structures. Bacterial clearance tests showed
that the incorporation of honey significantly increased bacterial clearance of both E. coli and S. agalactiae,
and bacterial broth clearance and bacterial adhesion assays confirmed this trend. Honey incorporation
did not alter mineralization of the cryogels by the MG-63 cells over a 28-day culture period [86]. While
the mechanical testing data indicates that the presence of honey weakens these cryogels and makes
them more brittle, their ability to inhibit bacterial growth and induce cellular infiltration suggests
their potential usefulness in bone tissue engineering. This tradeoff of mechanical stability should be
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accounted for when designing future honey cryogel-based therapies. Efforts should focus on protecting
the honey content from washing out during sterilization or as an initial bulk release, creating a more
long-term, sustained release greater than one-to-two hours. Additionally, the utilization of other
polymers should be explored as a means to maintain mechanical strength and elasticity even with the
incorporation of honey.

Figure 4. Honey increases fiber diameter. SEM images and histograms of fiber diameters of silk/PEO
nanofibrous matrices spun with (a,a’) no Manukah honey; (b,b’) 10% w/v Manuka honey; (c,c’) 30%
w/v Manuka honey; (d,d’) 50% w/v Manuka honey; and (e,e’) 70% w/v Manuka honey. Reproduced
with permission from Yang et al., Materials & Design; published by Elsevier, 2017.
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Although not addressed in this study, it has been shown that lowering the pH in the area
around bone tissue can stimulate increased bone resorption and reduce mineral deposition by
osteoclasts [87,88]. This effect is absent at or above a pH of 7.4, but is near-maximal at a pH of
7 [88]. Thus, there is a danger that the low pH of honey could impede bone regeneration rather than
stimulate it. The study by Hixon et al. showed no effect of the honey on MG-63 osteosarcoma cell
mineralization in vitro, but additional testing with non-cancerous osteoblasts and osteoclasts should
be done. Given these well-documented effects of lowering the pH on bone resorption, it is speculated
that honey-incorporated cryogels are may not be a useful bone-repair therapy.

In a subsequent study by Hixon et al., Manuka honey with various UMFs (unique manuka
factor, a general quantification of bacterial inhibition) was incorporated into cryogels and electrospun
templates, both fabricated from silk fibroin. The amount of honey in all constructs was kept constant at
5% v/v, while the UMF was varied by utilizing commercially available honeys rated with UMFs of 5+,
10+, 12+, 15+, and 20+. In general, UMF had no effect on the morphology of the cryogels or electrospun
templates or on their ability to inhibit E. coli or S. aureus, and the electrospun templates had greater
bacterial clearance (0.5–1 cm) than the cryogels (approximately 0.16 cm). The glucose release profiles
from the cryogels and the electrospun templates were not statistically different, with the bulk of the
glucose released within the first four days of soak maintaining a level of 0.4–0.6 mg/mL glucose in the
surrounding solution [89]. Thus, it is unknown why the electrospun templates were more effective
at clearing both types of bacteria. One explanation could be that different bactericidal components
of the honey, such as the methylglyoxal, hydrogen peroxide, or the gluconic acid, are released at
different rates or profiles than the glucose, and these rates may be different between the cryogels and
the electrospun templates. Assays for these other components may be necessary to fully explain the
dramatic difference in bacterial inhibition between these template types. Likewise, it is curious that the
UMF of the honey used in these templates did not affect their bacterial clearance. Part of the problem
may be that the exact UMF of each honey obtained was not listed, only that it was above the listed
level (5+ means that it has a UMF of at least 5, not exactly 5). Thus, it is possible that the actual UMFs
of the honeys did not vary as much as was thought based on their labels. It would be beneficial for
future studies testing different UMFs to test the UMF in-house, rather than relying on the UMF rating
of the commercial vendor. Thus, it is still unknown whether the UMF of the Manuka honey used
affects bacterial clearance or other properties when incorporated into tissue templates.

4.3. Hydrogels

Hydrogels, highly absorbent networks of hydrophilic polymer chains, are often used as templates
and drug delivery devices in tissue engineering due to their polymeric structure and the ability to
control characteristics, such as pore size, water content, and degradation profile. Several groups have
explored incorporating honey into hydrogels for use as wound coverings. In a 2012 study, Wang et al.
incorporated Chinese Sunflower honey at 10% or 20% v/v into hydrogel sheets fabricated from chitosan
and bovine gelatin. Swelling studies indicated that the presence of honey reduced the ability of the
hydrogel to absorb fluid, with the 20% honey hydrogels swelling only around 250%, as compared
to the 700% swelling of the non-honey control. Compression testing indicated that honey content
also reduced the modulus of the hydrogel sheets from around 110 kPa to around 60–70 kPa for the
20% honey hydrogel and approximately 58 kPa for the 10% honey hydrogel. Antibacterial assays
showed that the presence of honey significantly increased the inhibition of S. aureus and E. coli growth,
with the 20% honey hydrogel causing almost 100% inhibition while the non-honey hydrogel caused
approximately 20% inhibition of both bacterial types. In vivo oral toxicity tests were performed in mice,
and dermal irritation and burn wound healing tests were performed in rabbits. As expected, the mice
toxicology tests showed no toxic symptoms. After eight days of treatment in rabbit wounds, the honey
hydrogel group averaged about 80% wound closure, while the ointment group had about 60% wound
closure and the non-treated group had about 45% wound closure, as shown in Figure 5. Histological
examination of the wounds after 12 days revealed that the untreated wounds were infected, contained
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a high amount of inflammatory cells, and had no hair follicles. The ointment-treated group had smaller
ulcers than the non-treated group, but still contained acute inflammatory infiltrate that collected in
small cysts underneath the regenerated epidermis. Both the ointment group and the honey hydrogel
group showed epidermal healing, but the honey hydrogel group had less inflammatory infiltrate and
also had proliferating hair follicles on the surface [90]. Although this study thoroughly characterized
the in vitro and in vivo aspects of the honey hydrogel, the lack of a control non-honey hydrogel group
in the animal studies call into question whether the honey improved the in vivo performance of the
hydrogel. Additionally, the lack of a topical honey treatment group in these studies made it impossible
to ascertain whether incorporation of the honey into a hydrogel improved healing over the current
clinical method of treatment. Thus, the only conclusions that can be drawn from this section of the
study are that this honey-containing hydrogel improves healing relative to an ointment treatment.
A glucose release study would also improve this paper by showing whether the honey is released in a
burst or released in a controlled fashion over days or weeks after implantation.

Figure 5. Honey hydrogel induces wound closure. Wound closure rates in rabbit wounds that were
untreated, treated with a commercial wound ointment (MEBO), or treated with a honey-infused
chitosan/gelatin hydrogel (HS) at 4, 8, or 12 days after beginning of treatment. “**” indicates statistical
significance at p < 0.005, “*” indicates statistical significance at p < 0.01. Reproduced with permission
from Wang et al., Carbohydrate Polymers, published by Elsevier, 2012.

More recently, Sasikala et al. incorporated Manuka honey into chitosan hydrogel films, also for
use as wound dressings. Chitosan solutions containing 8% w/v Manuka honey were cast in Petri
dishes and dried at 40 ◦C for 24 h. Honey increased the folding endurance of the samples with
the honey samples surviving a mean of 289 folds, whereas the non-honey films survived a mean of
143 folds. This finding indicates greater flexibility of the honey hydrogels, which is likely a function
of the hygroscopic effect of the honey. However, no effect of the honey was observed on the water
vapor transmission rate of these films, which was curious given the results observed in electrospun
scaffolds as detailed earlier in this review. As observed in the study discussed above, honey decreased
the swelling ratios of the hydrogel films and increased the inhibition of S. aureus and E. coli growth.
When these films were placed in a rat dorsal wound model, increased wound closure was observed in
the honey samples relative to non-honey control films and cipladin ointment controls. Specifically,
after 12 days of treatment, the honey hydrogel wound was 94% closed, the non-honey hydrogel wound
was 78% closed, the ointment-treated wound was 86% closed, and the non-treated control wound was
64% closed [91]. The use of non-honey control hydrogel films in this animal study show the benefit
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of the honey to the wound healing process, which is an improvement over the Wang et al. study
discussed above. However, many of the studies described in this paper seem to have been undertaken
with a sample size of n = 1, as there are no standard deviations or standard errors reported. Although
the methods section says that an ANOVA was performed on the wound closure data, it does not
report which specific sample groups were significant from each other, casting doubt as to the scientific
veracity of these findings. This study would benefit from being repeated more thoroughly so that its
findings can be scientifically corroborated.

In 2008, Gethin et al. published a study in which 20 patients with chronic, non-healing leg ulcers
were treated with Apinate, a commercially available Manuka honey hydrogel dressing made by Derma
Sciences. This study focused on the effect of the Manuka honey hydrogel in lowering the wound pH,
and the corresponding effect on wound size reduction. The Apinate dressing itself had a pH of 4.0,
due to the acidity of the honey. After a two-week period, wounds treated with Apinate had a mean pH
drop of 0.46, with a mean wound size reduction of 1 cm2. A linear regression model was developed
using the experimental data, showing a significant relationship between drop in pH and a reduction
in wound size over the two-week period, with a one unit reduction in pH being associated with a
decrease of 81% of wound size [3]. It is unknown how much of the healing effect was a function of the
honey’s pH, as opposed to its osmotic effects, bactericidal effects, or other properties detailed earlier in
this review, or whether the pH is an effect of wound healing instead of a cause. However, a decrease in
pH has been shown to increase oxygen saturation, reduce elastase activity, and kill certain bacteria,
which all aid wound healing [92–94].

Giusto et al. have conducted research incorporating Manuka honey into pectin-based hydrogels.
They report that honey-containing pectin hydrogels have superior bacterial clearance of S. aureus
and E. coli, and demonstrate no cytotoxicity to fibroblasts [95,96]. Another study was conducted by
Zhodi et al. in which Gelam honey, a honey produced in Malaysia, was incorporated into hydrogels
made from polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Honey content significantly
decreased the pH value of the hydrogels (from 5.3 to 4.3) and increased the swelling of the hydrogels
by a factor of five relative to non-honey controls. A large-scale burn wound study was undertaken
using 96 rats, six rats per experimental group. Wounds treated with the honey-containing hydrogels
significantly decreased in size relative to non-honey hydrogel controls by days 21 and 28, with the
honey-treated wounds averaging a 91% reduction in size compared to the 72% reduction in size of
the control hydrogel wounds. Histological examination showed decreased inflammatory exudate
by day seven and increased dermal repair and reepithelialization by day 21 in the honey-containing
hydrogel wounds. These wounds also showed an increase in granulation tissue and capillary formation,
as well as collagen synthesis. RNA extracted from the wound site showed that the honey-containing
hydrogel treatment caused a significant decrease in IL-1α, IL-1β, and IL-6 expression relative to control
hydrogels, a commercial Opsite film wound dressing, or non-treatment groups. Specifically, the
honey hydrogel caused a drop from around 3.5% expression to 0.5% of IL-1α and IL-1β, and from
about 3.5% expression to 0.1% expression of IL-6 mRNA after seven days, normalizing expression
to a β actin control, as shown in Figure 6 [97]. This animal study is the most in-depth look at
the in vivo effect of honey-containing hydrogels and demonstrates that the honey content reduces
inflammatory cytokine output, reduces inflammatory exudate, increases the formation of granulation
tissue, and increases the wound closure rate. Ideally, future studies of this type will also look at a
greater number of relevant secreted factors, such as TNF-α, IL-8, MIP-1α, MIP-3α, VEGF, MMP-1,
MMP-9, and Proteinase 3, among others. In this way, a more complete understanding of the wound
environment could be ascertained.
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Figure 6. Honey reduces inflammatory cytokine expression. mRNA expression of (a) IL-1α, (b) IL-1β,
and (c) IL-6 in a rat burn wound model treated with a control hydrogel, a commercial Opsite film
dressing, the honey hydrogel, or non-treated (-Ve) control, normalized to β-actin. Reproduced with
permission from Zohdi et al., Evidence-based Complementary and Alternative Medicine; published by
Hindawi, 2012.

5. Commercialization

Currently, several companies sell or are developing products which contain Manuka honey for
wound care, as shown in Table 2. Derma Sciences, a tissue regeneration company based in Princeton,
New Jersey, sells a line of Manuka honey products under the brand Medihoney®. In addition to pastes
and gels combining Manuka honey with gelling agents to increase viscosity, this company also sells
several variants of an alginate-based hydrogel sheet containing Manuka honey for use as wound
coverings, including the Apinate dressing discussed earlier in the hydrogel section [98]. Several in vitro
studies have confirmed the antibacterial effects of these products [99,100]. Furthermore, randomized
controlled trials and case studies have demonstrated the antibacterial and wound healing effects
of these products in the clinical setting [73,101–105]. Simon et al. detailed the treatment of various
surgical wounds and drainage sites in pediatric oncology patients with a Medihoney® alginate wound
covering, and reported that the honey reduced irritation and cleared infections. One acute lymphatic
leukemia patient with a high level of immune suppression had a persistent deep surgical site infection
that healed completely once treated with the Medihoney® [73]. Johnson et al. conducted a randomized
controlled trial of topical Medihoney® application versus mupirocin in preventing catheter-associated
infections and found that while the honey was comparable to the mupirocin in preventing infection,
2% of staphylococcal isolates were mupirocin-resistant. Thus, they concluded that honey represented
a good alternative to the gold-standard antibiotic [101]. A wound-focused randomized controlled
trial conducted by Robson et al. using topical Medihoney® observed about a 10% increase in the
healing rate in the honey-treated wounds as opposed to conventionally-treated wounds, which was
statistically significant [102]. A prospective observational study by Biglari et al. using Medihoney®

focused specifically on chronic pressure ulcers and found that the honey eradicated bacterial growth
in all 20 ulcers treated, with 90% of patients showing complete wound healing after four weeks [104].
Likewise, Smith et al. published a case series of topical Medihoney®-treated recalcitrant venous leg
wounds that had failed to respond to four-layer compression, topical silver, nonadherent dressings,
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and antibiotic therapy. All 11 wounds treated had 100% closure by six weeks, with an average wound
healing velocity of 0.25 cm2/day [105]. In addition to proving the efficacy of the Medihoney® product
line, specifically, these trials and case studies lend additional weight to the general benefits of Manuka
honey on wounds.

Table 2. Summary of commercial wound-care products containing Manuka honey currently on
the market.

Product Name Company Product Category

Medihoney® Paste Derma Sciences Paste, topical application
Manuka Honey (Paste) Manuka Health Paste, topical application
Activon Tube Advancis Medical Paste, topical application
Medihoney® Gel Derma Sciences Gel, topical application
ManukaApli ManukaMed Gel, topical application
Medihoney® Alginate Dressing Derma Sciences Composite Hydrogel
Manuka Health Wound Dressing Manuka Health Composite Hydrogel
Algivon, Algivon Plus Advancis Medical Composite Hydrogel
Medihoney® HCS Application Derma Sciences Honey-impregnated Dressing
Medihoney® Honeycolloid Application Derma Sciences Honey-impregnated Dressing
Manukahd ManukaMed Honey-impregnated Dressing
ManukaMed MedSaf ManukaMed Honey-impregnated Dressing
Manukahd Lite ManukaMed Honey-impregnated Dressing
Manukahd Lite rope ManukaMed Honey-impregnated Dressing
Actilite Advancis Medical Honey-impregnated Dressing
Algivon Tulle Advancis Medical Honey-impregnated Dressing

In addition to the Medihoney® line by Derma Sciences, there are a few other companies
that sell Manuka honey-based therapeutic products. The New Zealand-based Manuka Health
(Newmarket, Auckland) manufactures a glycerin-based honey-containing hydrogel sheet for wound
covering [106]. Another New Zealand-based company, ManukaMed Ltd. (Solway, Masterton),
sells variations of gauze-based, honey-impregnated fiber pad wound coverings [107]. The United
Kingdom-based Advancis Medical (Kirkby-in-Ashfield, Nottinghamshire) makes several types of
Manuka honey-impregnated wound coverings, including cellulose-based net dressings (Actilite and
Activone Tulle) and alginate hydrogels (Algivon, Algivon Plus) [108]. Additionally, a Memphis,
Tennessee-based company, SweetBio Inc. (Memphis, TN, USA), is developing a resorbable membrane
for oral surgery, with manufactured prototypes currently undergoing testing [109]. Of these products,
the only ones extensively studied in peer-reviewed literature are the Medihoney® coverings. Except
the Sweetbio membrane, all of these products are designed as temporary wound coverings that must
be physically replaced. While no company has published release profiles of the honey from their
products, given the described methods of application it is likely that the honey is delivered at high
concentrations as a bolus. As high concentrations of Manuka honey have been observed to be cytotoxic
in vitro, there may be a potential to improve the healing outcomes of wounds treated with these
products by diluting the honey or by attenuating the release to lower levels for prolonged amounts
of time [13]. However, attenuating the honey concentration may diminish the antibacterial effects
of the dressings. Thus, higher concentrations of honey should be used initially in infected wounds
to ensure the killing of the invading bacteria. A two-step process may be optimal, in which heavily
infected wounds are first treated by topical application of undiluted Manuka honey to eradicate the
infection, and then the honey is removed and replaced by a controlled-release template to aid in tissue
regeneration. Alternatively, delivery of lower levels of honey alongside an antibiotic could enable
the eradication of bacteria and stimulation of healing without the undesirable cytotoxic effects of
the honey.
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6. The Future of Honey in Tissue Engineering

The greatest hurdles to be overcome in the development of honey-containing tissue engineering
templates are the cytotoxicity of high concentrations of honey and the lack of prolonged, consistent
release rates of the honey over time. In templates which rely on cellular infiltration and tissue ingrowth,
cells may encounter higher concentrations of honey as they infiltrate into the honey-containing template
than they would outside or adjacent to that template. Such templates will be surrounded by a honey
gradient radiating away from them into the surrounding tissue, and migrating cells will encounter
higher and higher honey levels as they move towards, and into, the template. Thus, it will be important
to monitor honey levels not only in the template releasate, but within the template environment itself
during in vitro honey release studies. While some of the studies discussed above did not see honey
cytotoxicity as an impediment to cellular proliferation and infiltration, these studies used liquid
ethanol disinfection or peracetic acid sterilization steps that washed away the majority of the honey
from the templates before cell seeding [80]. In applications where templates are disinfected via
ultraviolet or gamma radiation, or ethylene oxide sterilization, no honey will be removed before cell
seeding or template implantation. Thus, cytotoxicity could impede cell infiltration and proliferation.
The templates studied thus far tend to release their honey content in a bolus during the first day of soak
or implantation. While this type of release may be acceptable for a wound covering that can be removed
and replaced, templates that are surgically implanted and resorbed into the body must contain the
entire honey amount necessary for the application. Thus, it is important that methods be developed to
attenuate and delay the release of honey over a period of days to weeks. In electrospun fibers, this may
be accomplished by the use of core-shell electrospinning, in which fibers are created with a core of
one polymer type and a shell of another [110,111]. By encapsulating honey within the fiber cores,
its release could be delayed over time, with either diffusion or polymer degradation controlling its
release rate. Templates created via this method should be subjected to rigorous mechanical testing
to ensure that incorporating a honey core does not cause the fibers to weaken or become too brittle
for their intended use. As of yet, there are no published studies using core-shell electrospinning
with honey. However, this technology is likely a next step for the field. As there is no equivalent
to core-shell electrospinning in the field of hydrogel and cryogel fabrication, other methods must
be used to attenuate the honey release. Possible techniques include increasing polymer molecular
weight and concentration and increasing the crosslinking density to reduce liquid diffusion through
the templates—however, this will likely decrease the swelling ratio of the templates which may be
undesirable. These effects will likely have to be balanced to achieve the optimal honey release rate,
water vapor transmission rate, and absorbance of these hydrogels and cryogels. Additionally, due to the
reported decrease in compressive modulus and strength of these constructs with honey incorporation,
care will have to be taken to make sure that their mechanical properties are not compromised for their
intended application [86,90,112].

More study is also needed on the effects of honey on immune cells such as neutrophils and
monocytes/macrophages. While Tonks et al. showed that Manuka honey causes an increase in
the output of TNF-α, IL-1, and IL-6 by monocytes over a 24-h period, it would be informative to
ascertain the effect on levels of other inflammatory, anti-inflammatory, and angiogenic signals, such
as IL-8, VEGF, IL-4, IL-1ra, MIP-1α, MIP-3α, etc. Additionally, similar testing of neutrophil cytokine
output would be helpful, as their inflammatory and anti-inflammatory effects as the first responding
immune cells in wounds are being assessed with increased importance [113–115]. Further testing
of the effects of honey on neutrophil superoxide output, chemotaxis, and NF-κβ activation in the
presence of different inflammatory and anti-inflammatory stimulators is needed to fully understand
how honey affects the regulation of the wound environment by neutrophils. As noted earlier in this
study, the current data suggests that high levels of honey (above 33% w/v for Manuka honey) are
necessary to fight bacterial biofilms. However, the evidence also suggests that these high honey levels
have the potential to cause significant cytotoxicity. Thus, in wounds with established biofilms, it is
likely that a two-step treatment process will have to be implemented. First, a high concentration of
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honey can be applied topically to the wound to destroy the biofilm and eradicate the bacteria. After
the infection has been eliminated, a tissue engineered template can be applied which releases lower
levels of honey to reduce inflammation and aid in tissue regeneration, without causing cytotoxicity.
In wounds without established biofilm-based infections, the first step may not be necessary, and the
honey-eluting template may be directly applied to the area.

7. Conclusions

In vitro and in vivo evidence shows that honey, particularly Manuka honey, eliminates
bacteria, resolves chronic inflammation, and promotes faster wound healing. Its potency against
antibiotic-resistant bacteria, such as MRSA, makes it a particularly invaluable tool in an age where
more strains of resistant bacteria are developing. As such, honey is a valuable addition to many
tissue engineering templates in eliminating bacterial infection, aiding in inflammation resolution,
and improving tissue integration with the template. Future research should focus on attenuating and
prolonging the release of honey from the templates to avoid cytotoxicity and prolong the beneficial
effects of the honey within the site.
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